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Computer support has focused on organizations and individuals. Groups are different. Repeated, expensive 
groupware failures result from not meeting the challenges in design and evaluation that arise from these
differences.

THE ORIGINS OF GROUPWARE AND ITS CHALLENGES

Many expensive failures in developing and marketing software to support groups are not due to technical
problems. They result from not understanding the unique demands that this class of software imposes on
developers and users. This article briefly outlines the origins of groupware, describes eight specific problem
areas, and finally examines groupware successes in search of better approaches to supporting work in group
settings.

Desktop conferencing, videoconferencing, co-authoring features and applications, electronic mail and bulletin
boards, meeting support systems, voice applications, workflow systems, and group calendars are key examples of
groupware. Labels vary: groupware, collaborative computing, workgroup computing, multi-user applications,
computer-supported cooperative work (CSCW) applications... What is included? Not everyone agrees. Begin by
asking, "Was this software designed to support groups? Is it being used to support groups?

Electronic mail and bulletin boards are well known, but few other groupware prototypes and products have done
as well despite considerable effort. Successes exist, but progress is slow and can lead in unanticipated directions.

GROUPWARE: PRIMARILY OFF-THE-SHELF PRODUCTS

The three rings of Figure 1 place groupware in the software universe somewhere between single-user
applications and information systems that support organizations. Each software development area emerged
independently and produced the research and development literature identified on the left.

Figure 1. Development and research contexts.

Systems designed to support organizations achieved prominence first, because the expense of early computers
required that they address major organizational goals. These include large mainframe (and, later, minicomputer)
applications. "Organizational goals" are major goals typically defined by upper management. Such goals are not
always fully agreed upon, even among management-if they were, the course of internal systems development and
acceptance would proceed more smoothly than it does. These research and development activities have variously
been labelled data processing (DP), information systems (IS), management information systems (MIS), and
information technology (IT).



Groupware and Social Dynamics: Eight Challenges for Developers http://www.ics.uci.edu/~grudin/Papers/CACM94/cacm94.html

2 of 16 19.04.2005 14:30

By the early 1980s, the spread of interactive and personal computing created large markets for applications
designed for individual users, such as spreadsheets and word processors. Research and development activities
drew on existing human factors (HF) approaches to design and evaluation prior to the emergence in the early
1980s of conferences and journals under such banners as Computer and Human Interaction (CHI).

In the mid-1980s, the terms groupware and CSCW were coined and conference series and literature appeared.
Conditions that emerged in workplaces to encourage this included: (a) computation inexpensive enough to be
available to all members of some groups; (b) a technological infrastructure supporting communication and
coordination, notably networks and associated software; (c) a widening familiarity with computers, yielding
groups willing to try the software; (d) maturing single-user application domains that pushed developers to seek
new ways to enhance and differentiate products.

On the right in Figure 1 are the principal software development contexts involved in each area. Most systems
addressing organizational goals are developed in-house or contracted out. Most single-user applications are
commercial products, with development costs amortized over many customers. Groupware is largely a new
market for product developers, along with telecommunications companies that have a focused interest in
multi-user applications such as live video. Attendance at the first three CSCW conferences was primarily from
software product development companies (approximately 40%) and universities (30%) with a steady
telecommunications presence (5%-10%).

To understand the problems encountered by groupware applications, it is essential to realize that most interest in 
groupware development is found among the developers and users of commercial off-the-shelf products who
previously focused exclusively on single-user applications.

The huge software markets created by stand-alone personal computers were once restricted to single-user
applications, but as networks link the computers, groups represent large potential markets. As developers shift
from supporting individual users to supporting groups, many encounter for the first time the challenges described
in this article.

INFORMATION SYSTEMS IN ORGANIZATIONS: A CONTRAST TO  PRODUCT DEVELOPMENT

The purchasers of a highly visible, expensive mainframe system or application anticipate a substantial benefit.
They know organizational change is likely. Upper management is thus likely to commit to helping the system
succeed, through (a) job redesign and creation; e.g., word processing skills become required of new secretaries
and a database administrator position is created; (b) support for training users in order to increase system
acceptance; (c) restructuring to work around important individuals who will not use the system (e.g., a
terminal-shy manager); and (d) positive leadership through inspiration or example. Even with such support,
success is not assured. The system might not be salvageable or management might be divided; for example, the
management of the information systems group and other corporate managers may have conflicting goals.

These social and political factors that affect the introduction of large mainframe and minicomputer systems are
little known to developers of single-user applications, including those moving on to groupware development. Yet
similar forces affect groupware and must be considered by groupware developers. To the extent that groups share
characteristics of organizations, groupware developers can learn something from the experiences of IS
developers. But not everything. Groups are not organizations and groupware is different from large systems.

Groupware targets smaller groups than do systems serving organizational goals. Management is less committed
to less expensive groupware applications or features. An organization will not restructure itself for each new
application the way it does around a major new system. In general, an organization may adapt to a large
computer system, but a small application program must adapt to the organization, fitting into existing work
patterns and appealing to everyone who must support it. On the other hand, groupware often benefits from user
familiarity with the computer system already in place and from the relative homogeneity and shared goals of
many groups.

Groupware is marketed as a product, whereas most MIS development is internal or contracted. Products are
designed and evaluated to obtain a broad, competitive appeal, whereas internal IS staff have a specific set of
users and must orchestrate their acceptance of a system. Each development context has its own objectives,
constraints, approaches. There is little communication between product development, located in computer and
software companies, and information systems development, located in large companies engaged in other
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businesses or in companies that develop software on contract. Different research communities have grown up
around each with different conferences, journals, and even languages [12, 14].

