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Abstract

This thesis presents a TCP-friendly congestion control scheme for non-adaptable flows. The main
characteristic of these flows is that their data rate is determined by the producing application and
cannot be adapted to the current congestion situation of the network. Typical examples of non-
adaptable flows are those produced by networked computer games or live audio and video trans-
missions where adaption of the quality is not possible (e.g., since it is already at the lowest possible
level). We propose to perform congestion control for non-adaptable flows by suspending them at
appropriate times so that the aggregation of multiple non-adaptable flows behaves in a TCP-friendly
manner. The decision whether a flow is suspended is based on random experiments. In order to al-
locate probabilities for these experiments, the data rate of the non-adaptable flow is compared to
the rate that a TCP flow would have under the same conditions. Because random experiments are
used to probabilistically adapt the aggregate rate of multiple flows, this congestion control scheme
is called Probabilistic Congestion Control or PCC. We present a detailed discussion of the PCC
scheme and an evaluation based on extensive simulations with the network simulator ns-2.



Acknowledgements

In its present form, this work was possible only with the support of a number of people
to whom I would like to express my gratitude.

First of all, I would like to thank Prof. Dr. Effelsberg for putting his trust in me by
consigning me to this challenging topic.

I would like to thank Martin Mauve and J¨org Widmer for the enthusiasm with which
they continuously supported my work.

Furthermore, I would like to thank Achim Trabold for his helpful comments.



I

Contents

1 Introduction 1

2 Current Mechanisms 3
2.1 TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 TCP-Friendliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Classification of TCP-Friendly Congestion Control Schemes. . . . . . . . . . . . 4
2.4 TEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 TFRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 Other Rate-Adapting Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Reservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Non-Adaptable Flows 8

4 PCC Protocol Overview 10
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Turning Flows Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Experiments in the Ideal Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3.1 The Use of Local Knowledge . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Experiments after Protected Time . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4.1 Protected Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.2 Making Up for Protected Time . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4.3 Handling Negative Protected Times . . . . . . . . . . . . . . . . . . . . . 16
4.4.4 Maximum Value for Protected Time . . . . . . . . . . . . . . . . . . . . . 18

4.5 Continuous Evaluation . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Misbehaving Participant Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.7 Example of PCC Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 PCC Implementation for the Network Simulator 24
5.1 The Network Simulator ns-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Major Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 PCC Control Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 PCC Control Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.2 PCC Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 TFRC Mechanisms Used to Calculate the TCP-Friendly Rate . . . . . . . . . . . . 28



CONTENTS II

5.4.1 Measuring the Round-Trip Time. . . . . . . . . . . . . . . . . . . . . . . 28
5.4.2 Measuring the Loss Event Rate. . . . . . . . . . . . . . . . . . . . . . . 29
5.4.3 Estimating the TCP-Friendly Rate . . . . . . . . . . . . . . . . . . . . . . 30

5.5 Activity Diagram for the Design of a PCC Receiver. . . . . . . . . . . . . . . . . 31

6 Simulation Results 32
6.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.1 Example of a Single Simulation . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Metrics for Fairness and Throughput . .. . . . . . . . . . . . . . . . . . . . . . . 34

6.2.1 Metrics for Fairness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.2 Metrics for Throughput. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Correspondence of Fairness with TCP-Friendly Rate Estimation . . .. . . . . . . 36
6.4 Effect of Variation in Loss Event Rate Measurement on PCC Flows .. . . . . . . 38
6.5 Problems of TCP-Friendly Rate Estimation Based on the Loss Event Rate. . . . . 39

6.5.1 A Quick and Dirty Solution . .. . . . . . . . . . . . . . . . . . . . . . . 42
6.6 PCC Throughput .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.7 Intra-Protocol Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.8 PCC Behavior at Different Round-Trip Delays . .. . . . . . . . . . . . . . . . . . 46
6.9 Further Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.9.1 Queue Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.9.2 Influence of Absolute Send Rate . . . . . . . . . . . . . . . . . . . . . . . 47
6.9.3 PCC Behavior in an Unstable Environment . . . . . . . . . . . . . . . . . 48
6.9.4 Protected Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.9.5 Application Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Discussion of PCC Application Parameters 53
7.1 Off Time and Re-Experiment Interval . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Parameters Determining the Length of Protected Time . . . . . . . . . . . . . . . 54
7.3 Parameters Determining Smoothness of Measurements . . .. . . . . . . . . . . . 54
7.4 Packet Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Possible Extensions to the PCC Scheme 56
8.1 Probe While Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.2 Probe Before On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.3 Forward Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.4 Multicast PCC . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.4.1 Sender-Driven Multicast PCC .. . . . . . . . . . . . . . . . . . . . . . . 58
8.4.2 Receiver-Driven Multicast PCC. . . . . . . . . . . . . . . . . . . . . . . 58
8.4.3 TCP-Friendly Rate Estimation . . . . . . . . . . . . . . . . . . . . . . . . 59

