
A Generic Scheme for the Recording of Interactive Media
Streams

Volker Hilt, Martin Mauve, Christoph Kuhmünch, Wolfgang Effelsberg

University of Mannheim, LS PI IV, L 15,16
68131 Mannheim, Germany

{hilt,mauve,kuhmuench,effelsberg}@informatik.uni-mannheim.de

Abstract. Interactive media streams with real-time characteristics, such as those
produced by shared whiteboards, distributed Java applets or shared VRML view-
ers, are rapidly gaining importance. Current solutions to the recording of interac-
tive media streams are limited to one specific application (e.g. one specific
shared whiteboard). In this paper we present a generic recording service that
enables the recording and playback of this new class of media. To facilitate the
generic recording we have defined a profile for the Real-Time Transport Proto-
col (RTP) that covers common aspects of the interactive media class in analogy
to the profile for audio and video. Based on this profile we introduce a general-
ized recording service that enables the recording and playback of arbitrary inter-
active media.

1 Intr oduction

The use of real-time applications in the Internet is increasing quickly. One of the key
technologies enabling such transmissions is a transport protocol that meets real-time
requirements. TheReal-Time Transport Protocol (RTP) has been developed for this
purpose [16]. The RTP protocol provides a framework covering common aspects of
real-time transmission. Each encoding of a specific media type entails tailoring the
RTP protocol. This is accomplished by anRTP profile which covers common aspects
of a media class (e.g. the RTP profile for audio and video [14]) and anRTP payload
specifying the transmission of a specific type of media encoding (e.g. H.261 video
streams).

While the class of audio and video is the most important one and is quite well
understood, interactive media streams are used by several applications which are gain-
ing importance rapidly. Interactive applications include shared whiteboard applications
[3], multi-user VRML models [9] and distributed Java animations [7]. Many existing
protocols for interactive media are proprietary. This prevents interoperability and
requires re-implementation of similar functionality for each protocol. For this reason,
we have defined an RTP profile [10] that covers common aspects of the distribution of
interactive media. It can be instantiated for a specific interactive media encoding.

The RTP profile for audio and video has enabled the development of generic
recording services like those described in [4][15]. The RTP audio and video recorders
operate independently of a specific video or audio encoding. Instead of decoding

incoming RTP packets and storing video and audio content (e.g. in H.261 or MPEG
format), they operate on entire RTP packets. This has the major advantage that the
mechanisms implemented in the recorder (e.g. media storage or media synchronization
during playback) are available for all video and audio formats.

Recent developments extend these RTP recorders to the proprietary protocols of
specific applications. In general, interactive media streams require additional function-
ality in an RTP recorder since certain information about the semantic of an interactive
media stream must be considered. In particularrandom access to an interactive media
stream requires mechanisms to provide the receivers with the current media state. For
example, if a recorded shared whiteboard stream is accessed at a random position, the
contents of the page active at that time must be displayed to the user. Thus, a recorder
must provide the receiving shared whiteboards with the page content before the actual
playback is started.

Our RTP profile for interactive media provides a common framework that enables
the development of a generic services like recording or late join for the class of interac-
tive media. In this paper we discuss the principles of such a generic recording service.
We present mechanisms that are required for the recording and playback of interactive
media streams, and we show that random access to these media streams can be
achieved by these mechanisms without having to interpret media-specific data.

The remainder of this paper is structured as follows: Section Two provides an over-
view over related work. Section Three introduces a classification of different media
types. Section Four provides a short overview of our RTP profile for interactive media
on which the presented recording scheme is based. Section Five deals with design
issues for an interactive media recorder. Section Six discusses fundamentals of random
access to stored interactive media streams, and Section Seven describes two mecha-
nisms that realize media independent random access to these media streams. Section
Eight describes the current state of the implementation. Section Nine concludes the
paper with a summary and an outlook.

2 Related Work

Much work has been done on the recording of media streams. The rtptools [15] are
command-line tools for recording and playback of single RTP audio and video
streams. The Interactive Multimedia Jukebox (IMJ) [1] utilizes these tools to set up a
video-on-demand server. Clips from the IMJ can be requested via the Web.