However, the MIS/IT community is interested in groupware, primarily in support that works best with larger
groups, such as workflow management systems and electronic meeting rooms. Declining technology costs bring
large system software within the economic reach of groups and thus into the product market. For example, a
"group decision support system" or electronic meeting room, developed by the University of Arizona and IBM,
was as recently as 1988 intended only for internal use by IBM, but in 1989 it was rechristened a "group support
system" and in 1990 was marketed as a product, TeamFocus. The word "decision" was dropped not because of a
sudden discovery that meetings serve many purposes, but rather because with declining system costs, the meeting
rooms need not be used by decision-makers to justify their expense.

The scope of these systems is shared by software engineering support for concurrent engineering, process
programming, and other project-level activities. Thus, the middle ring could be subdivided into small-group and
large-group support. CSCW research is defined to be inclusive, encompassing these and even activity at the
organizational level.

This article describes seven challenges in designing and evaluating groupware products. Because of the social
and political factors at work in group settings, achieving groupware acceptance is much trickier than single-user
product acceptance. It is difficult for "off-the-shelf" product developers to jump over the counter and help out
with product acceptance, but they may have to: the eighth challenge for groupware developers.

NEW PROBLEMS FOR PRODUCT DEVELOPERS

In addition to technical challenges, groupware poses this fundamental problem for product developers: Because
individuals interact with a groupware application, it has all the interface design challenges of single-user
applications, supplemented by a host of new challenges arising from its direct involvement in group processes.

Consider two relatively well-worked application areas: A review of group decision support systems concluded
that after decades of effort, "their use is far below what could be expected given their need and promise," and
"although some for-profit companies have built (group decision support systems), they are not yet making much
money," [17]. A 1987 report stated that after 25 years of research, no company specializing in voice technology
had become profitable and that projected sales of voice products were being revised sharply downward. More
generally, for a panel of leading researchers titled "How can we make groupware practical?" Kraut wrote "the
only successful CSCW application has been electronic mail" and Sproull wrote "groupware will never be
practical and widely used in organizations if it follows its current trajectory." [9]

These gloomy assessments deserve an explanation, given the obvious potential in supporting something as
widespread as group activity. Figure 2 lists eight major problems that stem from the social dynamics of groups,
drawn from developer experiences, descriptions of short-lived products and research prototypes, and
experimental and modelling studies in the literature.

Overall, they call for better understanding of work environments and for corresponding adjustments by
developers. Progress on the first five requires better knowledge of the intended users' workplace. The final three
require changes in the development process. The final challenge in particular, addressing the sensitivity of
groupware to aspects of its introduction in workplaces, demands that product developers expand their conception
of the development process and product to include concerns that have been outside their sphere of activity.

As these challenges are examined in detail and illustrated with examples from various groupware areas, bear in
mind that applications and use situations differ. Success and failure cannot be reliably predicted. Despite past
problems and gloomy assessments, we find evidence of progress and ideas for working more effectively.
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Figure 2. Eight challenges for groupware developers.

 

1. THE DISPARITY BETWEEN WHO DOES THE WORK AND WHO GETS THE BENEFIT

A groupware application never provides precisely the same benefit to every group member. Costs and benefits
depend on preferences, prior experience, roles, and assignments. A groupware application is expected to provide
a collective benefit, but some people must adjust more than others. Ideally, everyone benefits individually, even
if some benefit more; however, this ideal is rarely realized. Most groupware requires some people to do
additional work to enter or process information that the application requires or produces.

Consider the automatic meeting scheduling feature that accompanies many electronic calendar systems. The
underlying concept is simple: the person scheduling a meeting identifies the participants and the system checks
each person's calendar, finding a time that is convenient for everyone. The direct beneficiary is the meeting
convenor, typically a manager or secretary, but for the feature to work efficiently, everyone in the group must
maintain a personal calendar. Otherwise, the scheduling program will create conflicts by scheduling meetings in
time that only seems to be open. However, studies have found that electronic calendars are typically used as
communication devices by managers and are often not maintained by individual contributors [8]. Thus,
successful use of automatic meeting scheduling requires additional work for those group members who would
not otherwise maintain electronic calendars. As a result, this groupware feature is not used.

Similarly, consider voice annotation to documents, which has been implemented many times. For speakers,
digitized voice has advantages over handwritten or typed input. Speaking is faster than writing or typing,
conveys emotion and nuance easily, and may be transmitted by telephone. Unfortunately, digitized voice creates
problems for listeners. It is slower to take in, not easily scanned or reviewed, and more difficult to manipulate-for
example, proposed edits will have to be typed in. When is it acceptable for speakers to burden listeners this way?
Possibly when users speak and listen in equal measure, as in telephone conversations, or when the use of hands
or a keyboard is impossible. A disparity may also be accepted when the speaker is of higher status than the
listener, as with dictaphone machines, where saving one person time or effort can justify an arduous
transcription. But in general, the disparity in effort and benefit works against acceptance in many situations and
helps explain the failure of voice products to meet expectations.

As a third example, consider a distributed project management application that covers the scheduling and
chronicling of activities, the creation and evaluation of plans and schedules, the management of product versions
and changes, and the monitoring of resources and responsibilities (e.g., [27]). Its primary beneficiary is a project
manager, but for it to succeed, other group members must enter information that is not typically kept on-line.
This can lead to resistance. For example, a "computer-assisted management system" for a naval vessel, "its
primary purpose to help the Commanding Officer and his department heads administer the ship," was developed
over ten years [22]; due in part to the difficulty of getting everyone to use it, it was eventually replaced by a
system that lacked management features.

Comparison: single-user applications. The problem does not arise. If a group must pick one vendor for a
single-user application due to the economy of purchasing a site license or to easily share its output, costs and
benefits to group members may vary. But this is not an issue that developers can address.

