
REIHE INFORMATIK
3/2001

Probabilistic Congestion Control

for Non-Adaptable Flows

J�org Widmer, Martin Mauve, Jan Peter Damm

Universit�at Mannheim

Praktische Informatik IV

L15, 16

D-68131 Mannheim

Probabilistic Congestion Control

for Non-Adaptable Flows

(updated version)

J�org Widmer, Martin Mauve, Jan Peter Damm

fwidmer,mauve,dammg@informatik.uni-mannheim.de
Praktische Informatik IV, University of Mannheim, Germany

Abstract| In this paper we present a TCP-friendly con-

gestion control scheme for non-adaptable
ows. The main

characteristic of these
ows is that their data rate is de-

termined by an application and cannot be adapted to the

current congestion situation of the network. Typical ex-

amples of non-adaptable
ows are those produced by net-

worked computer games or live audio and video transmis-

sions where adaptation of the quality is not possible (e.g.,

since it is already at the lowest possible quality level). We

propose to perform congestion control for non-adaptable

ows by suspending them at appropriate times so that the

aggregation of multiple non-adaptable
ows behaves in a

TCP-friendly manner. The decision whether or not a
ow

is to be suspended is based on random experiments. In

order to allocate probabilities for these experiments, the

data rate of the non-adaptable
ow is compared to the

rate that a TCP
ow would achieve under the same con-

ditions. We present a detailed discussion of the proposed

scheme and evaluate it through extensive simulation with

the network simulator ns-2.

Index Terms| Congestion Control, Non-Adaptable

Flows, TCP-Friendliness

I. Introduction

C
ONGESTION control is a vital element of computer

networks such as the Internet. It has been widely

discussed in the literature { and experienced in reality

{ that the lack of appropriate congestion control mech-

anisms will lead to undesirable situations such as a con-

gestion collapse [1]. Under such conditions, the network

capacity is almost exclusively used up by traÆc that never

reaches its destination.

In the current Internet, congestion control is primarily

performed by TCP. During recent years, new congestion

control schemes were devised, supporting networked ap-

plications that cannot use TCP. Typical examples of such

applications are audio and video transmissions over the

Internet. One prime aim that these congestion control

schemes try to achieve is to share the available band-

width in a fair manner with TCP-based applications, thus

falling into the category of TCP-friendly congestion con-

trol mechanisms.

TCP, as well as existing TCP-friendly congestion con-

trol algorithms, require that the data rate of an individual

ow can be adapted to network conditions. Using TCP,

it may take a variable amount of time to transmit a �xed

amount of data, or with TCP-friendly congestion control,

the quality of an audio or video stream may be adapted

to the available bandwidth.

While for a large number of applications this not a limi-

tation, there are cases where the data rate of an individual

ow is determined by the application and cannot be ad-

justed to the network conditions. Networked computer

games are a typical example, considering the fact that

players are very reluctant to accept the delayed transmis-

sion of information about a remote player's actions. Live

audio and video transmissions with a �xed minimum qual-

ity, below which reception is useless, fall into the same

category. For this class of applications there are only two

acceptable states: either a
ow is on and the sender trans-

mits at the data rate determined by the application or it

is o� and no data is transmitted at all. We call network

ows produced by these applications non-adaptable
ows.

In this paper we describe a TCP-friendly end-to-end

congestion control mechanism for non-adaptable unicast

ows called Probabilistic Congestion Control (PCC). The

main idea of PCC is

� to calculate a probability for the two possible states

(on/o�) so that the expected average rate of the
ow is

TCP-friendly,

� to perform a random experiment that succeeds with

the above probability to determine the new state of the

non-adaptable
ow, and

� to repeat the previous steps continuously to account for

changes in the network conditions.

Through this mechanism it is ensured that the aggre-

gate of multiple PCC
ows behaves TCP-friendly.

The remainder of this paper is structured as follows.

Section II summarizes related work. In Section III we

examine non-adaptable
ows in more detail. A thorough

description of the PCC mechanism is given in Section IV.

The results of the simulation studies that were conducted

2

are presented in Section V and we conclude the paper with

a summary and an outlook on future work in Section VI.

II. Related Work

Much work has been done on TCP-friendly congestion

control schemes for applications that cannot use TCP.

Prominent examples of these schemes are PGMCC [2],

TEAR [3], TFRC [4], and FLID-DL [5]. A discussion of

such TCP-friendly congestion control mechanisms can be

found in [?]. TCP, as well as all existing TCP-friendly

congestion control schemes, requires that the bandwidth

consumed by a
ow be adapted to the level of congestion

in the network. By de�nition, non-adaptable
ows cannot

use such congestion control mechanisms.

It is conceivable to use reservation mechanisms such as

Intserv/RSVP [7] or Di�serv [8] for non-adaptable
ows

so as to prevent congestion altogether. However, these

mechanisms require that the network supports the reser-

vation of resources or provides di�erent service classes.