The mMOD [13] system is a Java-based media-on-demand server capable of
recording and playing back multiple RTP and UDP data streams. Besides RTP audio
and video streams, the mMOD system is capable of handling media streams of appli-
cations like mWeb, Internet whiteboard wb [6], mDesk and NetworkTextEditor. While
mMOD supports the recording and playback of UDP packets, it does not provide a
generalized recording service with support for random access.

The MASH infrastructure [11] comprises an RTP recording service called the
MASH Archive System [12]. This system is capable of recording RTP audio and video
streams as well as media streams produced by the MediaBoard [18]. The MASH
Archive System supports random access to the MediaBoard media stream but does not

provide a recording service generalized for other interactive media streams.
A different approach is taken by the AOF tools [2]. The AOF recording system

does not use RTP packets for storage but converts the recorded data into a special stor-
age format. The AOF recorder grabs audio streams from a hardware device and records
the interactive media streams produced by one of two applications AOFwb or the
Internet whiteboard wb. Random access as well as fast visual scrolling through the
recording are supported but the recordings can only be viewed from a local hard disk
or CD. The recording of other interactive media streams is not possible.

In the Interactive Remote Instruction (IRI) system [8] a recorder was implemented
that captures various media streams from different IRI applications. In all cases a
media stream is recorded by means of a specialized version of the IRI application that
is used for live transmission. This specific application performs regular protocol action
towards the network but stores the received data instead of displaying it to the user. For
example, a specialized version of the video transmission tool is used to record the
video stream. Such a specialized recording version must be developed for each IRI tool
that is to be recorded.

One of a number of commercial video-on-demand servers is the Real G2 server.
The Real G2 server is capable of streaming video and audio data as well as SMIL pre-
sentations to RealPlayer G2 clients. A SMIL presentation may contain video and audio
as well as other supported media types like RealText, RealPix and graphics. In contrast
to the recording of interactive applications, a specialized authoring tool is used to
author SMIL presentation, which consist of predefined media streams displayed
according to a static schedule.

3 Interacti ve Media

3.1 Classification of Interactive Media

Before discussing the recording of interactive media streams, it is important to estab-
lish a common view on this media class. Basically, we separate media types by means
of two criteria. The first criterion distinguishes whether a medium is discrete or contin-
uous. The characteristic of adiscrete medium is that its state is independent of the pas-
sage of time. Examples of discrete media are still images or digital whiteboard
presentations. While discrete media may change their state, they do so only in response
to external events, such as a user drawing on a digital whiteboard. The state of acon-
tinuous medium, however, depends on the passage of time and can change without the
occurrence of external events. Video and animations belong to the class of continuous
media.

The second criterion distinguishes between interactive and non-interactive media.
Non-interactive media change their state only in response to the passage of time and do
not accept external events. Typical representations of non-interactive media are video,
audio and images.Interactive media are characterized by the fact that their state can be
changed by external events such as user interactions. Whiteboard presentations and
interactive animations represent interactive media. Figure1 depicts how the criteria
characterize different media types.

Fig. 1.Examples of Media Types

3.2 Model for Interacti ve Media

An interactive medium is a medium that is well defined by its current state at any point
in time. For example, at a given point in time the medium “Java animation” is defined
by the internal state of the Java program that is implementing the animation. Thestate
of an interactive medium can change for two reasons, either by the passage of time or
by events. The state of an interactive medium between two successive events is fully
deterministic and depends only on the passage of time. Any state change that is not a
fully deterministic function of time is caused by an event. A typical example of an
event is the interaction of a user with the medium. An example of a state change
caused by the passage of time might be the animation of an object moving across the
screen.

In cases where a complex state of an interactive medium is transmitted frequently
by an application, it is necessary to be able to send only those parts that have changed
since the last state transmission. We call a state which contains only the state changes
that have occurred since the last transmitted state adelta state. A delta state can only
be interpreted if the preceding full state and interim delta states are also available. The
main advantages of delta states are their smaller size and that they can be calculated
faster than full states.

