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ABSTRACT

In this paper, a novel warping-based retargeting approach

for stereoscopic video is proposed. It considers the

three conflicting goals: preserving salient image content,

avoiding flickering and maintaining consistency between

the two views. The first step of the approach focuses

on content-aware image resizing and considers image

saliency, motion saliency, and depth saliency. In the sec-

ond step, temporal coherence is preserved by tracking and

optimizing deformed pathlines. The proposed algorithm

maps the mesh from the left to the right view to guarantee

consistency between the deformation of objects between

the views. Users rated the quality of the adapted videos as

good. In particular, distortions in the perceived depth are

not noticeable, and the temporal stability is significantly

higher compared to seam carving approaches.

1. INTRODUCTION

In recent years, multiview video has been getting increas-

ingly popular in the entertainment sector in the form of

stereoscopic video. With stereoscopic cinemas, televi-

sions, and the Nintendo 3DSTM, a lot of commercial prod-

ucts that can present this kind of visual content have be-

come available. However, stereoscopic movies are pro-

duced in a fixed aspect ratio. In order to display these

videos on devices with a different screen resolution, the

videos need to be retargeted in a way that preserves the

shape and motion of visually important objects and re-

gions.

Two different video retargeting approaches have been

developed that produce good results. They are seam carv-
ing and warping. However, out of the two approaches,

only seam carving has been applied to the retargeting of

stereoscopic video [1]. This paper proposes a method for

retargeting of stereoscopic video based on warping.

Seam carving [2] removes horizontal or vertical paths

of connected pixels from within the image. These paths

are called seams. The goal is to remove seams that will not

be noticed by the viewer. Several optimizations have been

proposed, e.g., seam carving for videos [3, 4, 5], using an

improved energy map to preserve important image content

[6, 3], novel saliency detection algorithms for stereoscopic

video [7], or an efficient GPU implementation that allows

real-time video retargeting with seam carving [8]. Utsugi

et al. [9] use seam carving for stereoscopic image retar-

geting. The left view is used as a reference image where

most of the resizing is done. Information from the right

view is integrated and the seams are then moved to the

right view via disparity map. Seam carving is also used by

Basha et al. [10]. A seam is searched in both views simul-

taneously with regard to geometric constraints to prevent

distortions in appearance and depth of an image. Guthier

et al. [1] present the first system that uses seam carving for

stereoscopic video. The work builds upon concepts from

image-based stereo seam carving as well as video-based

monoscopic seam carving. The energy function used is

composed of an appearance term to avoid artifacts in the

frame, a disparity term that incorporates 3D information,

and a temporal term that reduces flicker in the resulting

video. An overview of video retargeting techniques is pre-

sented by Kopf et al. [11].

Warping places a rectangular grid mesh over the im-

age and deforms it in a way such that important regions

in the image are resized homogeneously while non impor-

tant regions are allowed to be stretched or squeezed. The

goal is to find a mapping that warps the mesh from the

source resolution to the target resolution. An optimization

problem is formulated with the corner points of the quads

being the unknown variables. Fig. 1 (e) shows an example

of a warped mesh.

Wang et al. [12] proposed an image warping algorithm

that considers image saliency such that non salient quads

are distorted more. In addition, a grid line bending energy

term is introduced because warping of quads that is based

solely on saliency can lead to excessive shearing of the

edges. Yoo et al. have extended warping to stereoscopic

images [13]. They place a rectangular grid mesh over the

left view of the image. To find the corresponding mesh in

the right view, they perform vertex matching on a multi-
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(a) original frame (left and right view) (b) saliency map

(c) linear (d) warped (e) warped mesh

Fig. 1. Reducing the width of the Flower video by 50%. (a) shows an original left and right view of a frame and (b)

shows its saliency. This video was retargeted by linear scaling (c) and warping (d). (e) illustrates the target mesh after

warping.

scale level. To preserve image depth during retargeting,

every node that is shifted into one direction on the x-axis

in the left view is shifted by the same amount and direction

in the right view.

When warping is used for video retargeting [14], time-

dependent constraints need to be taken into account in or-

der to avoid introducing temporal artifacts. Wang et al.

[15] use an optimization over the entire video cube to pro-

duce temporal coherent and content-aware resizing. A

new energy term based on camera and object motion is

added to the frame resizing energy to preserve temporal

coherence.