This is currently not the case for the Internet. In con-

trast, PCC is an end-to-end mechanism that does not

require support from the network. With PCC it is pos-

sible to \partly" admit a
ow and to continuously adjust

the number of
ows to network conditions.

We are not aware of any previous work that directly

matches the category of probabilistic congestion control.

III. Non-Adaptable Flows

For the remainder of this paper, a non-adaptable
ow

is de�ned as a data
ow with a sending rate that is deter-

mined by an application and cannot be adjusted to the

level of congestion in the network. A non-adaptable
ow

has exactly two states: either it is in the state on, car-

rying data at the rate determined by the application, or

it is o�, meaning that no data is transmitted at all. Any

data rate in between those two states is ineÆcient, since

the application is not able to utilize the o�ered rate.

Examples of applications using non-adaptable
ows are

commercial network games such as Diablo II, Quake III,

Ultima Online, and Everquest. These games typically

employ a client-server architecture. The data rate of the

ows between client and server is determined by the fact

that the actions of the players must be transmitted instan-

taneously. Similar restrictions hold for the
ows between

participants of distributed virtual environments without

a centralized server. If a congestion control scheme de-

lays the transmission of actions too long, the application

quickly becomes unusable. This can easily be experienced

by experimenting with a state-of-the-art TCP-based net-

worked computer game during peak hours. For this rea-

son, a number of applications resort to UDP and avoid

congestion control altogether.

A situation with either no congestion control at all or

vastly reduced utility in the face of moderate congestion

is not desirable. A much more preferable approach is

to turn the
ows of some participants o� and to inform

the application accordingly. All other participants do not

need to react to the congestion. On average, all users

should be able to participate in the session for a reason-

able amount of time between o�-periods to ensure utility

of the application. At the same time, o�-periods should

be distributed fairly among all participants.

Other examples of applications with non-adaptable

ows are audio or video transmissions with a �xed quality.

There are two main reasons why it may not be possible to

scale down a media
ow: either the user does not accept

a lower quality, or the quality is already at the lowest pos-

sible level. The second reason indicates that a congestion

control mechanism for non-adaptable
ows can comple-

ment congestion control schemes that adapt the rate of a

ow to current network conditions.

IV. Probabilistic Congestion Control

The Probabilistic Congestion Control scheme (PCC)

provides congestion control for non-adaptable unicast

ows by suspending
ows at appropriate times. PCC is an

end-to-end mechanism and does not require the support

of routers or other intermediate systems in the network.

The key aspect of PCC is that { as long as there is

a suÆciently high level of statistical multiplexing { it is

not important that each single non-adaptable
ow behave

TCP-friendly at any speci�c point of time. What is im-

portant is that the aggregation of all non-adaptable
ows

on a given link behave as if the
ows were TCP-friendly.

Due to the law of large numbers this can be achieved if

(a) each PCC
ow has an expected average rate which is

TCP-friendly and if (b) each link is traversed by a suÆ-

ciently large number of independent PCC
ows.

At �rst glance (b) may be considered problematic, be-

cause it is possible that a link is traversed only by a small

number of PCC
ows. However, further re
ection reveals

that in this case the PCC
ows will only be signi�cant

in terms of network congestion if each individual PCC

ow occupies a high percentage of the link's bandwidth.

We therefore relax (b) to the following condition (c): a

single PCC
ow is expected to have a rate that is only

a small fraction of the available bandwidth on any link

that it crosses. Given the current development of avail-

able bandwidth in computer networks, this is a condition

that is likely to hold true.

A. Requirements

There are a number of requirements that have to be

ful�lled in order for PCC to be applicable:

R1: High level of statistical multiplexing. Condition (c)

discussed above is met.

3

R2: No synchronization of PCC
ows at startup. PCC

ows start up independent of each other.

R3: The average rate of a PCC
ow can be predicted.

In order for PCC to work, it must be possible to

predict the average rate of a PCC
ow.1

R4: The average rate of a TCP
ow under the same con-

ditions can be estimated. We expect that there is a

reasonably accurate method to estimate the aver-

age bandwidth that a TCP
ow would have under

the same network conditions.

B. Architecture

A simple overview of the PCC architecture is depicted

in Figure 1. A PCC sender transmits data packets at

the rate determined by the application, while the PCC

receiver monitors the network conditions by estimating

a TCP-friendly rate using a model of long-term TCP

throughput. Whenever a PCC receiver observes a degra-

dation in network conditions, it conducts a random ex-

periment to determine whether or not the
ow should be

suspended. In the case of a negative result, a control

packet is sent to notify the sender that it is temporarily

required to stop. After a certain o�-period, a sender may

then resume data transmission. For PCC, we chose to

allocate as much functionality to the receiver as possible

to facilitate a future extension of PCC to multicast.