In order to provide for a flexible and scalable handling of state information, it is
sometimes desirable to partition an interactive medium into several sub-components.
In addition to breaking down a large media state into more manageable parts, such par-
titioning allows participants of a session to track only the states of those sub-compo-
nents they are actually interested in. Examples of sub-components are VRML objects
(a house, a car, a room), or the pages of a whiteboard presentation.

To display a non-interactive media stream like video or audio, a receiver needs to

D
iscrete M

edia

Non-Interactive Media

Interactive Media

C
ontinuous M

edia

Image Video

AnimationDigital Whiteboard

have an adequateplayer for a specific encoding of the medium. If such a player is
present in a system, every media stream that employs this encoding can be processed.
This is not true for interactive media streams. For example, to process the media
stream that is produced by a shared VRML browser, it is not sufficient for a receiver to
have a VRML browser. The receiver will also need the VRML world on which the
sender acts; otherwise the media stream cannot be interpreted by the receiver. But even
if the receiver has loaded the correct world into its browser, the VRML world may be
in a state completely different from that of the sender. Therefore, the receiver mustsyn-
chronize the state of the local representation of the interactive medium to the state of
the sender before it will be able to interpret the VRML media stream correctly.

Generally speaking, it does not suffice to have a player for an interactive media
type. Additionally, the player must be initialized with thecontext of a media stream
before that stream can actually be played. The context is comprised of two compo-
nents: (1) the environment of a medium and (2) the current state of the medium. The
environment represents the static description of an interactive medium that must ini-
tially be loaded into the media player. Examples of environments are VRML worlds or
the code of Java animations. Thestate is the dynamic part of the context. The environ-
ment within a player must be initialized with the current state of the interactive
medium before the stream can be played. During transmission of the stream, both
sender and receiver must stay synchronized since each event refers to a well-defined
state of the medium and cannot be processed if the medium is in a different state.

4 RTP Profile for Interacti ve Media

In order to be able to develop generic services which base solely on our RTP profile for
interactive media, common aspects of interactive media streams which are not already
handled by RTP must be supported by the profile. These aspects can be separated into
two groups: information and mechanisms. Information is needed, so that a generic ser-
vice can analyze the semantics of the application level communication. The informa-
tion provided by the RTP profile is: identification of application-layer packet content,
identification of sub-components and sequence numbers. Mechanisms are needed by a
generic service to take appropriate actions on the medium. The mechanisms provided
within the RTP profile are: announcement of sub-components, requesting state trans-
missions and mapping of sub-component IDs to application-level names.

The remainder of this section discusses basic concepts of the RTP profile for inter-
active from the view of a generic recording service. A detailed description of the pro-
file can be found in [10].

4.1 Structur e of Data Packets

The model presented in Section 3.2 illustrates that states, delta states and events of an
interactive medium must be transmitted in real-time. We define the structure of data
packets containing theses basic elements of interactive media as depicted in Figure2
within our RTP profile; for the general structure of RTP packets see [16]. The most
important fields of these packets are type, sub-component ID and data. The type field is
needed to distinguish the different packet types state, delta state and event defined in

the profile. This is especially important for the recording service, which must be able
to identify the type of content transported in an RTP packet without having to interpret
the data part of the packet. In state and delta state packets the sub-component ID field
holds the sub-component ID of the state included in the data part of the packet. In
event packets this field identifies the sub-component containing the “target” of an
event. The data field of the packet contains the definition of states, delta states or
events specific to the payload type.

Since setting the state of a sub-component can be costly and might not always be rea-
sonable, state and delta state packets contain a priority (PRI) field. This priority can be
used by the sender of the state to signal its importance. A packet with high priority
should be examined and applied by all communication peers which are interested in
the specific sub-component. Situations where high priority is recommended are resyn-
chronization after errors or packet loss. Basically a state transmission with high prior-
ity forces every participant to discard its information about the sub-component and
requires the adoption of the new state. A state transmitted with low priority can be
ignored at will by any participant. This is useful if only a subset of communication
partners is interested in the state. An example of this case is a recorder that periodically
requests the media state in order to insert it into the recording.