The main contribution of this work is an algorithm that

automatically warps a stereoscopic video to fit different

display sizes. None of the approaches mentioned above

consider stereoscopic videos, and only the technique pre-

sented by Yoo et al. considers stereoscopic images [13].

Since their technique was developed for images, Yoo et

al. only use disparity and image intensity, but not motion

as an indicator for visual saliency. Our saliency detector is

composed of image saliency, motion, and depth informa-

tion. We also present a pathline tracking and optimization

algorithm for stereoscopic videos which allows us to bal-

ance between the conflicting goals of preserving salient

image content and avoiding flickering artifacts.

The outline of the paper is as follows. The next sec-

tion describes the proposed algorithm for the warping of

stereoscopic videos. In Section 3, the quality of the pro-

posed algorithm is evaluated. Section 4 concludes the pa-

per.

2. RETARGETING OF STEREOSCOPIC VIDEO

This section describes our algorithm for warping-based

retargeting of stereoscopic video. It focuses on three

partially contradicting aspects of the retargeting process.

They are:

• Resizing frames while preserving important content



• Preserving temporal stability to avoid motion arti-

facts

• Maintaining consistency between left and right

view

The basis for warping is one rectangular grid mesh

M = (V,E, F ) for each view of each frame. V is a set of

vertices vi ∈ R2 which are the corner points of the rectan-

gular grid. E is a set of directed edges (i, j) that connect

each vertex to its four neighbors to form the grid. F con-

tains the faces (or “quads”) of the grid. A face f ∈ F is

defined by the indices of its four corner vertices. Only the

sets of vertices differ between the views. By our notation,

a vertex vLi in the left view corresponds to the vertex vRi in

the right view with the same index i. To avoid clutter, we

omit the superscripts L and R unless required for better

understanding.

The goal of warping a frame is now to find new vertex

positions v′i ∈ V ′ in a target frame with a different reso-

lution such that the important areas are preserved as well

as possible. For this purpose, we formulate and solve an

optimization problem consisting of energy terms that take

the three aspects into account. This is the main focus of

this paper. The 2D locations of the target vertices are the

unknown variables that are being optimized. Once new

vertex positions are known for every frame of the video,

the pixels of each quad of the original video are trans-

formed into the deformed quads to warp the video.

To achieve the goals mentioned above, the algorithm

works in three sequential steps which are described in

the following three sections. Warping is first performed

on each frame individually. This is done in a way that

preserves the important content in the best way possible

while completely ignoring temporal consistency. As a sec-

ond step, the motion of the original video is compared

to the motion after warping. The difference is tempo-

ral inconsistency. We thus find a trade-off between the

content-preserving warp and consistency with the motion

in the original video. Based on this trade-off, the video is

warped again in the third step.

In order to judge the relevance of each pixel in the

stereoscopic video, we compute a saliency map using the

approach presented by Dittrich et al. [7]. The left and right

mesh is placed over the saliency map respectively in order

to determine the saliency of the quads.

2.1. Content-Aware Warping

In the first step, the video is warped in a content-aware

manner frame by frame while temporal consistency is ig-

nored. The vertices v′i ∈ V ′ of the warped mesh are de-

termined by minimizing an energy function with the v′i

being the unknown variables. The target energy function

consists of several energy terms that are explained in the

following.

Quads with a high saliency contain important image

content and should thus be scaled uniformly. We define

an energy term that measures the difference between the

deformed quad and a uniformly scaled version of it. In

an optimal case, there exists an unknown scaling factor sf
for each quad face f ∈ F , such that for each vertex vi in

the quad, v′i = sf · vi + t, where t is a constant translation

vector. The quad deformation energy of the left mesh is

then defined as

dq(f) =
∑

(i,j)∈E(f)

|| (v′i − v′j
)− sf (vi − vj) ||2 (1)

where E(f) denotes the set of edges surrounding quad

f . This energy term becomes smaller, the better the four

vectors of a quad agree on a single scaling factor sf . To

add saliency information into the energy term, the energy

of a single quad f is weighted by its quad saliency wf

as Dq =
∑

f∈F wf · dq(f). This definition as well as (1)

were taken from [12]. In order to apply the energy term

Dq to stereoscopic video, it must be formulated for the

left and the right view. The result is two values DL
q and

DR
q that represent the quad energy of the left and the right

view, respectively. The total quad energy Dq is the sum of

DL
q and DR

q [13].