(data, reflected timestamp, sequence number)
data packets

receiver

sender

control packets
(flow state: on/off, timestamp)

− start / stop flow
− reflect timestamp

 on/off−probability calculation

− parameter measurements
− TCP−friendly rate and

− random experiment

Fig. 1. PCC Architecture

While a
ow is in the on-state, control packets are sent

at certain time intervals. They allow to continuously mea-

sure the round-trip time required to determine the TCP-

friendly rate and they serve as a backup mechanism in

case of very heavy network congestion. In the absence of

these periodic control messages, the sender stops sending,

thus safeguarding against the loss of noti�cations to stop.

As long as the
ow is in the on-state, the data packets

are transmitted at the rate determined by the applica-

tion. Each data packet includes the timestamp of the

most recent control packet that the sender has received

in order to be able to determine the round-trip time. Each

1There are multiple ways in which this can be done, ranging from
a constant bit-rate,
ow where this prediction is trivial, to the usage
of application level knowledge or prediction based on past samples
of the data rate.

data packet also contains a sequence number to allow the

receiver to detect packet losses.

For the remainder of this work we use the TCP through-

put formula of Padhye et al. [9] to compute the TCP-

friendly rate. In order to determine the parameters re-

quired for the formula, the current version of PCC uses

the measurement mechanisms proposed for the TCP-

Friendly Rate Control Protocol (TFRC) [4]. However,

it is important to note that PCC is independent of the

method used to estimate the throughput of a TCP
ow

for given network conditions. A possible alternative, for

example, would be to use the rate calculation mechanism

of TCP Emulation At Receivers (TEAR) [3].

C. Continuous Evaluation

To determine the probability with which a PCC
ow

is allowed to send for a certain time interval T , it is nec-

essary to compare the average rate rNA of PCC to the

TCP-friendly rate rTCP .

p � T � rNA = T � rTCP =) p =
rTCP

rNA
(1)

where p denotes the ratio of rNA to rTCP . When solving

the equation, two outcomes are possible:

� p � 1: The non-adaptable
ow consumes less than or

the same amount of bandwidth that would be TCP-

friendly and should therefore stay on.

� 0 < p < 1: The non-adaptable
ow consumes more

bandwidth than a comparable TCP-friendly
ow. In

this case, p is taken as a probability and the non-

adaptable
ow should be turned o� with probability

1� p.

For p 2 [0; 1], a uniformly distributed random number x

is drawn from the interval (0; 1]. If x > p holds, the PCC

ow is turned o� for a time of T . After that time interval

the
ow may be turned on again. If x � p, then the
ow

remains in the on-state. Since we require a suÆcient level

of statistical multiplexing (R1) and because of the law of

large numbers, the aggregation of all PCC
ows behaves

as if each of them were TCP friendly.

T is an application-speci�c parameter that is crucial

for the utility of the protocol and thus for the user accep-

tance of the congestion control mechanism. For example,

if short news clips are transmitted T should be equal to

the length of these clips. If a networked computer game

is played, T should be determined so that in \normal"

congestion situations the player is able to perform some

meaningful tasks during the average time the
ow stays

on. If the network is designed to carry the required traÆc

(i.e., congestion is low), then the average on-time will be

a large multiple of T .

Under the assumption of a relatively constant level of

congestion, the further behavior of PCC is very simple.

4

After a time of T , a
ow that is in the on-state has to re-

peat the random experiment using the same rTCP . How-

ever, in a real network the level of congestion is not con-

stant but may change signi�cantly within a time frame

much shorter than T . There are two cases to consider:

network conditions may improve (increasing rTCP) or the

congestion may get worse.

The �rst case is not problematic since it does not en-

danger the overall performance of the network. PCC
ows

may be treated unfairly in that they are turned o� with

a higher probability than they should be. However, after

a time of T the decision will be reevaluated with the cor-

rect probability and PCC will adjust to the new level of

congestion.

The second case is much more dangerous to the net-

work. In order to prevent unfair treatment of competing

adaptive
ows or even a congestion collapse, it is very

important that PCC
ows respond quickly to an increase

in congestion. Therefore, PCC continuously updates the

value for p and performs further random experiments if

necessary.

Obviously, it is not acceptable to simply recalculate p

without accounting for the fact that the
ow could have

been turned o� during one of the previous experiments.

Without any adjustments, PCC would continue to per-

form the same random experiment again and again and

the probability to survive those experiments would drop

to 0. The general idea of how to avoid this drop-to-zero

behavior is to adjust the rate used in the equations to

represent the current expected average data rate of the

ow.

PCC modi�es the value rNA, taking into account the

last random experiments that have been performed for the

ow. To this end, PCC maintains a set P of the prob-

abilities pi with which the
ow stayed on in the random

experiments during the last T seconds.2 The so-called ef-

fective rate rEFF is determined according to the following

equation:

rEFF =

�
rNA

Q
pi2P

pi for P 6= ;

rNA for P = ;
(2)

For the continuous evaluation and the random experi-

ments rEFF replaces rNA in Equation 1.