4.2 Announcement of Sub-Components

For the implementation of an efficient recording service it is important that the sub-
components present in a session are known. Furthermore it should be possible to dis-
tinguish those sub-components which are currently needed to display the medium.
Those sub-components are calledactive. An example for active sub-components are
the currently visible pages of a shared whiteboard.All remaining sub-components are

Fig. 2.RTP Packet Structure for States, Delta States and Events

6 7 8 9
1

5 1 2 343 6 7210
0

sequence numberP

0

V=2

4 9
3
0 1

contributing source (CSRC) identifiers

5

IV=0

8

X

synchronization source (SSRC) identifier

CC

9

M

2

PT

0

type

1

PRI

2

sub-component sequence number

3

sub-component ID

4

reserved

5

S

6

timestamp

7

sub-component ID (continued)

8

data

passive(e.g. those shared whiteboard pages which are currently not visible for any
user). Declaring a sub-component active does not grant permission to modify anything
within that sub-component. However, a sub-component must be activated before a ses-
sion participant is allowed to modify (send events into) the sub-component. The
knowledge about active sub-components in a session allows a recording service to
transmit only those sub-components during a playback that are actually visible in the
receivers.

The profile provides a standardized way to announce the sub-components of any
application participating in an interactive media session and allows to mark sub-com-
ponents as active. Active and passive sub-components are announced by selected par-
ticipants in regular intervals within RTCP reports.

4.3 Requesting State Transmissions

In many cases it is reasonable to let the receivers decide when the state of sub-compo-
nents should be transmitted. Thus, a receiver must be able to request the state from
other participants in the session.

As the computation of state information may be costly, the sender must be able to
distinguish between different types of requests. Recovery after an error urgently
requires information on the sub-component state since the requesting party cannot pro-
ceed without it. The state is needed by the receiver to resynchronize with the ongoing
transmission. These requests will be relatively rare. In contrast, a recording service
needs the media states to enable random access to the recorded media. It does not
urgently need the state but will issue requests frequently. For this reason, the state
request mechanism supports different priorities through the priority (PRI) field in the
state query packet. Senders should satisfy requests with high priority (e.g. for late join-
ers) very quickly, even if this has a negative impact on the presentation quality for the
local user. Requests with low priority can be delayed or even ignored, e.g. if the sender
currently has no resources to satisfy them. The sender must be aware that the quality of
the service offered by the requesting application will decrease if requests are ignored.

5 RTP Recording Service

An RTP recording service such as the MBone VCR on Demand (MVoD) [4] usually
handles two network sessions (see Figure3). In the first, the recorder participates in
the multicast transmission of the RTP media data. Depending on its mode of operation
(recording or playback), it acts as a receiver or sender towards the other participants of
the session. A second network session can be used to control the recorder from a
remote client, e.g. using the RTSP [17] protocol. During the recording of an RTP ses-
sion, the recorder receives RTP data packets and writes them to a storage device. Pack-
ets from different media streams are stored separately. When playing back, the
recorder successively loads RTP packets of each media stream and computes the time
at which each packet must be sent using the time stamps of the RTP headers. The
recorder sends the packets according to the computed schedule. A detailed description
of the synchronization mechanism implemented in the MVoD can be found in [5].

6 Random Access

In contrast to the traditional media types where random access to any position within a
stream is possible, interactive media streams do not allow easy random access without
restoring the context of the stream at the desired access position. For example, jumping
directly to annotations on a whiteboard page only makes sense if the right page is
shown on the screen. To restore the context of a recorded stream in a receiver, two
operations have to be performed: First, the environment has to be loaded into the
receiver. The environment can be provided by the recording service or by a third party,
e.g. an HTTP server. Then the receiver must get the state of the interactive medium at
the desired access position within the recorded stream. Let us come back to our white-
board example. If we want to jump to minute 17 of a recorded teleconferencing session
we must be able to show the contents of the page active at that time, together with the
annotations made by the speaker. If we did not restore the state of the whiteboard, the
page (which might have been loaded originally at minute 12) would not be visible.