To preserve the consistency between the left and right

view, the energy term of Yoo et al. [13] is used. It becomes

smaller, when vertices vLi from the left mesh get deformed

in a way similar to the corresponding vertices vRi . This

can be expressed as:

Dd =
∑

i

|| (vLi − v′Li
)− (

vRi − v′Ri
) ||2 (2)

To obtain the two target meshes of a frame, the sum of the

quad and the disparity energy is minimized. The target

energy function is thus D = Dq +Dd. Our minimization

approach is very similar to the one used in [12].

2.2. Motion Analysis

Now that the input video has been warped by a frame-

by-frame approach, we compare the motion in the warped

video to the motion of the original one. Instead of com-

puting the full optical flow of the video, it is sufficient

to only track the motion of individual points. We refer

to the motion of these points through the video as path-
lines. In a video that was scaled by the same factor for ev-

ery frame, all pathlines undergo the same transformation.

However, in a video that was warped, this may not be the



case. Inconsistency between the pathlines in the warped

video causes temporal artifacts like flicker. Therefore, this

step of the algorithm calculates a set of optimized path-

lines. These optimized pathlines are a combination of the

deformed pathlines and pathlines of the input video. This

approach is taken from [16].

Let P denote the set of all pathlines in the original
video. Each pathline Pi ∈ P is a sequence of pixels Pi =
(p1i , p

2
i , . . . , p

T
i }, with pti = (xt

i, y
t
i) being the location of

the pathline pixel in frame t. T is the number of frames

in the video. The pathline index i indicates that the vertex

vi in the first frame with the same index was used as a

seed. Two pathlines Pi and Pj are adjacent to one another

if their seeds vi and vj are adjacent in the first frame, i.e.,

(i, j) ∈ E.

Ideally, to achieve temporal consistency, the video

would be warped in such a way that the original Pi

would be scaled uniformly. This means that all offsets

pti − ptj between adjacent pathlines should undergo a

scaling, expressed as a multiplication by a scaling matrix

Sij ∈ M(2×2,R). Using this criterion, the new pathlines

p̂i ∈ P̂i after warping can be calculated by minimizing

the energy term

Ep =
∑

(i,j)∈E

T∑

t=1

||(p̂ti − p̂tj)− Sij(p
t
i − ptj)||2 (3)

for the unknown variables Sij and p̂ti.
Note that there are a large number of variables p̂ti (one

tuple per frame per vertex). In order to reduce the number

of variables to optimize for, the deformed pathline P̂i is

modeled by scaling and translating the original one:

P̂i = SiPi + ti (4)

Here, Si is a 2× 2 matrix and ti is a translation vector. If

this is applied to every pathline, the reduced model only

contains one unknown scaling matrix and one unknown

translation vector per pathline. Equation 3 can then be

rewritten as:

Ep =
∑

(i,j)∈E

T∑

t=1

|| ((Sip
t
i + ti)− (Sjp

t
j + tj)

)

−Sij(p
t
i − ptj)||2 (5)

This energy term encourages the warp to scale the path-

lines uniformly leading to perfect temporal consistency

(ignoring the importance of content). By applying the

warp that was determined in the previous content-aware

step to the pathlines Pi of the original video, they are

warped into new pathlines P ′
i that may be temporally in-

consistent. The ideal pathlines P̂i should be a compromise

between temporal consistency and content-awareness.

The latter can be formulated by an energy term that aims

to reduce the distance between the ideal pathlines P̂i and

the content-aware ones P ′
i . By using Equation 4, this can

be expressed as

Ec =
∑

i

T∑

t=1

||(Sip
t
i + ti)− p′ti ||2 (6)

Equation 5 and 6 are then combined [16] to yield the final

pathline consistency energy E = Ep + λEc, where λ is

a balance factor to balance between temporal consistency

of the pathlines and content-awareness. E is minimized

to solve for Si, Sj , Sij , ti, and tj . The obtained variables

can be used to calculate the optimized pathline according

to Equation 4.