D. Initialization

At the initial startup and after a suspended
ow

restarts, a receiver does not have a valid estimate of the

current condition of the network and thus is not able to in-

stantaneously compute a meaningful TCP-friendly rate.

To avoid unstable behavior, a
ow will stay in the on-

state for at least the protected time T 0, where T 0 is the

amount of time required to get the necessary number of

2Note that pi = 1 if the corresponding p � 1.

measurements to obtain a suÆciently accurate estimate

of the network conditions.

After T 0, PCC determines whether it should cease to

send or may continue. In order to take the data trans-

mitted during the protected time into account, the prob-

ability of turning the
ow o� is increased during the �rst

interval of T so that the average amount of data transmit-

ted during T 0+T is equal to that carried by a competing

TCP
ow. Let r0NA denote the average rate of the non-

adaptive
ow during the protected time and r0TCP the

average rate a TCP
ow would have achieved during the

same time. For

T 0 � r0NA + p0 � T � rNA = T 0 � r0TCP + T � rTCP

the adjusted ratio p0 can be calculated as

=) p0 =
T � rTCP + T 0 � (r0TCP � r0NA)

T � rNA

= p�
T 0(r0NA � r0TCP)

T � rNA
(3)

Again, for 0 � p0 � 1 we use p0 as the probability

for the random experiment. If the
ow is turned o�, the

application may resume sending after it has been o� for

a least T seconds, starting again with the initialization

step.3 If the
ow is not turned o�, then the
ow will

stay on for at least T more seconds, provided that the

congestion situation of the network does not get worse.

Note that it is now possible that p0 � 0 if the non-

adaptable
ow transmits more data during T 0 than a TCP

ow would carry during T 0 + T . Obviously, in this case

p0 cannot be used as a probability for the random exper-

iment. Instead, it is necessary to turn the
ow o� and to

increase T , so that p0 = 0.

Through the above mechanism the excess data trans-

mitted during the protected time T 0 is distributed over a

time span of T . At time T 0, r0TCP = rTCP and r0NA = rNA
but in contrast to r0TCP and r0NA, rTCP and rNA continue

to be updated after T 0.

When a random experiment has to be conducted, it is

necessary to calculate not only p0 but also the correspond-

ing p. Each is included in their respective set P 0 and P .

As long as PCC is in the �rst T slot and the protected

time has to be accounted for, the values in P 0 are used

to calculate the e�ective rate and thus the on-probability.

Later on, the set P is used.

It may be considered problematic to let a
ow send at

its full rate for T 0 as this violates the idea of exploring the

available bandwidth as is done, e.g., by TCP slow-start.

However, requirements R1 (high level of statistical multi-

plexing) and R2 (no synchronization at startup) prevent

3
T can be adjusted by some random o�set to prevent synchro-

nization in case several
ows with the same value for T were forced
to cease sending simultaneously due to heavy congestion.

5

this causing excessive congestion. In addition, the value of

T 0 will usually decrease the more congested the network

is, since the actual measurement of the loss event rate

makes up most of the time interval T 0. Loss events be-

come more frequent as congestion increases and therefore

the estimate of the network conditions converges faster

to the real value. While rTCP is determined, the receiver

also calculates the average rate of the non-adaptable
ow

rNA.
4 Summing up, three important values are deter-

mined during initialization: rTCP , rNA, and T 0.

E. State Diagram

A �nite state machine of a PCC receiver is depicted in

Figure 2.

timeout

INIT

se
t t

im
er

OFF
T’ over and p’<x/

set timer

T
’

ov
er

 a
nd

 p
’>

=
x/

ON

p’>=x p>=x

p<
x/

se
t t

im
er

timeout

se
t t

im
er

p’
<x/

First T

Fig. 2. Finite State Machine of a PCC Receiver

The runtime of the timer used in this state machine is

always T .

F. FEC

Since applications generating non-adaptable
ows fre-

quently have to obey real-time constraints, they bene�t

from forward error correction to compensate for packet

loss. However, packet loss typically signals congestion.

Therefore it has long been considered unacceptable to

compensate for congestion-based packet loss by increas-

ing the data rate of a
ow with redundant information for

forward error correction.

PCC supports the use of forward error correction in a

straightforward fashion: When an application decides to

employ forward error correction, the new rNA is simply

set to the rate of the
ow including the forward correction

information. From the perspective of PCC this is equiva-

lent to an application increasing its sending rate and thus

needs no special treatment. Increasing rNA results in an

4In our implementation, we use an exponentially weighted moving
average of past PCC rates, but as noted in requirement R3, other
options are possible.

appropriate decrease of p and is therefore fair towards

competing
ows.

G. Example of PCC Operation

To provide a better understanding of the behavior of

PCC, let us demonstrate how PCC operates by means of

an example. As depicted in Figure 3, the sender starts

transmitting at the rate determined by the application.