6.1 Recovering the Media State

The state of an interactive medium can be recovered from a recorded media stream.
Note that the generic recorder is not able to interpret the media-specific part of the RTP
packets and thus cannot directly compute the media state and send it to the receivers.
But the recorder may re-send existing RTP packets that are stored within the recorded
media stream. Thus, it is our goal to compose a sequence of recorded RTP packets con-
taining states and events that put a receiver into the desired state. The task a recorder
has to accomplish before starting a playback is to determine the appropriate sequence
of recorded packets.

In an interactive media application the current state is determined by an initial state

Fig. 3.Scenario for the Recording of an RTP Session

� � � � � � � � �
	

 � � � � � �
 �

� � � � � � � � �
	

 � � � � � �
 �

� � � � � � � � �
	

 � � � � � �
 �� � � � � � � � �

� � � � �
 �

� � � �
� � � � � � � � �

� � �
 � � � �

� � �

� � � � � � � � � � �
� � ! � � "

$ % &

' ()' ()

and a sequence of events applied to that state. In a discrete interactive medium the
event sequence is not bound to specific points in time. Thus, the application of an event
sequence to an initial state of a discrete interactive medium will always result in the
same media state, independent of the speed at which the sequence is applied. In con-
trast, the event sequence for a continuous interactive medium is bound to specific
points in time. A sequence of events that is applied to the state of a continuous interac-
tive medium will leave the system in the correct state only if each event is applied at a
well-defined instant in time.

This main difference between discrete and continuous interactive media must be
considered when computing the sequence of event and state packets to recover the
media state. In the case of a discrete medium, such a sequence can be computed to
recover the media state at any point in a recorded stream. In contrast, the media state of
a continuous medium can only be recovered at points within a recording where a state
is available; events cannot be used for state recovery because they must be played in
real-time. Therefore, random access to an interactive continuous media stream will
usually result in a position near the desired access point. The more often the state is
stored within a stream, the finer is the granularity at which the stream of a continuous
interactive medium can be accessed.

Interactive media applications usually send the media state only upon request by
another application. Thus, the recorder must request the state at periodic intervals. The
requests use a low priority because a delayed or missing response reduces the access
granularity of the stream, which can be tolerated to some degree.

7 Mechanisms for Playback

The mechanisms presented in this section implement the recovery of the media state
from recorded media streams. Both mechanisms can be implemented completely in the
recorder. The receiving applications need not recognize the recorder as a specific
sender, nor does the recorder need to interpret media-specific data. All applications
that use a payload based on the RTP profile for interactive media can be recorded, and
will be able to receive data from the recorder.

7.1 The Basic Mechanism

This simple mechanism is able to recover the media state from interactive media
streams which do not utilize multiple sub-components. When starting playback of such
a stream, the best case is if the state is contained in the recorded stream at exactly the
position at which the playback is to start. Then playback can begin immediately. But in
general, the playback will be requested at a position where no full state is directly
available in the stream.

Let us consider, for example, a recorded media stream that consists of the sequence
S0 containing a state, three successive delta (∆) states and several events (see Figure4).
If a user wants to start playback at position tp from the recording, the state at tp must be
reconstructed by the recorder. A continuous interactive medium does not allow direct
access to tp because the recorder cannot determine the state at tp since there is no state
available at tp in the recorded stream. However, access to position t∆3 within the stream

is feasible, because t∆3 is the location of a delta state. The complete media state at t∆3
can be reconstructed from the state located at position ts and the subsequent delta states
until position t∆3, which is the position of the last delta state before tp. The events
between ts and t∆3 can be ignored, because all modifications to the state at ts are
reflected in the delta states. The packets that contain states can be sent at the maximum
speed at which the recorder is able to send packets. If required by the medium, the
internal media clock is part of the media state. Thus, after applying a state, the media
clock of a receiver will reflect the time contained in the state. When the recorder finally
reaches t∆3 (and has sent∆3), fast playback must be stopped, and playback at regular
speed must be started. The start of the regular playback may not be delayed because
events must be sent in real-time relative to the last state. This is important since for
continuous interactive media the events are only valid for a specific state that may
change with the passage of time. Altogether, the recorder will play back sequence S1
shown in Figure 4.

For discrete interactive media, fast playback of events is possible. Therefore, ran-
dom access to position tp can be achieved by also sending the events between t∆3 and tp
at full speed. The resulting sequence S2 is also shown in Figure 4.