Comparison: organizational information systems. An expensive system is perceived to promise a substantial
collective benefit, so management is more committed to take steps to insure its success, such as hiring
administrators and rewriting job descriptions. Thus, doing the additional work becomes someone's explicit job.
This is much less likely for groupware. For example, it is unlikely that engineers will be required to maintain
on-line calendars in order to support meeting scheduling.
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Addressing the problem. Demonstrating an application's collective and indirect benefits can help. Reducing the
work required of non-beneficiaries seems to be an obvious priority, but it is very difficult to do in practice,
because pleasing the principle beneficiary is critically important and the natural focus of attention. One
promising approach is to design, along with the technology, processes for using it that create benefits for all
group members. This has been stressed in several new meeting management applications. For example, a key
element of the process in one is a specific commitment delivered by the meeting convenor to act on the
contributions of the participants.

2. CRITICAL MASS AND PRISONER'S DILEMMA PROBLEMS

Most groupware is only useful if a high percentage of group members use it. Different individuals may choose to
use different word processors but two co-authors must agree to use the same co-authoring tool! Achieving a
"critical mass" of users is essential for communication systems [8]. Even one or two defections may cause
problems for meeting scheduling, decision support, or project management applications. Even in an idealized
situation in which every individual will benefit once critical mass is achieved, the early adopters may well
abandon it before the critical mass of users is reached [35].

Markus and Connolly [35] use an elegant model to demonstrate the possibility of "prisoner's dilemma" situations,
in which if everyone acts to further their personal best interest, the result is worse not only for the group but also
for each individual. With some discretionary databases, as long as anyone updates them, one's optimal strategy is
to "freeload," but of course if everyone tries to freeload, the system is not used at all.

These analyses compound the problem raised in the first challenge by showing that even a net benefit with equal
costs and benefits for all users will not guarantee groupware success.

Comparison: single-user applications. The problem does not arise.

Comparison: organizational information systems. One organization-wide voice messaging system initially failed
to obtain a critical mass of users: Those who tried to leave messages were discouraged when recipients did not
use the system. This system succeeded, and even came to be appreciated by initial detractors, only after top
management forced a critical mass of use by removing the alternative (message-taking receptionists). This is the
kind of solution available only to expensive corporate systems. A less expensive groupware application or
feature, such as voice annotation in word processing, is unlikely to get a forceful management shove past the
critical point. Similarly, an organization can hire data entry personnel to support a large database, a solution to
the prisoner's dilemma problem that most groups cannot afford.

Addressing the problem. Designers can reduce the work required of all users, build in incentives for use, and
suggest a process of use that provides or emphasizes individual and collective benefits.

3. SOCIAL, POLITICAL AND MOTIVATIONAL FACTORS

Groupware may be resisted if it interferes with the subtle and complex social dynamics that are common to
groups. The computer is happiest in a world of explicit, concrete information. Central to group activity, however,
are social, motivational, political and economic factors that are rarely explicit or stable. Often unconsciously, our
actions are guided by social conventions and by our awareness of the personalities and priorities of people
around us, knowledge not available to the computer. Wynn [in 11] shows that the social element can be central
even to clerical work that seems routine.

Tacitly understood personal priorities are tactfully left unspoken, yet unless such information is made explicit,
groupware will be insensitive to it. For example, secretaries know that managers' unscheduled time is rarely
really free; unauthorized scheduling of a manager's apparently open time can lead to rejection of automatic
meeting scheduling [8]. Similarly, a priority-based meeting scheduler foundered because participants were
reluctant to acknowledge publicly that some of their meetings were low priority.

With one work management system, any employee who reported a "priority problem" received system-generated
requests to forward progress reports to the Chief Executive Officer-an extreme example of a design that ignores
the sensitivity of certain communications. Employees stopped reporting problems. The vigilant system noted this
and alerted the administrator. The employees dealt with the resulting complaint by writing a program that
periodically opened files and changed dates, which satisfied the watchful, automatic monitor. Thus sabotaged,
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the system was of little use and was eventually removed.

As noted earlier, meeting management systems have not met expectations despite the appeal of improving the
efficiency of meetings. Decision-making is often complex and subtle, with participants holding partially hidden
agendas, relying on knowledge of the others involved, and showing sensitivity to social customs and
motivational concerns. Because such factors are not represented explicitly, the computer participates at a
disadvantage. Kraemer and King [17] wrote "Most efforts have focused on the relatively narrow, rational view of
the decision process... But as experience shows, this is limited in its utility because it specifically excludes the
baffling nonrational or quasi-rational behaviors individuals often exhibit." In one case, a management group
considered using an issue-based information system in which issues, arguments, counter-arguments, and
decisions are entered, creating a record of decision-making that can be used to communicate, review, and explore
alternatives. The plan to use the system was abandoned because the manager wanted the group to project a strong
sense of consensus; the explicit record of opposing positions that the application would immortalize was
politically unacceptable.

Conflicts of interest can become major obstacles to success when group members have very different occupations
or roles. Ehn [7] described such issues arising in the development of a newspaper page layout application to be
used by typographers, journalists, and administrative staff.

Comparison: single-user applications. Applications that affect an individual's performance have broader effects;
for example, desktop publishing software that enables anyone to produce professional-quality documents can
disrupt the power balance in an organization. However, these social effects are too indirect and context-specific
to be addressed by single-user application developers, whose effort is more usefully directed to perceptual or
cognitive interface factors that most users experience similarly.

Comparison: organizational information systems. This problem has been extensively explored in organizational
settings [e.g., 6, 26]. Mainframe software developers have some advantages and some disadvantages in contrast
to small-systems developers. They have well-defined target environments: Product developers must anticipate a
range of sensitivities across customer sites. On the other hand, large systems inevitably affect workers whose
goals conflict, whereas groupware focuses on low-conflict collaborations. A cohesive group is more likely to
agree to purchase and use a piece of software. Groupware developers may risk overlooking conflict that occurs
even in small groups, but organizational systems researchers may overestimate group conflict based on the higher
levels of conflict found across larger organizational units.