After T 0 = 10 seconds the receiver arrives at an initial

estimate of rNA = 100KBit=s and rTCP = 80KBit=s.

Furthermore, let us assume that the application developer

decided that T = 50 seconds is a good value for the given

application. Now p can be calculated as:

p =
80KBit

s

100KBit
s

= 0:8

The value of p is included in the set P and p0 is calcu-

lated since we are in the �rst T interval and have to make

up for the data transmitted during the protected time.

p0 = p�
10s � (100KBit

s
� 80KBit

s
)

50s � 100KBit
s

= 0:8� 0:04 = 0:76

T’+T = 60

rate

time

r
TCP

NA
r

200

100

80

40

T’ = 10

Fig. 3. Example of PCC Operation

Now a random number is drawn from the interval (0; 1],

deciding whether the
ow will stay on or be turned o�.

Given a high level of statistical multiplexing, this will

result in roughly 1 out of 4 PCC
ows being turned o�,

with the aggregation of the remaining PCC
ows using a

fair, TCP-friendly share of the bandwidth.

Let us assume that the random number drawn is

smaller than p0 and that the
ow will stay in the on-

state. As depicted in Figure 3, at some later point in

time the bandwidth required by the application increases

6

to rNA = 200KBit=s. A new value for p is then calcu-

lated as follows:

p =
80KBit

s

200KBit
s

� 0:8
= 0:5

This value for p is saved to the set P for later use. The

adjusted probability p0 has to be calculated based on the

past value of p0.

p0 =
80KBit

s

200KBit
s

� 0:76
�

10s � (100KBit
s

� 80KBit
s

)

50s � 200KBit
s

� 0:76

= 0:5

Let the random number drawn for this decision be be-

low 0:5 so that the
ow remains on. A few seconds af-

ter this decision the rate a TCP
ow would have under

the same conditions drops to rTCP = 40KBit=s. Conse-

quently new values for p and p0 are calculated:

p =
40KBit

s

200KBit
s

� 0:8 � 0:5
= 0:5

p0 =
40KBit

s

200KBit
s

� 0:76 � 0:5
�

10s � (100KBit
s

� 80KBit
s

)

50s � 200KBit
s

� 0:76 � 0:5

= 0:47

Again the value p is stored in P while the random number

drawn is below p0. At T 0 + T = 60s two things happen:

�rst, the data transmitted during the protected time need

no longer be accounted for since PCC has made up for

that during the past T interval. Therefore p0 is no longer

calculated. Second, the �rst value within P times out and

is removed from the set. If the network situation has not

changed this will result in the following new value for p:

p =
40KBit

s

200KBit
s

� 0:5 � 0:5
= 0:8

This time let the random number be larger than p. As a

result the
ow is suspended for the next T interval before

it may start again with a protected time. It should be

noted that this example was designed to demonstrate how

PCC works. In reality, a situation where the rate of the

non-adaptable
ow is �ve times the TCP-friendly rate

indicates that the network resources are not suÆcient for

this application.

H. Extensions

While the current version of PCC works as described

above, there are a number of options and possible im-

provements that we have investigated. In the following

we outline two modi�cations that have not yet been in-

corporated into PCC.

H.1 Probe While O�

PCC
ows on average may receive less bandwidth than

competing TCP
ows, since a
ow that has been turned

o� may resume only after a time of T , even if network con-

ditions improve beforehand. This degrades PCC's perfor-

mance, particularly if T is large. In order to improve

average PCC throughput,
ows that are o� could moni-

tor network congestion by sending probe packets at a very

low data rate from the sender to the receiver. The data

rate rOFF produced by the probe packets needs to be

taken into account in the Equations 1 and 3 by including

an additional factor (1� p) � rOFF � T .

If the loss rate and the round-trip time of the probe

packets signal that rTCP has improved, a
ow that has

been turned o� may be turned on again immediately,

without waiting for the remainder of the T to pass, and

without performing an initialization step. This may be

done only if, under the new network conditions, all ex-

periments within the last T interval had been successful.

If the congestion situation worsens later on, it must be

checked whether any of the experiments during the last

T interval had failed. If this is the case, the
ow must be

turned o� again. Only after the last entry in set P has

timed out may the
ow resume normal operation. For

Probe While O� to work correctly, it is of major impor-

tance that the estimate of the network parameters work

independent of the data rate PCC is sending at.

The current version of PCC does not include Probe

While O�, since it could lead to frequent changes be-

tween the states \on" and \o�", which is likely to be

distracting to the user of the application. Furthermore,

probe packets waste bandwidth. Probe While O� may be

included in a later version of PCC as an option for the

application. The mechanism can be improved by includ-

ing a threshold, so that the
ow is turned on again only if

the available bandwidth increases signi�cantly. With this

improvement, the number of state changes is reduced to

improve stability.