8.5 Combining PCC with other Congestion Control Schemes . . . . . . . . . . . . . . 59

9 Conclusion and Future Work 60
9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9.1.1 Improving the Loss Event Rate Measurement. . . . . . . . . . . . . . . . 60



CONTENTS III

9.1.2 Randomizing Off Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.1.3 ”Deterministic Congestion Control” . . . . . . . . . . . . . . . . . . . . . 61
9.1.4 Further Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 62
9.1.5 Real-Life Implementation and Evaluation . . . . . . . . . . . . . . . . . . 63

A Calculation of Protected Time under Exemplary Network Conditions 64
A.1 Calculation of the Time Necessary for a Reliable LER-Measurement .. . . . . . . 64
A.2 Calculation of the Time Necessary for a Reliable RTT-Measurement .. . . . . . . 65

B Installation Guide 66



IV

List of Figures

4.1 The PCC Scheme as a Finite State Machine . . . . . . . . . . . . . . . . . . . . . 21
4.2 PCC Operation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Flow of PCC Control Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Weights Used in the Average Loss Interval Method . . . . . . . . . . . . . . . . . 29
5.3 UML Activity Diagram of a PCC Receiver. . . . . . . . . . . . . . . . . . . . . . 31

6.1 Dumbbell Topology for Simulations . .. . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Throughput Over Time of a PCC and a TCP Flow. . . . . . . . . . . . . . . . . . 34
6.3 Expected Fairness when Varying Send Rate . . . . . . . . . . . . . . . . . . . . . 36
6.4 Actual Fairness when Varying Send Rate . . . . . . . . . . . . . . . . . . . . . . . 37
6.5 Estimated TCP-Friendly Rate when Varying Send Rate . . . . . . . . . . . . . . . 37
6.6 Fairness when Varying the Number of Loss Event Samples . . . . . . . . . . . . . 39
6.7 Loss Rate and Loss Event Rate when Varying Send Rate - Simulation Set with Some

Correlated Losses .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.8 Expected Loss Event Rate when Varying the Number of Active Round-Trip Times

- Random Losses, Loss Rate 1%. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.9 Fairness when Varying Send Rate up to 25 Times the Fair Rate . . . . . . . . . . . 41
6.10 Share of Bandwidth with Varying Loss Rate (Random Loss), with and without Use

of Adjustment Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.11 Share of Bandwidth with Varying Application Send Rate (Correlated Losses), with

and without Use of Adjustment Mechanism . . .. . . . . . . . . . . . . . . . . . 43
6.12 Absolute Throughput of an Average PCC Flow when Varying Application Send Rate 43
6.13 PCC Throughput at the Fair Rate Varying with the Number of PCC and TCP Flows 44
6.14 PCC Throughput at Twice the Fair Rate Varying with the Number of PCC and TCP

Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.15 PCC Share of Bandwidth at the Fair Rate Varying with the Number of PCC and

TCP Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.16 PCC Share of Bandwidth at Twice the Fair Rate Varying with the Number of PCC

and TCP Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.17 Intra-Protocol Fairness with Competing TCP Flows and Varying Send Rate . . . . 45
6.18 Intra-Protocol Fairness with only PCC Flows and Varying Send Rate . . . . . . . . 45
6.19 PCC Share of Bandwidth when Varying the Round-Trip Delay. . . . . . . . . . . 46
6.20 PCC Share of Bandwidth with Different Queue Types and Varying Send Rate . . . 47
6.21 Overall Throughput with Different Queue Types and Varying Send Rate. . . . . . 47