Addressing the problem. Recognizing the magnitude of the problem and avoiding the common assumption of a
"rational" work environment are first steps. Developers need sophisticated understandings of prospective users'
workplaces. Working with representative users whenever possible is standard advice for developing interactive
systems. It is particularly good advice for groupware developers.

4. EXCEPTION HANDLING IN WORKGROUPS

Work processes can usually be described in two ways: the way things are supposed to work and the way they do
work. Software designed to support standard procedures can be too brittle. A passive strike tactic is to bring
production to a halt by "working to rule" or "doing things by the book"; this has implications for groupware [1].
A wide range of error handling, exception handling, and improvisation are characteristic of human activity [30].
People know when the "spirit of the law" takes precedence over the "letter of the law." Unfortunately, it is
tempting to base design on available work specifications.

Ishii and Ohkubo [15] described the range of problems and consequences for designing groupware to support
office procedures. "The main sources of information were an office work handbook made by the general affairs
department and interviews with clerical workers. While collecting information, we found that the office workers
made many short-cuts and modifications to the standard procedures defined in the handbook. Therefore, it was
no easy task to determine the actual standard procedure, even when it was defined clearly in the handbook." The
developers used this insight in designing the system, but it was not enough: "Unfortunately, we experienced
problems in handling exceptional cases. This groupware executes predefined office procedures. However, it
often happens that the standard procedure cannot be completed because of unpredicted situations." The authors
concluded that AI techniques beyond the state of the art would be required to make the system useful.

A case study [26] illustrates the problem at the organizational level. Computerized stock control and sales order
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processing systems were introduced at a chocolate factory that is part of a large food company. Severe problems
arose when the Computer Services division of the food company installed the systems in the chocolate factory:
"[People in] Computer Services refer to a 'production mentality' where [chocolate factory] staff respond to
problems as and when they arise and are loathe to indulge in long-term planning and adopt specific procedures.
Most important, they expect others to adjust to them, and resist the discipline the computer imposes... Moreover,
not only did management fail to impose set procedures, but further ad hoc arrangements were positively
encouraged by the sales department, as in the case of one customer who was assured that they could amend their
Friday order up to 1:00 pm on a Monday... No doubt it believed it was working in the best interests of the
company, but its actions created considerable problems for those trying to operate the computer." In some areas
the manual system continued to be used out of necessity. At one point, the general manager decided someone
was sabotaging the system.

By recognizing the large amount of ad hoc problem solving in human activity and realizing that descriptions of
"standard process" are often post hoc rationalizations, we can see the behavior that upset the computer services
division as characteristic of efficient performance. After all, catering to the needs of specific customers is often
considered a virtue, not a vice. In the case study, the general manager recommended that the system be
withdrawn, but "he was overruled by group head office who were not prepared to lose face over the installation."
By hiring new personnel and taking other expensive measures, the computer system was made to work. Upper
management wanted this large, expensive system to succeed. A typical groupware application or feature, such as
meeting scheduling, voice annotation or even meeting support, will rarely have the same degree of cost,
visibility, and backing, and thus would fail under similar circumstances.

The strong interest of many organizations in supporting workflow management insures that this complex issue
will remain active. The outcome is difficult to predict: Some fear that the computer will become an enforcer of
rigid procedures; others hope that greater explicitness will enable users to learn about their organization, leading
to what Kari Kuutti has called "expansively mastered work."

Comparison: single-user applications. The preferences and work habits of an individual are more constant over
time than those of groups, so flexibility is a greater consideration in supporting groups. Group activity is difficult
to study and characterize; even establishing the range within which group activity will vary is difficult.
Single-user applications support flexible problem-solving by providing a range of atomic actions and imposing
few constraints on their sequencing, allowing users to construct and evolve work patterns through rapid trial and
error. This approach works much less well for group activity, because trial-and-error testing of options is slower
and more public, and adjusting or evolving a group's practices requires negotiation.

Comparison: organizational information systems. Groups are often more transitory and less well-defined than
organizations, so flexibility requirements may be greater. (Some scholars have suggested that when organizations
are examined closely, groups seem to cease to exist.) The influential Cohen, March and Olsen [4] model
describes an organization as "collections of choices looking for problems, issues and feelings looking for
decision situations in which they might be aired, solutions looking for issues to which they might be the answer,
and decision makers looking for work." A university, for example, exhibits continuity of purpose and activity at
the organizational level that can persevere through dramatic shifts at the group level. An empirical study of 16
hospitals found "the predictability of the tasks confronting individual nurses was more closely associated with
the characteristics of the nursing personnel on that unit than with the characteristics of the control system of the
ward," (Comstock, quoted in [24]). That is, ward-level policies did not predict behavior as well as group
characteristics.

This volatility should warn groupware developers not to build software that imposes organizational controls on
groups. Pfeffer [24] describes a study by Meyer and Rowan titled "Institutionalized organizations: formal
structure as myth and ceremony": "to maintain ceremonial conformity, organizations import [views about what
they should like and how they should work] and incorporate them in their structure, rules, and reporting
requirements. However, since such rules and structures may have little to do with how the work can or should get
performed, in fact there is little impact on task performance... This decoupling, Meyer and Rowan argued, is
actually useful to the organization. It permits the work to get done according to the localized judgments of those
doing the work while presenting to the outside world the appearance of legitimated, rational organization of
work." Myths and ceremonies can endure even as the real work processes change. In such environments, it would
not be useful to impose at the group level the procedures dictated in the "myth and ceremony." (Of course,
organization-level computer support can help perpetuate myths and enact ceremonies.)