7.2 Mechanism with Support for Sub-Components

In a more sophisticated mechanism the existence of sub-components can be exploited
to reduce the amount of data for the recovery of the media state. Using sub-compo-
nents, the state of an interactive medium can be recovered selectively by considering
only those sub-components which are actually required to display the medium in its
current state.

Let us take a closer look at the shared whiteboard example of Section 6 where we

Fig. 4.Playback of a Recorded Sequence of States, Delta States and Events

*

*

*

+ , - . / 0 1 * 1 2 * 3 * 1 = � 4 5 6 5 7 8 7 9 7 : 5

; 7 < = 7 : > 7 ; ? @ A B C D C E F G H I

J K L M K E N K J O P Q R S T U S V R V W U S T X Y Z Q T U [X \ X] U Z ^ _

` X a V X S Q X ` b c d e f g h i j i e k j i h l g j e m i n i d e l o p

j q

r s

t u

v
� 2 w � 3

x
� 1

y z

{
� 3

| }

~
� 3

� �

wanted to access minute 17 of the recording of a teleteaching session. Without the use
of sub-components, the recorder would have to recover the complete media state valid
at minute 17, which comprises all pages displayed so far. But if the shared whiteboard
has divided its media state into several sub-components (e.g. a whiteboard page per
sub-component) the recorder is able to determine the sub-components that are active at
minute 17 and may recover them selectively.

In general, when a recorded stream is accessed, the set of active sub-components at
the access position can be determined and their state can be recovered. This is suffi-
cient to display an interactive medium at the access position. However, it must be
assured, that a receiver is enabled to display all subsequent data in the recorded stream.
If the subsequent data contains the re-activation of a passive sub-component (e.g. the
jump to a previous page in the recording of a shared whiteboard session), a receiver
would not hold the state for this sub-component as passive sub-components are not
recovered. Consequently, the receivers would not be able to decode data referring to
that sub-component. Thus, the recorder must assure that the state of a sub-component
is present in the recorded stream at any position where a passive sub-component is re-
activated. This can be accomplished at the time of recording if the recorder requests a
state transmission for each sub-component as soon as it gets activated and inserts the
resulting state into the recording. For discrete media streams this scheme can be opti-
mized by not requesting the state of a sub-component if the recorder can reconstruct it
from the recorded stream.

The example shown in Figure 5 depicts recorded streams of a continuous interac-
tive medium with two senders. Sender 1 operated on sub-components 1 and 3, whereas

Fig. 5.Playback of a recording containing sub-components. Greyed states and events of the
recorded streams are filtered during the recovery of the state at tp

� � �

� �
� � � � � � � � � � � � � � � � � �

� �� � �� � �
� � ¡ � ¢ £ ¤

¥ ¦ ¥ § ¥ ¦¨ © ¨ ª ¨ ©

« ¬­ ® ¯
° ± ² ³ ± ´ µ ¶

· ¸ · ¹ · º

· »
· ¼

· »
· ¼

· ¹
· ¸ ½ · ¸ · ¹

¾ · º

¿ À ¿ Á ¿ À ¿ Á
Â

Â

Ã Ä

Å Æ Ç

È É
È Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Ì Õ Ö × Õ Ø Ð Ø Í Ñ Ë Ù Ð Ñ Ú Û Ñ Ü