LIST OF FIGURES V

6.22 PCC Share of Bandwidth with Varying Send Rate and Bandwidth . . . . . . . . . 47
6.23 Overall Throughput with Varying Send Rate and Bandwidth. . . . . . . . . . . . 47
6.24 PCC and TCP Average Throughput over Time, with Loss Bursts . . .. . . . . . . 48
6.25 PCC and TCP Average and Single Flow Throughput over Time, with Loss Bursts . 49
6.26 Protected Time with Varying Send Rate and Bandwidth . . . . . . . . . . . . . . . 49
6.27 PCC Share of Bandwidth with a Varying Number of Loss Events for Protected Time 50
6.28 PCC Share of Bandwidth with VaryingTEXP and ConstantTOFF . . . . . . . . . 51
6.29 PCC Share of Bandwidth with VaryingTOFF and ConstantTEXP . . . . . . . . . 51
6.30 PCC Share of Bandwidth with Varying Packet Size at the Fair Rate . . . . . . . . . 52
6.31 PCC Share of Bandwidth with Varying Packet Size at Twice the Fair Rate . . . . . 52



VI

List of Tables

6.1 PCC and Network Parameters Used in the Standard Scenario . . . . . . . . . . . . 33

7.1 Proposed PCC Application Parameter Values for Different Network Conditions . . 55

A.1 Exemplary Maximum Relevant Values for the Time to Arrive at a Reliable LER-
Measurement . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.2 Exemplary Values for the Time to Arrive at a Reliable RTT-Measurement. . . . . 65



1

Chapter 1

Introduction

Congestion control is a vital element of computer networks such as the Internet. It has been widely
discussed in literature - and experienced in reality - that the lack of appropriate congestion control
mechanisms will lead to undesirable situations such as congestion collapse [1] of (parts of) a net-
work. Due to congestion, the network capacity in these situations is almost exclusively used up by
traffic that never reaches its destination, as packets are dropped by intermediate systems.

In the current Internet, congestion control is primarily performed by TCP. Furthermore, during
recent years new congestion control schemes have been devised supporting networked applications
that do not use TCP. Typical examples of such applications are audio and video transmissions over
the Internet. One prime aim that the new congestion control schemes try to achieve is to share the
available bandwidth in a fair manner with TCP-based applications, thus creating the category of
TCP-friendlycongestion control mechanisms.

TCP, as well as existing TCP-friendly congestion control algorithms, require that the data rate of
an individual flow can be adapted to the congestion situation of the network. Using TCP, a fixed
amount of data may take a variable amount of time to transmit, or with TCP-friendly congestion
control the quality of an audio or video stream may be adapted to the available bandwidth.

While this not a limitation for a number of applications, there are cases where the data rate of an
individual flow is determined by the application and cannot be adapted to the network conditions.
Networked computer games are a typical example, considering the fact that players are very reluc-
tant to accept the delayed transmission of information about a remote player’s actions. Live audio
and video transmissions with a fixed minimum quality below which reception is useless fall into the
same category. For this class of applications there are only two acceptable states: either a flow is
on and the sender transmits at the data rate determined by the application or it isoff and nothing is
transmitted at all. We call network flows caused by these applicationsnon-adaptableflows.

This thesis presents a TCP-friendly end-to-end congestion control mechanism for non-adaptable
unicast flows calledProbabilistic Congestion Control(PCC). The main idea of PCC is to make
aggregations of PCC flows rather than each single flow behave TCP-friendly at any time. This
is achieved by regularly staging random experiments for each PCC flow based on probabilities
calculated from the flow’s actual send rate and an estimation of the current TCP-friendly rate in the
network. Whenever such an experiment fails, the flow is turned off for a certain period of time.
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The probabilities are chosen in such a way that the expected average send rate of each flow equals
the TCP-friendly rate. We chose to use the name Probabilistic Congestion Control for this scheme
because TCP-friendliness for aggregations of flows is achieved probabilistically through the use of
random numbers.

The remainder of this thesis is structured as follows. Chapter 2 summarizes current approaches to
congestion control. In Chapter 3 we examine non-adaptable flows in more detail. An extensive
presentation of the PCC mechanism is given in Chapter 4, followed by a discussion of our protocol
implementation in Chapter 5. The results of the simulation studies that were conducted are presented
in Chapter 6. Chapter 7 proposes values to be used for numerous parameters. Chapter 8 discusses
possible extensions to the PCC scheme, and we conclude the thesis with a summary and an outlook
to future work in Chapter 9.