H.2 Probe Before On

In PCC, a
ow is turned on upon initialization. This

has two drawbacks. First, it violates the idea of exploring

the available bandwidth as in TCP slowstart. Second, the

ow may be turned o� immediately after the initialization

is complete, so that the user perceives only a brief moment

where the application seems to work, before it is turned

o�. An alternative would be to send probe packets at an

increasing rate before deciding whether or not to turn on

the
ow. Only after the parameters have been estimated

and the random experiment has succeeded will real data

for the
ow be transmitted. The drawback to this method

is that bandwidth is wasted by probe packets and that the

initial startup of a
ow is delayed.

7

H.3 Loss Rate Monitoring

PCC
ows do not take into account the impact of their

actions on the network conditions. Assume that the ran-

dom experiments of a number of PCC
ows fail due to

increased congestion, but that the congestion was largely

caused by these PCC
ows. Then too many
ows will be

suspended since it is impossible to include the expected

improvement in the network conditions in the calculation

of the on-probability. Similarly, when the bandwidth con-

sumed by PCC
ows during the protected time is a sig-

ni�cant fraction of the bottleneck link bandwidth, severe

congestion may be inevitable. Even after the protected

time, the changes in network conditions caused by PCC

ows that consume a large fraction of the bandwidth are

undesirable.

For these reasons it is vital that the condition of a suf-

�cient level of statistical multiplexing holds and that the

PCC
ows do not consume too large a fraction of the

bandwidth of the bottleneck link. By continuously mon-

itoring the packet loss rate (e.g., through probe packets)

and correlating it with the on- and o�-times of the PCC

ow, it is possible to estimate the impact of the
ow on

the network conditions. If the PCC
ow causes very large

variations in the loss rate, the
ow should be suspended

permanently. With this extension it is possible to use

PCC in environments where it is unclear whether the

condition of a suÆcient level of statistical multiplexing

is ful�lled.

V. Simulations

In this section, we use network simulations to analyze

PCC's behavior. Simulations are based on the dumb-

bell topology (Figure 4) since it is suÆcient to analyze

PCC fairness and the results can be compared to those of

other congestion control protocols evaluated with it. For

the same reason, simulations were carried out with the

ns-2 network simulator [10], commonly used to evaluate

such protocols. Drop-tail queuing (with a bu�er size of 50

packets) was employed at the routers. We used the stan-

dard TCP implementation of ns for the
ows competing

with PCC.

Router
1

PCC 1

Router
2

PCC 1

TCP 1

...

...

...

...

ReceiversSenders

PCC n

TCP 1

PCC n

TCP mTCP m

Bottleneck Link

Fig. 4. Simulation Topology

A. TCP-Friendliness

A typical example of PCC behavior is shown in Fig-

ure 5. For this simulation, 32 PCC
ows and 32

TCP
ows were run over the same bottleneck link with

32MBit/s capacity. At an application sending rate of

750KBit/s, the PCC
ows should ideally be in the on-

state for two thirds of the time. In this example, T was

set to 60s, leading to an expected average on-time of 120s.

The graph depicts the throughput of one sample TCP
ow

and one sample PCC
ow, as well as the average through-

put of all 32 PCC
ows. The starting time of the PCC

ows is spread out over the �rst 50s to avoid synchroniza-

tion.

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900
T

hr
ou

gh
pu

t [
K

B
it/

s]
Time [s]

TCP
PCC

Fig. 5. PCC and TCP throughput

The TCP rate shows the usual oscillations around the

fair rate of 500KBit/s. PCC's behavior is nearly perfect,

with an average rate that closely matches the fair rate

and an on-o� ratio of two to one. Naturally, not all of the

32 PCC
ows achieve exactly this ratio; some stay on for

more, some for less time.

B. Intra-Protocol Fairness

Usually, it is desirable to evenly distribute the necessary

o�-times over all PCC
ows instead of severely penaliz-

ing only few. To examine PCC's intra-protocol fairness, a

simulation setup similar to the previous one was used, yet

the number of concurrent PCC and TCP
ows varied be-

tween 2 and 128. The probability density function of the

throughput distribution from these simulations is shown

in Figure 6. As expected, the throughput range is larger

for PCC. The coeÆcient of variation (standard deviation

over mean) for PCC throughput is 15% compared to a

TCP coeÆcient of variation of only about 3%.

This results from the time frame for changes in the

states of the PCC
ows being 60s instead of a few RTTs

for TCP
ows. There is a direct tradeo� between the

parameter T and the intra-protocol fairness. Longer on-

times, achieved by a larger T , result at the expense of the

ows that are suspended for a longer time, thus decreasing

intra-protocol fairness. Taken to the extreme, for very

8

0

0.2

0.4

0.6

0.8

1

0 250 500 750 1000

Average Throughput (KBit/s)

TCP
PCC

Fig. 6. Distribution of Flow Throughput

large T
ows may stay on for the whole duration of the

session or are not permitted at all, leading to a type of

admission control scheme.