Addressing the problem. To avoid the pitfall of supporting rational "myths," learn how work is actually done.
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Tailorable systems are a good step to providing flexibility, but now to tailor effectively is a challenge, because
people are not conscious of detailed organizational functioning and how changes will affect other people.
Groupware cannot count on the kind of management push that saved the large chocolate factory system. Carasik
and Grantham [3] described the use of The Coordinator, a structured mail system. Users complained "this doesn't
fit the way we work," but "management urging was the motivation for continued use." However, one frustrated
user threw the software and documentation out of his office and after six weeks, use was discontinued.

5. DESIGNING FOR INFREQUENTLY USED FEATURES

If "to a hammer, everything looks like a nail," then to a groupware designer, every work situation calls out for
communication or coordination support. We exaggerate the importance and frequency of the objects and events
that we focus on. But many organizations are structured and responsibilities are divided in order to minimize the 
overall communication requirements and social interdependencies. As is well known, an increase in size can lead
to a decrease in efficiency by increasing the communication and coordination overhead. Work has important
social elements that can use support, but groupware features will be used less frequently than many features
supporting individual activity. This has two important implications.

First, groupware features will fare better if integrated with features that support individual activity. Consider
co-authorship applications. Anyone who has written collaboratively can visualize the potential benefit of features
to support annotation, version tracking, and effortless distribution of drafts. But most writing is done alone,
whether single-authored or on a section of a jointly written document. Who would abandon their favorite word
processor to use a co-authorship application? Features to support co-authorship must be integrated with those
supporting authorship. In addition, stand-alone groupware applications may not justify high purchase costs or
may be perceived to fail if used appropriately but relatively infrequently. How often do most of us manage
meetings that a group decision support system could facilitate, or embark on co-authorship projects?

This leads to the second point: Design to be unobtrusive yet accessible. Infrequently used groupware features
must not obstruct more frequently used features, yet they must be known and accessible to users. This is a
difficult balancing act.

Comparison: single-user applications. Unlike groupware, the most important features are frequently used, so the
problem of dealing with infrequent features is less pressing. However, avoiding clutter while insuring awareness
and access is a general and very serious challenge faced by the designers of all infrequently used features.

Comparison: organizational information systems. To justify their cost, many organizational systems focus on
high frequency transaction processing, reducing this problem. Also, at the organizational level, more than at the
group level, there are opportunities to support people who actually do spend a lot of time communicating and
coordinating activity.

Addressing the problem. If possible, add groupware features to an already successful application rather than
launch a new application with a fanfare that creates expectations of heavy use. Ultimately, creating awareness of
and access to infrequently used features could require systems that take the initiative to educate users over time.
Work in this area, mostly in AI, has proceeded slowly. Yet the need grows, as computer capability exceeds by
ever greater amounts our actual use of them.

6. THE UNDERESTIMATED DIFFICULTY OF EVALUATING GROU PWARE

Task analysis, design, and evaluation are much more difficult for multi-user applications than for single-user
applications. An individual's success with a particular word processor is not affected by the backgrounds or
personalities of other group members. Groupware is affected by them, and often must interface simultaneously to
users with different and sometimes shifting roles, preferences, and backgrounds. Users can be tested in a
laboratory on the perceptual, motor, and cognitive aspects of human-computer interaction that are central to
single-user applications, but lab situations and partial prototypes cannot reliably capture complex but important
social, motivational, economic, and political dynamics. Even when a full implementation is available, scheduling
a test is a logistical challenge.

Evaluation takes longer. Much of a person's use of a graphics program can be observed in a single hour, for
example, but group interactions unfold over days or weeks. Groupware that supports limited-duration activities
such as a meeting has only a modest advantage, because awareness of the preparation and consequences are
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critical to understanding such events. In addition, groupware evaluation methods are less precise. Field
observations are complicated by the number of people involved over time at each site, the variability in group
composition, and the range of environmental factors that affect the use of the technology. The pertinent skills of
social psychology and anthropology are absent in most development environments, where human factors
engineers and cognitive psychologists are only slowly being accepted.

Finally, generalizing from experience is risky. Establishing success or failure is easier than identifying the factors
that brought it about. A highly-motivated group can find a way to use a seriously flawed product and a
badly-managed installation can cripple a good product, so one generally finds some successes and some failures.

Consider this example: More than ten members of a research laboratory took part in usability tests of a
co-authoring application. The data were analyzed to find interface problems. This lab produces many
co-authored articles and the application required only a few minutes to bring up, yet several months later it was
not being used outside the experimental setting. Why? Some people were not using the right type of computer
and others did not want to give up features of their favorite word processor. They were fine-tuning the interface
to an application that would not be used.

The absence of definitive studies insures that other researchers and developers will repeat costly mistakes. Hope
springs eternal. More often than not, CSCW and groupware conferences include papers on automatic meeting
schedulers that were developed in ignorance of the fate of a decade of commercially available products.
Predictable problems were encountered: insufficiently frequent user access an unwillingness to place true
priorities on a public system, incomplete adoption of the system by group members, and so forth. Respondents to
a recent Internet poll identified meeting scheduling as the most widely available and the least useful groupware
application. Similarly, voice editors for non-specialists have been marketed for a decade with little success, but
they continue to appear. A typical (fictional) scenario of use devised to sell the application: A sends B a voice
message containing directions for driving to a party, which B edits and forwards electronically to C. Because C
must transcribe the directions, probably requiring a few passes through the voice message, substantial work is
required of the editor-intermediary B, of C, and of any other recipients. In a real situation, anyone in the chain
could greatly reduce the overall effort by typing in the directions.

Comparison: single-user applications. As noted, most are easier to evaluate than groupware.

Comparison: organizational information systems. The success or failure of a system built for one organization is
generally more obvious, although proving that its benefits outweigh its costs (or vice versa) can be difficult or
impossible.