The main scientific contributions of this thesis are: the identification of the class of non-adaptable
flows; the general idea of probabilistic congestion control for non-adaptable flows; a method to
protect flows from unreliable network condition measurements at start-up in an overall fair manner;
and continuous evaluation as a way to quickly adapt the aggregation of non-adaptable flows to
degradations in network quality, while basing probability calculations on longer off times.
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Chapter 2

Current Mechanisms

In the Internet, the Transmission Control Protocol (TCP) has proven to provide good congestion
control. However, TCP is not suited for all types of network traffic. For example, TCP’s re-
transmission mechanism is too time-consuming for applications that need to obey real-time con-
straints, and acknowledgments and re-transmissions do not scale well for multicast flows. This
section gives a short introduction to TCP and defines the termTCP-friendlinessbefore briefly de-
scribing some major alternatives to TCP congestion control.

2.1 TCP

TCP is a connection-oriented unicast protocol that offers reliable data transfer [2]. TCP achieves re-
liability by employing mechanisms such as positive ACKs with re-transmission, sequence numbers,
and a checksum.

In addition, TCP provides flow control and congestion control using a sliding window mechanism.
The size of the window used for flow control is advertised by the TCP receiver, while the congestion
window size regularly changes depending on indications for congestion. The minimum of the two
window sizes determines the number of packets that may be sent before some of these packets are
acknowledged by the receiver, and it thereby determines the send rate.

TCP rate change in response to congestion indications is described in [2] for the case that the
advertised window does not pose a practical limitation: “On start-up, TCP performsslowstartduring
which the rate roughly doubles each round-trip time to quickly reach its fair share of bandwidth. In
steady state, TCP uses an additive increase, multiplicative decrease mechanism (AIMD) to detect
additional bandwidth: when there is no indication for loss, TCP increases the congestion window
by one segment per round-trip time. When TCP experiences packet loss indicated by a timeout, the
congestion window is reduced to one segment and TCP reenters the slowstart phase. Packet loss
indicated by three duplicate ACKs results in a window reduction to half its previous size.”

This behavior lets TCP flows adapt quickly to a worsening of network conditions, but also quickly
search out free bandwidth. It also results in another property of TCP, which is the typical saw-tooth
behavior with large variations of the send rate.
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2.2 TCP-Friendliness

In [1], non-TCP flows are defined as being TCP-friendly when “their long-term throughput does not
exceed the throughput of a conformant TCP connection under the same conditions”.

Widmer et al. give a slightly different definition ofTCP-friendliness(for unicast flows) in [2]:

A unicast flow is consideredTCP-friendlywhen it does not reduce the long-term through-
put of any coexistent TCP flow more than another TCP flow on the same path would
do under the same network conditions.

For the purposes of PCC, where the goal is to make an accumulation of flows TCP-friendly rather
than each single flow, we relax this definition to the following:

An accumulation of unicast flows is consideredTCP-friendlywhen it does not reduce
the long-term throughput of any coexistent TCP flow more than an equal number of
TCP flows on the same path would do under the same network conditions.

Due to the law of large numbers, this can be achieved if each flow’s expected average rate is such
that a flow sending constantly at this rate would be TCP-friendly in the sense of [2].

2.3 Classification of TCP-Friendly Congestion Control Schemes

The authors of [2] classify congestion control schemes by the following criteria:

� Window-Based versus Rate-Based:Window-based congestion control schemes use a con-
gestion window to adapt their offered network load in much the same way as TCP does.
Rate-based schemes employ some kind of feedback mechanism to measure network condi-
tions, then adjust the transmission rate based on these measurements. A specific class of the
latter type are model-based approaches, which use a TCP throughput model to determine a
TCP-friendly send rate.

� Unicast versus Multicast:While TCP-friendliness is desirable for both unicast and multicast
traffic, it is far more difficult to achieve for the multicast case. Multicast congestion control
schemes ideally should scale to large receiver sets and be able to cope with heterogeneous
network conditions at the receivers. For sender-based multicast congestion control, theloss
path multiplicity problem[3] needs to be considered: with a large receiver set, it is likely that
each transmitted packet is lost for at least one receiver. Packet loss reports can therefore not
be used as congestion indications in the same way as in the unicast case.