C. Responsiveness

In addition to inter- and intra-protocol fairness, suÆ-

cient responsiveness of a
ow to changes in the network

conditions is important to ensure acceptable protocol be-

havior. TCP adapts almost immediately to an increase in

congestion (manifest in the form of packet loss). Through

the continuous evaluation at timescales of less than T , as

described in Section IV-C, PCC can react nearly as fast

as TCP to increased congestion, however, it will react to

improved network conditions on a timescale of T . Fig-

ure 7 depicts the average throughput of 32 PCC
ows,

again with parameter T set to 60s, and 32 TCP
ows. A

rather dynamic network environment was chosen where

the loss rate increases abruptly from 2.5% to 5% from

time 200s to 300s and from time 400s to 420s.

0

100

200

300

400

500

600

700

800

100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t [

K
B

it/
s]

Time [s]

avg. TCP
avg. PCC

Fig. 7. Loss Bursts

When the loss rate changes at time 200s, PCC does

not adapt as fast as TCP but still achieves an overall av-

erage rate that is quite close to the TCP rate after only

a few seconds. 60 seconds later we can see a little spike

in the average PCC rate, resulting from the PCC
ows

that reenter the protected time to probe for bandwidth

once their o�-time is over. Since the loss rate is still high,

the average PCC rate settles at the appropriate TCP-

friendly rate shortly thereafter. As soon as the loss rate

is reduced to its original value, the probability that sus-

pended
ows reentering the protected time will immedi-

ately be suspended again (and the probability that the

random experiment of
ows in the on-state will fail) de-

creases. Thus, after time 300s, the random experiments of

more and more
ows succeed until about 50 seconds later

the TCP-friendly rate is reached again. Although PCC

reacts more slowly than TCP, the average throughput of

TCP and PCC up to time 350s is very similar. In con-

trast to long high-loss periods, short loss spikes hurt PCC

performance much more than TCP performance. When

the loss rate increases again at time 400s, suspended PCC

ows will stay in the o�-state for at least 60s, while the

actual congestion persists for only 20s. From the time the

congestion ends until the time the PCC
ows are allowed

to reenter the protected time, TCP throughput is consid-

erably higher than PCC throughput. However, we can

also see from the graph that during periods of congestion

PCC throughput does not quite drop to the level of TCP

throughput but remains slightly higher. In the following

we will analyze this e�ect in more detail.

D. PCC Throughput for Di�erent Application Sending

Rates

Ideally, no PCC
ows would be suspended as long as the

PCC application sending rate is below the TCP-friendly

rate. For higher application sending rates the average

PCC rate should remain at exactly the fair rate through

the use of the random experiments. From Figure 8 we

take it that an average PCC rate of exactly the fair rate

is not reached when the application sending rate equals

the fair rate but for an application sending rate that is

about 25% higher. The latter e�ect can be explained

by PCC's susceptibility to dynamic network conditions.

TCP's typical sawtooth-like sending rate results in varia-

tions in the network conditions which unduly cause sus-

pension of PCC
ows. When we compare the average

PCC throughput to TCP throughput for high PCC ap-

plication sending rates, we �nd that PCC throughput

and thus PCC's aggressiveness continues to increase with

the application sending rate once the fair rate has been

reached.

The e�ect of increased aggressiveness at higher appli-

cation sending rates can be attributed to the TCP model

used by PCC. As stated in [9], the TCP model is based on

the so-called loss event rate. A loss event occurs when one

or more packets are lost within a round-trip time, and the

loss event rate is consequently de�ned as the ratio of loss

events to the number of packets sent. The denominator of

the loss-event rate increases as more and more packets are

sent during a round-trip time due to a higher application

9

0

50

100

150

200

0 50 100 150 200 250 300

A
ve

ra
ge

 R
at

e
[%

 o
f F

ai
r

R
at

e]

PCC Application Sendrate [% of Fair Rate]

Ideal
PCC

TCP Model

Fig. 8. Comparison with Estimated TCP-Friendly Rate

sending rate. At the same time, the number of loss events

does not increase to the same extent since more and more

lost packets are aggregated to a single loss event. An in-

depth analysis of this e�ect can be found in [11]. When

relating the estimated TCP-friendly rate at di�erent ap-

plication sending rates to the average PCC rate achieved

in these simulations, it becomes obvious that PCC's ag-

gressiveness is not caused by PCC's congestion control

mechanism but by the dependence of the TCP model on

the measurement of the loss event rate at sending rates

close to the actual TCP rate (to ensure that for TCP and

the TCP model the lost packets that constitute a loss

event are the same). In addition to PCC's susceptibility

to variations in the network conditions, the di�erence be-

tween the TCP-friendly rate and the average PCC rate is

also caused by taking into account only the rate estimates

of
ows in the on-state.