Addressing the problem. Development managers must enlist the appropriate skills, provide the resources, and
disseminate the results.

7. THE BREAKDOWN OF INTUITIVE DECISION-MAKING

Decisions to develop unworkable applications are frequent. The problem often lies not in the detailed design but
in the conception, in the nature of decision-making in development environments.

Decision-makers rely heavily on informed intuition. Most product development experience is based on
single-user applications, for which intuition can be a more reliable guide. A manager with good intuition who
quickly gets a feel for the use of a word processor or spreadsheet can fail to appreciate the intricate demands on a
groupware application that requires participation by a range of users.

In particular, decision-makers are drawn to applications that selectively benefit one subset of the user population:
managers. Project management applications primarily benefit project managers; meeting schedulers and meeting
management systems benefit those who convene meetings; decision support systems primarily benefit
decision-makers; digitized voice products appeal to those who rely on speech (remember the dictaphone).
Similarly, managers envision their own use of features such as a natural language interface and support
development efforts without recognizing the drawbacks and costs.

This bias is understandable-each of us has ideas about what will help us do our job. But in the case of groupware,
managers often underestimate the down side, the unwelcome extra work that an application will require of other
users, resulting in neglect or resistance. For example, a group decision support or work management application
can require many people to learn to enter data, it can record information that participants prefer not to have
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disseminated, and it can block other means to influence decision-making, such as private lobbying. Intuition fails
when the intricate dynamics of such situations are not appreciated. Managers can also fail to appreciate the
difficulty of developing and evaluating groupware and not recognize that users will not be required to do the
work to insure success. Finally, their interactions with customers are with customer management, who share their
biases. My observation, as a product developer, was that development managers whose intuitions were generally
superb could fail spectacularly with groupware. Perhaps, with more confidence in their intuition, they pushed
such projects more strongly than more cautious managers would.

Good intuition for multi-user applications is unlikely to be found anywhere in a product development
environment. Experience as designers, implementers, users, evaluators, or managers is heavily based on
single-user applications. This has shaped the skills and outlooks that are present. For example, human factors
engineers are trained to apply techniques based on perceptual, motor and cognitive psychology to study
phenomena of brief duration. They are unfamiliar with the techniques needed to study group dynamics over time.

Once a project is underway, most researchers or developers rely on feedback from a few potential users, often
those expected to benefit the most. For example, the greatest interface challenge for an intelligent project
management application is to minimize the information entry effort required of each subordinate (or provide
compensatory benefits), but attention is instead directed toward information visualization: the interface for the
project manager. "Managers must know what information is needed, where to locate it, and how to interpret and
use it. Equally important is that they be able to do so without great effort" [27]. This appeals to the manager
sponsoring the project, but it is not wise to focus exclusively on designing for the principal beneficiary, who
should already be relatively highly motivated to use the product.

The converse intuition failure also occurs: A decision-maker does not recognize the value of an application that
primarily benefits non-managers, even when it would provide a collective benefit to the group or organization.
This is particularly true for applications that create additional work for managers. This point is addressed below
in the context of electronic mail.

Comparison: single-user applications. Early interactive applications (e.g., line editors) were developed by and
for programmers, so intuition was particularly reliable. Intuition is generally better for single-user applications
than for groupware, although it is relied upon too heavily.

Comparison: organizational information systems. The problem can be less severe and stronger remedies are
available. An internally developed system is to support the familiar business at hand, not external customers.
Personnel can be hired or retrained; customers usually cannot.

Addressing the problem. Recognition of this problem was a factor in the emphasis on user involvement in the
sociotechnical and Scandinavian collective resource approaches to IS development, discussed below. Product
developers face obstacles in involving users that could be particularly detrimental to groupware development
[13]. If development management recognizes the risks, complexities, and fallibility of intuition, we could see
fewer groupware projects, but those few might have realistic design goals and the resources to meet them.

8. MANAGING ACCEPTANCE: A NEW CHALLENGE FOR PRODUCT  DEVELOPERS

Much research in organizational information systems has addressed system acceptance (e.g., [18, 19]). Product
developers are usually shielded from such concerns by marketing, customer support, documentation developers,
training developers, and others who stand between them and the user. Customers also accept some responsibility
for their choice and may have consultants, internal developers, and other groups to tailor, supplement, or oversee
the introduction of a product.

Unfortunately, groupware can be so sensitive to aspects of its introduction that these strategies fail: If sold off the
shelf in the usual fashion, it can be doomed. A word processor that is immediately liked by one in five
prospective customers and disliked by the rest could be a big success. A groupware application to support teams
of five nurses that initially appeals to only one nurse in five is a big disaster. Groupware must be introduced very
carefully, leaving little to chance.

Not surprisingly, the first research articles to consider adoption from a product developer's perspective focused 
on groupware. Product developers have been isolated from user environments and have little awareness that
factors other than utility and usability govern a product's acceptance or rejection. The following strategy for
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encouraging successful adoption of groupware products, drawn from the work of Ehrlich, Francik, and their
colleagues [5, 8], involves cooperation between developers and marketers.

Identify a group's problems and match the computer solution to it. For example, geographic proximity of group
members guides choices between voice or electronic mail, or synchronous or asynchronous decision support.
Identify appropriate work processes: Our tendency to focus on structured processes can be inappropriate for
communication technologies that best support important (but often unrecognized) unstructured processes. Select
appropriate pilot groups and individuals: Systems can fail if placed on executive desks when secretaries are more
appropriate, if restricted to secretaries when professionals should be included, and so on. Work processes can cut
across an organization chart (complicating purchasing decisions). Allocate equipment properly: The positioning
of peripheral equipment such as printers and scanners can be critical.