� End-to-End versus Router-Supported: Many of the TCP-friendly schemes proposed are
designed for best-effort IP networks such as today’s Internet that do not provide any addi-
tional router mechanisms to support the protocols. However, the design of congestion control
protocols and particularly fair sharing of resources can be considerably facilitated by placing
intelligence in the network.
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� Sender-Based, Receiver-Based, or Router-Based Congestion Control:The responsibility
of enforcing congestion control can be located at the sender, at the receiver(s) or at intermedi-
ate routers. A common approach is that the sender uses information about network congestion
to adjust the rate or window size in order to achieve TCP-friendliness, while receivers only
give feedback. In the converse case, responsibility for rate adjustment lies at the receiver,
which signals the sender as to what rate it is allowed to send at. The best fairness can be
achieved with the help of router assistance (as detailed in [1]), but such mechanisms are dif-
ficult to deploy as changes to the Internet infrastructure take time and are very costly.

� Single-Rate versus Multi-Rate:This criterion is specific to multicast traffic, where a sender
can choose to supply all receivers with the same amount of data or use multiple rates for
different senders. In the unicast case with only one receiver per sender, all traffic is single-
rate.

2.4 TEAR

TCP Emulation At Receivers (TEAR) [4] is a hybrid end-to-end protocol that combines aspects of
window-based and rate-based congestion control. TEAR receivers maintain a congestion window
that is modified similarly to TCP’s congestion window. Since TCP’s congestion window is located
at the sender, a TEAR receiver has to try to determine from the arriving packets when TCP would
increase or decrease the congestion window size. Additive increase and window reductions caused
by triple duplicate ACKs are easy to emulate. However, due to the lack of acknowledgments,
timeout events can only roughly be estimated. In contrast to TCP, the TEAR protocol does not
directly use the congestion window to determine the amount of data to send but calculates the
corresponding TCP send rate. This rate is roughly a congestion window worth of data per round-trip
time. To avoid TCP’s saw-tooth behavior, TEAR averages the rate over anepoch, where an epoch
is defined as the time between consecutive rate reduction events. To further prevent unnecessary
rate changes caused by noise in the loss patterns, a smooth rate is determined by using a weighted
average over a certain number of epochs for the final rate. This value is then reported to the sender
which accordingly adjusts the send rate.

Since the rate is determined at the receivers and TEAR refrains from acknowledging packets, it can
be used for multicast as well as for unicast communication, provided a scalable scheme to determine
the round-trip time is used in the multicast case. For multicast congestion control, the TEAR sender
has to adapt the rate to the minimum of the rates reported by the receivers.

Due to the close modeling of TCP’s short term behavior, TEAR shows TCP-friendly behavior while
it avoids TCP’s frequent rate changes.

2.5 TFRC

The TCP-Friendly Rate Control Protocol (TFRC) [5] evolved from the TFRCP protocol [6]. This
rate-based scheme is specified for unicast communication although it can be adjusted to multicast
with some modifications. TFRC adjusts its send rate to the complex TCP equation given in [7]
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(Equation 5.4). The authors chose the Average Loss Interval method as loss rate estimator: The loss
rate is measured in terms of loss intervals, spanning the number of packets between consecutive
loss events. A certain number of loss intervals is averaged, using decaying weights so that old loss
intervals contribute less to the average. The loss rate is calculated as the inverse of the average loss
interval size. The round-trip time is measured with the standard method of feeding back time-stamps
to the sender.

The receiver sends state reports to the sender once per round-trip time. The sender then computes a
new fair rate from the parameters and adjusts the send rate accordingly. Immediately after start-up,
the sender goes into a slowstart phase similar to TCP slowstart to quickly increase the rate to a fair
share of the bandwidth. TFRC slowstart is terminated with the first loss event. This sender-based
approach can also be transformed into a receiver-based approach.

A major advantage of TFRC is that is has a relatively stable send rate while it still provides sufficient
responsiveness to competing traffic.

2.6 Other Rate-Adapting Mechanisms

Apart from the mechanisms described in the two previous sections, work has been done on a number
of other non-TCP mechanisms that attempt to adapt the rate of singular flows in a TCP-friendly
manner. Among these are PGMCC [8], FLID-DL [9], and Rainbow [10]. For an overview of these
and other congestion control mechanisms, see [2].

2.7 Reservation

An interesting approach to congestion control is reservation of bandwidth. The idea is that each flow
needs to reserve the bandwidth it requires before being allowed to transmit any data. If sufficient
resources are not available, the reservation request is denied and the flow is not allowed to transmit.
If a pessimistic reservation mechanism is used that accepts requests only up to the point where the
sum of all requested (maximum) rates equals the available bandwidth, congestion cannot occur.