E. PCC Fairness for Di�erent Combinations of Flows

Figure 9 shows the average throughput achieved by

PCC for di�erent combinations of PCC and TCP
ows

when the fair rate is 500KBit/s and the application send-

ing rate is 750KBit/s. Generally, PCC throughput in-

creases with the number of TCP
ows, since the higher

the level of statistical multiplexing, the lower the varia-

tions in the network conditions that degrade PCC per-

formance. This e�ect is more pronounced, the lower the

number PCC
ows is.

For a more detailed analysis of PCC and further net-

work simulations we refer the reader to [12].

VI. Conclusions

In this paper we presented a congestion control scheme

for non-adaptable
ows. This type of
ow carries data

at a rate determined by the application. It cannot be

adapted to the level of congestion in the network in any

way other than by suspending the entire
ow. Existing

2
4

8
16

32
64

Number of PCC flows
1

2
4

8
16

32
64

Number of TCP flows

0

250

500

750

Throughput [KBit/s]

Fig. 9. Average PCC Throughput for Di�erent Numbers of Flows

congestion control approaches therefore are not viable for

non-adaptable
ows.

We proposed to perform congestion control for such

ows by suspending individual
ows in such a way that

the aggregation of all non-adaptable
ows on a given link

behaves in a TCP-friendly manner. The decision about

suspending a given
ow is made by means of random ex-

periments.

In a series of simulations we have shown that PCC

displays a TCP-friendly behavior under a wide range of

network conditions. We identi�ed the conditions under

which PCC throughput does not correspond to the TCP-

friendly rate. To some extent, these e�ects on the average

PCC sending rate cancel each other out. Nevertheless, the

may degrade PCC performance.

We intend to include Probe While O� as an optional

element in PCC, which would improve PCC's behavior in

highly dynamic network environments. Furthermore, we

are currently investigating a method to perform a more

accurate estimate of the fair TCP rate if the loss event

rate is measured at a sending rate that di�ers considerably

from the TCP-friendly rate. Finally, we plan to evaluate

if and how PCC can complement congestion control for

multicast transmissions.

References

[1] Sally Floyd and Kevin Fall, \Promoting the use of end-to-end
congestion control in the Internet," IEEE/ACM Transactions
on Networking, vol. 7, no. 4, pp. 458{472, Aug. 1999.

[2] Luigi Rizzo, \pgmcc: A TCP-friendly single-rate multicast con-
gestion control scheme," in Proc. ACM SIGCOMM, Stockholm,
Sweden, August 2000, pp. 17 { 28.

[3] Injong Rhee, Volkan Ozdemir, and Yung Yi, \TEAR: TCP
emulation at receivers -
ow control for multimedia stream-
ing," Tech. Rep., Department of Computer Science, NCSU,
Apr. 2000.

10

[4] S. Floyd, M. Handley, J. Padhye, and J. Widmer, \Equation-
based congestion control for unicast applications," in Proc.
ACM SIGCOMM, Stockholm, Sweden, Aug. 2000, pp. 43 { 56.

[5] John Byers, Michael Frumin, Gavin Horn, Michael Luby,
Michael Mitzenmacher, Alex Roetter, and William Shaver,
\FLID-DL: Congestion control for layered multicast," in Proc.
Second Int'l Workshop on Networked Group Communication
(NGC 2000), Palo Alto, CA, USA, Nov. 2000.

[6] J�org Widmer, Robert Denda, and Martin Mauve, \A survey
on TCP-friendly congestion control (extended version)," Tech.
Rep. TR-2001-002, Department for Mathematics and Com-
puter Science, University of Mannheim, Feb. 2001.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, ,"
RFC 2205, IETF Network Working Group, 1997.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, \An architecture for di�erentiated services," RFC
2475, IETF Network Working Group, 1998.

[9] Jitendra Padhye, Victor Firoiu, Donald F. Towsley, and
James F. Kurose, \Modeling TCP Reno performance: a simple
model and its empirical validation," IEEE/ACM Transactions
on Networking, vol. 8, no. 2, pp. 133{145, April 2000.

[10] Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin Fall, Sally
Floyd, Padma Haldar, Mark Handley, Ahmed Helmy, John Hei-
demann, Polly Huang, Satish Kumar, Steven McCanne, Reza
Rejaie, Puneet Sharma, Kannan Varadhan, Ya Xu, Haobo Yu,
and Daniel Zappala, \Improving simulation for network re-
search," Tech. Rep. 99-702b, University of Southern Califor-
nia, March 1999, revised September 1999, to appear in IEEE
Computer.

[11] S. Ramesh and I. Rhee, \Issues in TCP model-based
ow con-
trol," Tech. Rep. TR-99-15, Department of Computer Science,
NCSU, 1999.

[12] J. P. Damm, \Probabilistic congestion control for non-
adaptable
ows," M.S. thesis, University of Mannheim, Apr.
2001.