Give the adopting group a clear understanding of the mature use of the application, perhaps through a site visit,
to overcome uncertainty; in particular, provide education that demonstrates a positive impact on the work day.
Step-by-step training on unfamiliar features can reduce anxiety even when insufficient for complete learning.
Management attitude is critical to acceptance, a common observation of special significance for applications that
represent a smaller organizational investment. Finally, someone should be prepared to prevent premature
rejection by anticipating and dealing quickly with early problems, and follow-through support should be in place
to handle the post-honeymoon period, when the group's curiosity wanes and work returns to center stage.

These strategies, familiar to those concerned with organizational systems, have been beyond the scope of product
developers. Consultation is not packaged with shrinkwrap software. But if customers walk off with a groupware
product the way they do with a spreadsheet program, these steps will not be taken and the product will probably
fail. Through involvement with the adoption process developers can contribute to it and learn to build support for
adoption into the product itself. Recognition of this is evident in the successful marketing of the Lotus Notes
groupware application: A product development company shifted to an IS approach based on direct sales of
software bundled with consulting support. The same approach was used by IBM with TeamFocus. The
innovative but unsuccessful developers of Wang Freestyle reached the same conclusion [5]. But most groupware
has been marketed with a traditional off-the-shelf approach-and failed.

Comparison: single-user applications. Developers have not dealt with individual users. Adding consulting
services to a groupware package increases the cost and shifts the transaction away from the packaged software
model held by vendors of single-user applications.

Comparison: organizational information systems. Groupware developers can learn from IS experience. They
face a daunting challenge: They must pay more attention to system acceptance problems than product developers
have in the past, yet they face more difficult acceptance problems than large systems developers have in the past,
due to less strong management support.

Addressing the problem. By adding groupware features to existing applications, this problem is sidestepped.
Stand-alone groupware must first be designed to meet the real needs of group members. Developers who
understand the work environment well enough to design successfully will be in a good position to help design
strategies for supporting adoption as well.

ELECTRONIC MAIL AND OTHER SUCCESSES

Products such as electronic mail, databases, and code management systems are used successfully in group
contexts. How do they avoid the pitfalls? Are they potential models? First, consider electronic mail.

1) Who does the work and who benefits? Electronic mail provides an equitable balance for sender and recipient.
The person with a message to communicate must type it, while the receiver can read it easily and when
convenient; thus, the primary beneficiary typically does a little more work. 2) Critical mass problems: These can
have an effect, although with only one other user or a path to an external bulletin board, electronic mail can be
useful. 3) Compatibility with social practices: At times almost conversational, at times almost epistolary,
electronic mail allows us to apply existing social conventions. However, differences lead to problems such as
"flaming," "junk email," "smileys," and to more subtle but significant problems described below. 4)
Exception-handling: The asynchronous, informal nature of most electronic mail makes it flexible; applications
that impose more structure can suffer accordingly [2, 3]. 5) Frequency of use: Email is often relatively heavily
used for groupware and basic use involves few features to learn and recall. 6) Difficulty of evaluation:
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Organizational costs and benefits are difficult to assess but the heavy discretionary use by individuals is a sign of
success. 7) Poor intuitions for groupware: Not all email applications succeed; there has been trial and error and
intuitions have improved. 8) Acceptance: An interesting anomaly is that use has spread from academic and
public sources more than through product development and marketing processes, a point returned to below.

Many of the applications successful in group settings share several properties with electronic mail. As is often
true of email, the primary beneficiaries of databases and code management systems are not managers or
decision-makers, but people who use computer systems more routinely. These object management applications,
like email, focus on organizing and handling information without incorporating notions of role, process, and
social interaction. For this reason some do not consider them groupware; also for this reason they largely avoid
being overly rigid and disrupting social processes, challenges 3 and 4.

SHIFTING TO A WORK PERSPECTIVE

Electronic mail demonstrates how important it is to adopt a workplace perspective rather than a technology
perspective... and how difficult it is.

As developers, we see the distinction between sender and receiver as the key role distinction in the use of
electronic mail. But, as the anthropologist Perin [in 5] revealed, the key distinction in electronic mail use in many
organizations is that of manager and subordinate. The technology does not recognize the supervisor-subordinate
distinction, but it is critical in the workplace. Whatever distinctions are designed into the technology, its
reception is determined by distinctions that exist in the organization.

One groupware anomaly of electronic mail is its success. Another is that its use does not selectively benefit
managers or decision-makers. In fact, Perin documents that the contrary can be true. The ability for anyone to
disseminate information rapidly can create problems for managers whose jobs involve filtering and routing
information. In a classic bureaucracy, lateral communication is minimized-information flows up and down
through the hierarchy. Electronic mail, even more than a telephone on each worker's desk, supports efficient
lateral communication. This may provide greater flexibility and efficiency-but also create difficulties for
managers in organizations built on the hierarchical model.

Similarly, the informality of electronic mail makes it easier, less imposing, and more private to bypass
hierarchical levels. People who would not think of scheduling a meeting with their manager's manager will raise
an issue by email, which can provide a level of informality approaching that of a chance conversation in the hall.
Being bypassed can complicate managers' jobs. Rice [25] notes a study in which 7% of the messages spanned
more than one level. This number may not seem high, but many employees never have face-to-face skip-level
meetings. A few such messages, or even the possibility of making them, could subtly shift the managerial
function.

One managerial responsibility is to absorb information from higher levels and tailor its presentation to
subordinates to maximize their understanding or obtain a desired response. Correspondingly, information
obtained from subordinates is filtered and recast to higher management. But information received electronically
is more easily forwarded without tailoring. In fact, editing such messages can be problematic: If the original
electronic version is forwarded by another path, the tampering is revealed. This places managers in a no-win
situation. Olson and Lucas [23] suggest that it could lead to more "rational" environments by eliminating
"distortion" introduced by bad managers, but good management involves translating and adding context to
messages, taking time to prepare others to receive information, and other tasks that electronic mail can make
more difficult.