However, pessimistic reservation has the disadvantage that bandwidth that is reserved but currently
not used (by a variable bit rate flow that has reserved enough bandwidth to be able to transmit
at peaks) is effectively wasted. Therefore, optimistic reservation mechanisms are often employed
which accept more reservation requests to such an extent that the available bandwidth will not be
exceededin most cases. Here, however, a total absence of congestion can not be guaranteed.

One of the problems involved in the use of a reservation scheme is that each flow needs to know
the peak rate at which it is going to send. Since this can not be determined for many applications,
most flows will tend to reserve more than is actually needed. A more grave problem concerning
the applicability of such a scheme to the Internet is that router support is imperative, since the
end systems could not determine the global availability of free bandwidth locally in a scalable
way. While ideas for such router support exist, such as Intserv/RSVP [11] or Diffserv [12], such
mechanisms are not yet widely employed in the Internet.
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Another disadvantage of a reservation scheme is that it treats flows unfairly in that some flows can
transmit at exactly the rate they want, while others may not transmit any data at all. While this may
be desirable for some classes of flows, where neither rate reduction nor transmission interruptions
would be acceptable, it is less desirable for other classes.
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Chapter 3

Non-Adaptable Flows

For the remainder of this thesis a non-adaptable flow is defined to be a data flow with a sending rate
that is determined by the application and cannot be adapted to the level of congestion in the network.
A non-adaptable flow has exactly two acceptable states: either it is in the stateon, carrying data at
the rate determined by the application, or it isoff, meaning that no data is transmitted at all. Any
data rate in between those two is inefficient, since the application is not able to make use of the
offered rate.

Examples of applications producing non-adaptable flows are commercial networked computer games
such as Diablo II, Quake III, Ultima Online, and Everquest. These games typically employ a client-
server architecture. The data rate of a flow between client and server is determined by the fact that
the actions of the players must be transmitted instantaneously. Similar restrictions hold for the flows
between participants of distributed virtual environments without a centralized server. If a congestion
control scheme delays actions by a considerable amount of time the application quickly becomes
unusable. This can easily be experienced by experimenting with a state-of-the-art TCP-based net-
worked computer game during peak hours. In reaction to this problem, a number of applications
resort to UDP and avoid congestion control altogether.

A situation with either no congestion control at all or vastly reduced usability in the face of moderate
congestion is not desirable. A much preferable approach is to turn the flows of some participants
off and to inform the application accordingly, such that those participants are not unduly penalized
(e.g., in the case of computer games players cannot be looted, killed, etc. during the off time). All
other participants are not affected. On average, all users should be able to participate in the session
for a reasonable amount of time between off periods to ensure usability of the application. At the
same time, off periods should be distributed fairly among all participants.

Other examples of applications with non-adaptable flows are audio or video transmissions with
a fixed quality. There are two main reasons why it may not be possible to scale down a media
flow: either the user does not accept a lower quality, or the quality is already at the lowest possible
level. The second reason indicates that a congestion control mechanism for non-adaptable flows
can complement congestion control schemes that adapt the rate of a flow to the current network
conditions.

Most existing congestion control mechanisms, some of which were described in the last chapter,
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rely on adapting the send rate of the flow in question in some way. Either a congestion window is
used, as for TCP, or the rate is adapted to a TCP-friendly value in some other way, such as using a
TCP throughput model. By definition of non-adaptable flows, such mechanisms are not suitable for
these flows.

One mechanism that could be used with non-adaptable flows is reservation. As long as flows are able
to determine an upper bound to the required transmission rate at the time of reservation, they can
send at the rate determined by the application, provided there is enough free bandwidth. However,
with reservation, off periods may be distributed extremely unfairly, in that a flow is only off for
the time it needs to get its reservation request through, and can then continue to send for as long
as it chooses. The long wait times that may result from this may not be acceptable for most of
the applications mentioned above. The most important practical drawback of reservation is that in
today’s Internet, the router support required for this mechanism is not in wide usage.
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Chapter 4

PCC Protocol Overview

A congestion control scheme for non-adaptable flows cannot, by the very nature of these flows, in-
volve adapting their rate. A reservation scheme, on the other hand, would require global knowledge
and treat some flows unfairly.

The goal of our efforts was therefore to create a TCP-friendly congestion control scheme that is
applicable to non-adaptable flows while relying solely on local knowledge and exhibiting good
inter- and intra-protocol fairness.