2.3. Temporally Consistent Warping

The video is now warped again using the optimized path-

lines P̂i as guide points. When warping frame t, we would

like the vertices vi to get deformed according to the posi-

tions p̂ti of the optimal pathlines at time t. We thus add

an energy term to the objective function [16] of frame t:
Dp =

∑
i ||p̃ti − p̂ti||2 where p̂ti is the optimized pathline

point in frame t and p̃ti is the final pathline point position

which is unknown. The unknown pathline point can be ex-

pressed in terms of the quad it lies in by averaging the four

surrounding vertices: p̃ti =
∑

k∈Φ(pt
i)

1
4 · v′tk where Φ(p̃ti)

are the indices of the vertices that surround p̃ti. Now the

energy term can be written as

Dp =
∑

i

|| ∑

k∈Φ(pt
i)

1

4
· v′tk − p̂ti||2 (7)

v′ are the unknown final vertex positions in this energy

term. This term is formulated once for the vertices in the

left view and once for the right view. The resulting energy

term is the sum of the terms for the two views. Now DP is

added to the target energy function: D = Dq+Dd+λDp.

Here, λ is the same weighting factor as above. D is used

as the final objective function to determine the final vertex

positions for warping.

3. EVALUATION

To evaluate the visual quality of the implemented warp-

ing algorithm, we used five stereoscopic video sequences1

(see Table 1). The width of each video is either reduced

or increased by a factor of two. They were presented to

1car, flower: www.stereomaker.net/sample/; person, bouquet:

http://sp.cs.tut.fi/mobile3dtv/stereo-video/; moon: www.youtube.com



Fig. 2. Warped frame of the bouquet sequence without (top) and with pathline optimization (bottom).

Table 1. Parameters of the test videos
video original size target size number

of frames

car 600× 240 300× 240 450

flower 720× 262 360× 262 260

moon 640× 480 1280× 480 80

person 640× 360 320× 360 225

bouquet 640× 360 1280× 360 375

eight test viewers wearing 3D shutter glasses. Two resiz-

ing approaches were compared: framewise warping (see

Section 2.1) and temporally consistent warping with opti-

mized pathlines (see Sections 2.2 and 2.3). The retargeted

videos were shown in random order next to the original

one for reference. The size of the quads was 20× 20 pix-

els and λ was set to 1
4 .

Both methods preserve important image content

equally well and no user complained about important

regions being removed. Fig. 1 shows warping results of

the flower video. The flower blossom is clearly salient

(Fig. 1b) and the quads that are placed over the flower

blossom maintain their aspect ratios relatively well (Fig.

1e).

Most users noticed temporal inconsistencies in at least

some of the videos. This is a general problem with video

retargeting [1]. Noise leads to differing saliency maps in

two consecutive frames which causes changes of the retar-

geting parameters and results in flicker. Such undesirable

artifacts immediately attract the attention of the viewer be-

cause the human eye is highly sensitive to motion. Ma-

jor temporal defects were noticed in both versions of the

person sequence. The background in the video is highly

structured but not marked as salient. A lot of waving in

the background was observed by almost all users. Ex-

cept for this sequence, which produces a large number of

visual defects with both methods, temporally consistent

warping with pathline optimization leads to comparable

or significantly better results. This is because the opti-

mized pathlines stabilize the motion of the quads. This

becomes evident from the users’ comments about the bou-
quet video (see Fig. 2), where a man enters the scene to

work on a bouquet of flowers. Due to the colorful flow-

ers, the contrast saliency of the man’s face is low and the

face thus gets deformed heavily by the framewise warp-

ing algorithm. However, when considering the motion of

the face, it becomes temporally salient. The tracked path-

lines then stabilize the quads, which was perceived as a

decrease of artifacts.



To measure the run-time2, the width of the flower
video has been doubled. With a computation time of 6.56
seconds per frame, 88.5% of the overall time is spent for

solving the optimization problems. We use the NLopt

library3 from MIT for this task. This high computational

load is caused by the large number of vertices and the 20
alternating optimization steps. The computation time of

pathline tracking (5.6%) and image warping (3.2%) is sig-

nificantly lower. All the other computations like saliency,

disparity, I/O operations, or SURF feature matching for

detecting corresponding vertices in the left and right view

as well as in following frames require less than 3%.

4. CONCLUSIONS

In this paper, a warping-based system that automatically

retargets stereoscopic videos was presented. The video is

first warped frame by frame by using a saliency map. By

analyzing the motion in the video before and after frame-

wise warping, optimized motion pathlines are computed.

These optimized pathlines are used as guide points during

the final temporally stable warping step.
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