Ý Þ ß à á â ã ä à â å æ ç
è é ê ë ì í î ê ì é ï ð

the recorded stream of sender 2 contains packets for sub-component 2 and 4 and later
for 2 and 5. If these recorded streams are accessed at position tp, the recorder has to
compute the list of sub-components which are active at tp. In our case these are s1, s2
and s3. For each of these sub-components, the position of the most recent sub-compo-
nent state before tp must be located in the recorded stream. As a result, the recorder
gets the positions of sub-component states ts1, ts2, ts3. (For the sake of simplicity, we
have only considered states; support for∆ states can be achieved similar to the basic
mechanism.) s1 is the sub-component whose state is farthest from tp (here ts1 < ts2 <
ts3). Thus the recorder has to start playback at position ts1 and recovers the state s1.
The recorder must continue with the playback because events referring to s1 are
located between ts1 and tp. Notice that we are considering a continuous interactive
medium where all events must be played in real time. During the playback of the
stream between ts1 and tp two problems may occur: At first, events may be located in
the stream which refer to states that have not yet been sent. The sending of these events
must be suppressed because a receiver can not interpret them correctly. In our example,
events concerning s3 and s4 are filtered out. Secondly, there may be sub-component
states in the stream that are not in the set of active sub-components at tp (s4 in our
example) and thus are not needed for playback at tp. Therefore the state of s4 (and all
events referring to s4) must also be filtered out.

Summing up, the recorder will start playback at position ts1, sending the state of
sub-component s1 and events referring to s1. All other states and events will be filtered
out. The next required state is s2, which will be sent as soon as it shows up and, after
that, all subsequent events referring to s2 will also pass the filter. The same holds true
for s3. Finally, once the recorder has reached position tp, the sub-components s1, s2
and s3 will have been recovered, and regular playback without any filtering may start.
After the start of the regular playback, the set of active sub-components is enlarged by
s5. As the state of a newly activated sub-component has been inserted into the stream
during the recording, the state of s5 can be sent by the recorder. Thus, all receivers are
enabled to interpret upcoming events referring to s5.

8 Status of the Implementation

Our work on the recording of interactive media streams initially started with the imple-
mentation of a recorder for a shared whiteboard, the digital lecture board (dlb) [3]. The
dlb recorder is based on the MBone VCR on Demand (MVoD) [4] service which is
capable of recording and playing back multiple RTP audio and video streams. The
MVoD server assures the synchronization of multiple media streams during playback,
and a Java user interface enables the remote control of the recorder. The shared white-
board dlb uses a specific RTP payload format to transmit the dlb media. The dlb
recorder module basically extends the MVoD by implementing the functionality for
random access to recorded dlb media streams. To achieve random access, the dlb
recorder uses a mechanism that is specific to the dlb media stream.

Based on the experiences from the implementation of the dlb recorder, we are cur-
rently implementing the recording service for interactive media described in this paper
and we are now finishing a very early alpha version. Like the dlb recorder, the interac-

tive media recorder is realized as an extension to the MVoD. Thus, the existing algo-
rithms for the synchronization of multiple media streams as well as the recording
facilities for audio and video streams can be reused. The implementation of the mech-
anisms for random access allows the presence of discrete and continuous interactive
media streams as well as audio and video streams within the same recording.

9 Conclusion

We have presented a generic recording service for the class of interactive media with
real-time characteristics. Examples of such media are shared whiteboards, multi-user
VRML worlds and distributed Java applications. In analogy to RTP video and audio
recorders, we have developed a generic recording service that is based on an RTP pro-
file for the interactive media class. The profile covers the common aspects of this
media class. We have presented the basic ideas of the RTP profile, pointing out the fea-
tures that enable the recording and playback of interactive media regardless of a spe-
cific media encoding.

We have described the key concepts of the generic recording service. An important
aspect of this recording service is that it enables random access to recorded streams.
The media context of a recording is restored before playback is started. We have
showed that the context of a medium can be recovered relying only on the RTP profile
and we have presented two recovery mechanisms. We are currently finishing the
implementation of a first prototype of the described interactive media recording ser-
vice.

In future work we will implement the RTP payload-type specific functionality for
distributed Java animations and multi-user VRML. Our recording service will then be
tested and validated with those media types. Furthermore, we are working on a second
generic service that will implement a late join algorithm. During the implementation
and testing of the RTP profile, the payload types and the generic services, we expect to
get enough feedback for a full specification of the profile and the payload types. We
intend to publish those specifications as Internet drafts.

Acknowledgments.This work is partially supported by the BMBF (Bundesministe-
rium für Forschung und Technologie) with the “V3D2 Digital Library Initiative” and
by the Siemens Telecollaboration Center, Saarbrücken.

References

[1] K. Almeroth, M. Ammar. The Interactive Multimedia Jukebox (IMJ): A New
Paradigm for the On-Demand Delivery of Audio/Video. In: Proc. Seventh
International World Wide Web Conference, Brisbane, Australia, April 1998.