In order to achieve this goal, the Probabilistic Congestion Control scheme (PCC) provides conges-
tion control not by reservation or by adapting the rate at which any single flow is sending, but by
turning flows on and off at appropriate times.

PCC is a rate-based, end-to-end congestion control scheme and does not require the support of
routers or other intermediate systems in the network. While the current implementation of PCC
is strictly receiver-based and for unicast use only, a sender-based implementation or an extension
for multicast use are also possible. We call a flow that uses PCC a PCC flow. Note that the only
extension PCC offers to an underlying protocol is congestion control. In particular, PCC does not
offer any reliability mechanisms.

They key idea of PCC is that - as long as there is a high level of statistical multiplexing - it is not
important that each single non-adaptable flow behaves TCP-friendly at any specific point in time.
What is important is that the aggregation of all non-adaptable flows on a given link behaves as if
the flows were TCP-friendly. More to the point, the sum of all traffic generated by PCC flows at
a given point in time should be approximately equal to the traffic the same number of TCP flows
would generate under the same circumstances. Due to the law of large numbers this can be achieved
if (a) each link is traversed by a sufficiently large number of independent PCC flows and if (b) each
PCC flow has an expected average rate which is TCP-friendly.

At a first glance (a) may be considered problematic because it is possible that a link is traversed
only by a small number of PCC flows. However, further reflection reveals that in this case the PCC
flows will only be significant in terms of network congestion if individual PCC flows occupy a high
percentage of the link’s bandwidth. We therefore relax (a) to the following condition (c): a single
PCC flow is expected to have a rate that is only a small fraction of the available bandwidth on any
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link that it crosses. Given the current development of available bandwidth in computer networks
this is a condition that is likely to hold true.

In the following section we will define the requirements that need to be fulfilled in order for PCC to
be applicable. The first one includes condition (c).

4.1 Requirements

There are a number of requirements that have to be fulfilled in order for PCC to be applicable:

R1: High level of statistical multiplexing. As it is usual for congestion control schemes, PCC
requires a high level of statistical multiplexing. Moreover, in order to satisfy condition (c)
from above, a single PCC flow is expected to have a rate that is only a small fraction of the
available bandwidth on any link that it crosses.

R2: User acceptance of congestion control.Users typically perceive congestion control for
adaptable flows as something bad and annoying, since it reduces the bandwidth that is avail-
able to them. The same holds true for non-adaptable flows, even more so, since the only way
to react to congestion is to turn some flows off for some time. For the overall acceptance of
PCC it is therefore important that the reason for this behavior is explained to the user in an
appropriate way.

R3: No synchronization of PCC flows at start-up.PCC flows should be started independent of
each other, no significant number of PCC flows may be synchronized at start-up time.

R4: The average rate of a PCC flow can be predicted.In order for PCC to work, it must
be possible to predict the average rate of a PCC flow with reasonable accuracy. There are
multiple ways how this can be done, ranging from using a constant bit rate flow where this
prediction is trivial to the use of application level knowledge or prediction based on past
bandwidth samples.

R5: The average rate of a TCP flow under the same conditions can be estimated.We expect
that there is a reasonably accurate method to estimate the average rate at which a TCP flow
would send under the same network conditions. This includes mechanisms to measure current
network conditions, such as the loss event rate1 and the round-trip time, as well as a method
to estimate TCP’s average rate under these conditions. However, it is important to notice that
PCC is independent of the method used to estimate the throughput of a TCP flow for a given
network situation.

The reasons for these requirements should become clear in the remainder of this chapter. Mean-
while, for the purpose of defining the PCC scheme, we assume that the requirements hold.

1The loss event rate is defined as the number of round-trip times in which at least one packet loss occurred divided
by the total number of packets sent in the same period. This is identical to the definition of the loss rate but for the fact
that multiple losses in one round-trip time are treated as a single loss. In this way the loss event rate behaves like the
congestion indication mechanism of TCP, where loss events (one or more packet losses in one round-trip time) rather
than losses are used to indicate congestion.
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4.2 Turning Flows Off

The initialization process of a PCC flow is very simple: the sender starts to send packets at the
rate determined by the application. The receiver then answers periodically with feedback control
packets, containing whatever information the methods used to estimate send rate and TCP-friendly
rate need. Periodic feedback takes place whenever the sender is transmitting.

In the receiver-based case, the control packets also contain the information whether the sender may
remain on or whether it is expected to turn itself off. In the sender-based case, this information is
generated by the sender and does not need to be transmitted.