And, of course, the ability of anyone to send a rumor or piece of news instantly to everyone in an organization
creates a volatility that management must cope with.

The asynchronous quality of email, often seen as a virtue, can bother managers whose time is tightly budgeted:
"Mostly, a lot of times, I won't respond. I'll print the message and stick it in their file and wait until their weekly
meeting," said one manager in an interview. In support of this view, Eveland and Bikson [10] found that
professionals used email steadily through the day, but managers used it primarily in the early morning or late
afternoon.

Perin [in 5] analyzed field studies and suggested that "these electronic social formations represent new sources of
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industrial conflict... they are seen as subverting legitimated organizational structures." While noting the
collective value of electronic communication to large organizations, she describes how it can conflict with
traditional organizational practices. For example, "the very 'invisibility' of electronic social fields, which may be
cultivated bureaucratically because they are believed to enhance productivity, also delegitimates them and
becomes the source of managerial negativism and suspicion." A study by Fanning and Raphael, cited by Perin,
concluded that electronic mail "is simply not a management tool, if by management we mean those above the
level of project leader... a medium which allows widely separated people to aggregate their needs is, in fact, quite
frightening. Some managers correctly foresee that such a system can be most upsetting to the current established
order, and do not participate in it as a result."

Email can be introduced under conditions that lead to different patterns of use, perhaps at times even
strengthening hierarchic control. But consider the implications should the general pattern outlined above prove to
hold true. Some managers can discourage or terminate email use, but many organizations have introduced it.
Many students and professionals are accustomed to it. Thus, the forces Perin described are likely to play
themselves out over time, forcing organizations designed on outmoded notions of efficiency and control to
evolve. Finding new organizational forms and minimizing the cost of shifting to them are the challenges ahead.

Can we as technology developers change our perspective or must we rely on anthropologists and others?
Visionary writers have stressed the need for designers to understand the functioning and evolution of groups and
organizations, but recognizing the problem is easier than truly escaping the technology orientation reflected in
the term "groupware" itself. And intuition-governed, technology-driven, trial-and-error approaches are proving
particularly expensive and failure-prone in this area.

Through the 1970s and 1980s, the British socio-technical and Scandinavian participatory design approaches
experimented with meaningful engagement of users in systems development, a slow process of mutual education.
Recently these have attracting wider attention through conference presentations and published overviews [11,
28]. The June, 1993 issue of Communications was devoted to efforts to apply these methods in Europe and the
United States.

WAYS TO PROCEED

Extend the use of single-user applications in group settings by adding groupware features- collaborative writing
features to an existing word processor, group support features to spreadsheets, and so forth. The economic barrier
to acquiring a new system to support relatively infrequent activity is bypassed and rapid adoption is replaced by
incremental adoption.

Find niches where existing groupware succeeds, either in spite of the problems described in this article or
because they do not arise. Voice applications helps a traveling sales force that relies on the telephone, structured
email applications may succeed in autocratic organizations, and so on.

Build on object management or shared information systems that have fared better than those that incorporate
elements of organizational structure and work process. Object Lens [20] and Lotus Notes combine electronic
mail and databases. Electronic bulletin boards are used to guide research, development and marketing [e.g., 29].
Modelling group process has proven more difficult, but workflow software is reportedly successful in supporting
structured activity such as processing insurance forms. The variability of much group activity is a brake to much
wider application.

Find ways to provide direct benefits for all group members. In particular, supplement the technology with a
design for the process of its use. Design and evaluation are easier and intuition better if relatively homogeneous
groups are targeted.

Be wary of applications that will selectively benefit managers or decision-makers who are typically not heavy
computer users.

Educate managers and developers about groupware, the risks involved, and the resources and approaches that are
required. Successful products such as Lotus Notes were longer in development than most applications. Working
with users, extensive prototyping, and iterative design can be more cost-effective, but they are expensive.

We need a better understanding of decision-making processes in development. Too often researchers study other
researchers, developers build systems because the technology exists, and managers support the development of



Groupware and Social Dynamics: Eight Challenges for Developers http://www.ics.uci.edu/~grudin/Papers/CACM94/cacm94.html

14 of 16 19.04.2005 14:30

systems that appeal to other managers. We need a more empirical approach to broaden our intuitions.
Trial-and-error learning has become too slow and costly.

When you examine research prototypes and available products, bear in mind that projects have purposes other
than producing something useful. Other goals include exploring an interesting technical problem or matching a
competitor.

Consider adoption issues from the outset. A groupware application may lead to organizational evolution, but its
introduction must be smooth. Groupware must be more "group-friendly" than mainframe systems have been. To
minimize the disruption requires interfaces adapted to users' backgrounds, roles, and preferences.

Anticipate organizational change. Some technology will replace or deskill workers; groupware that handles
communication and coordination-management functions-can erode authority structures. Decentralized control
could in turn further dim the prospect for groupware that selectively benefits management, a description of most
groupware that has been developed.

Groupware may follow the pattern of other "network technologies" such as the telephone and the interstate
highway. They spanned existing organizational boundaries, were designed for purposes unrelated to their
ultimate use, and led slowly to a wide range of indirect effects. Our tentative exploration of a new technology is a
step toward organizational and societal change that is not easily predicted or hurried.
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______________________________________________________________________________

[1] The word "implementation" is generally used. Unfortunately, product developers use "implementation" as a
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synonym for coding, one of many terminological differences that hinder communication.

[2] Flaming refers to the very angry messages that email seems to elicit; junk email results from the ease of
adding people to distribution lists (removing individuals is often more difficult that including them); a smiley
signals humorous intent or emotional context using an image of a face rotated 90 degrees, such as :-)