[2] C. Bacher, R. Müller, T. Ottmann, M. Will. Authoring on the Fly. A new way of
integrating telepresentation and courseware production. In: Proc. ICCE ‘97,
Kuching, Sarawak, Malaysia, 1997.

[3] W. Geyer, W. Effelsberg. The Digital Lecture Board - A Teaching and Learning
Tool for Remote Instruction in Higher Education. In: Proc. ED-MEDIA ’98,

Freiburg, Germany, AACE, June 1998. Available on CD-ROM, contact: http://
www.aace.org/pubs/.

[4] W. Holfelder. Interactive Remote Recording and Playback of Multicast
Videoconferences. In: Proc. IDMS ’97, Darmstadt, pp. 450-463, LNCS 1309,
Springer Verlag, Berlin, September 1997.

[5] W. Holfelder. Aufzeichnung und Wiedergabe von Internet-Videokonferenzen.
Ph.D. Thesis (in German), LS Praktische Informatik IV, University of
Mannheim, Shaker-Verlag, Aachen, Germany, 1998.

[6] V. Jacobson.A Portable, Public Domain Network ‘Whiteboard’, Xerox PARC,
Viewgraps, April, 1992.

[7] C. Kuhmünch, T. Fuhrmann, and G. Schöppe.Java Teachware - The Java
Remote Control Tool and its Applications. In: Proc. of ED-MEDIA ’98, Freiburg,
Germany, AACE, June 1998. Available on CD-ROM, contact: http://
www.aace.org/pubs/.

[8] K. Maly, C. M. Overstreet, A. González, M. Denbar, R. Cutaran, N. Karunaratne.
Automated Content Synthesis for Interactive Remote Instruction,In: Proc. of ED-
MEDIA ’98, Freiburg, Germany, AACE, June 1998. Available on CD-ROM,
contact: http://www.aace.org/pubs/.

[9] M. Mauve.Transparent Access to and Encoding of VRML State Information. In:
Proc. of VRML ’99, Paderborn, Germany, pp. 29-38, 1999.

[10] M. Mauve, V. Hilt, C. Kuhmünch, W. Effelsberg. A General Framework and
Communication Protocol for the Transmission of Interactive Media with Real-
Time Characteristics, In: Proc. of IEEE ICMCS’99, Florence, Italy, 1999.

[11] S. McCanne, et. al.Toward a Common Infrastructure for Multimedia-
Networking Middleware, In: Proc. of NOSSDAV ‘97, St. Louis, Missouri, 1997.

[12] S. McCanne, R. Katz, E. Brewer et. al.MASH Archive System. On-line: http://
mash.CS.Berkeley.edu/mash/overview.html, 1998.

[13] P. Parnes, K. Synnes, D. Schefström.mMOD: the multicast Media-on-Demand
system. 1997. On-line: http://mates.cdt.luth.se/software/mMOD/paper/
mMOD.ps, 1997.

[14] H. Schulzrinne.RTP Profile for Audio and Video Conferences with Minimal
Control, Internet Draft, Audio/Video Transport Working Group, IETF, draft-ietf-
avt-profile-new-05.txt, March 1999.

[15] H. Schulzrinne. RTP Tools. Software available on-line, http://
www.cs.columbia.edu/~hgs/rtp/rtptools/, 1996.

[16] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson.RTP: A Transport Protocol
for Real-Time Applications. Internet Draft, Audio/Video Transport Working
Group, IETF, draft-ietf-avt-rtp-new-03.txt, March, 1999.

[17] H. Schulzrinne, A. Rao, R. Lanphier. Real Time Streaming Protocol (RTSP).
Request for Comments 2326, Multiparty Multimedia Session Control Working
Group, IETF, April 1998.

[18] T. Tung. MediaBoard: A Shared Whiteboard Application for the MBone.
Master’s Thesis, Computer Science Division (EECS), University of California,
Berkeley, 1998. On-line: http://www-mash.cs.berkeley.edu/dist/mash/papers/
tecklee-masters.ps.