The decision on whether to turn the flow off is made periodically. To this end, a random experiment
is performed everyTEXP seconds. If the result of the experiment is positive, the flow may remain
on up to at least the next experiment, otherwise it needs to be turned off for a period ofTOFF
seconds. After this period, the sender may again start transmitting packets. BothTEXP andTOFF
are parameters supplied by the application2.

The random experiment is performed by calculating a probability valuepON in [0;1] at which the
flow is allowed to remain on, then generating a random number RAND in (0;1] and comparing these
values. IfpON � RAND, the experiment fails and the flow needs to be turned off. The half open
interval (0;1] for RAND is used so that withpON = 0, the flow will always be turned off while with
pON = 1, it will always remain on. (Obviously therefore, ifpON is not in (0;1), the generation of a
random number is not necessary.)

In order to motivate our calculation ofpON , we will first assume the following conditions (the ideal
case):

C1: When a flow starts or is restarted after an off period, a good estimate for the TCP-friendly rate
rTCP is known instantly.

C2: An experiment periodTEXP equal toTOFF is used.

In the following three sections, we will first explore the ideal case, then see how our calculation of
pON is affected when the above conditions do not hold.

4.3 Experiments in the Ideal Case

As stated before, the goal of the PCC scheme is to ensure that the sum of all traffic generated by a
number of PCC flows is (approximately) equal to the traffic the same number of TCP flows would
generate under the same network circumstances.

This can be achieved when the average expected rate at which PCC flows send is equal to the average
rate a TCP flow would send at under the same circumstances, i.e. the TCP-friendly raterTCP . As

2User acceptance (requirement R2) is somewhat facilitated by the fact that off times are always known in advance.
Off time is either directly determined by the application parameterTOFF , or it is adjusted prior to turning the flow off,
as will be explained later on. In either case, the time until the flow is turned on again can be made known to the user, e.g.,
in the form of a count-down timer.



4.3 Experiments in the Ideal Case 13

pON is the probability that the flow may remain on up to the next experiment (i.e. within the next
TOFF ), this can be expressed as

pON � TOFF � rNA = TOFF � rTCP (4.1)

, pON � rNA = rTCP (4.2)

whererNA is the actual (average) send rate at which the average non-adaptable PCC flow is sending
when on.

Equation 4.2 gives the following value forpON :

pON =
rTCP
rNA

(4.3)

This equation forpON exhibits some noteworthy properties:

P1: For rNA > rTCP , the probability for the flow to remain on is< 1.

P2: For rNA = rTCP , pON is exactly 1.

P3: For rNA < rTCP , pON is> 1.

P4: pON is always� 0, asrNA andrTCP are always positive or zero (there is no such thing as a
“negative transmission rate” in our context)3.

Obviously, P1 is a property that needs to hold in all cases. If a flow is sending at a rate higher than
the TCP-friendly rate, there must be some probabilitypOFF = 1� pON that it will stop.

In the ideal case, the applicability of property P2 is also apparent. When a flow is sending at exactly
the TCP-friendly rate, it should not be required to stop. We will see that this will be somewhat
different in the non-ideal case.

As we see in property P3, Equation 4.3 does not always provide a value forpON in the range of
[0;1]. However, we can treat values greater than one as one, because a probability value greater than
one can mean nothing else than that the flow should not be required to stop, and this is already the
case forpON = 1. When a flow transmits at less than the TCP-friendly rate, it can by Equation 4.3
transmit all the time. That is already the optimum.

P4 is a property that makes things easy in the ideal case. We will see that this property also is not
ensured in the non-ideal case.

Up to this point we have been using average values forrNA and rTCP , thus global knowledge.
Some thought reveals however that it is possible to use only local knowledge instead.

4.3.1 The Use of Local Knowledge

As stated in requirement R5, we expect a reasonably accurate method to estimaterTCP . This
method will be based on (explicit or implicit) measurements of network conditions such as the loss
event rate and the round-trip time. When these measurements are based on local knowledge,rTCP

3pON is never calculated whenrNA is zero.
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will be over-estimated in some cases, while it will be under-estimated to the same extent in others.
Ultimately, this means that some PCC flows will be more likely to stop than they should be, while
others will be less likely to do so. Due to the high level of multiplexing (R1) and the law of large
numbers, the average rate of a PCC flow will closely approach the value that could be obtained with
the use of global knowledge.

The other part of the equation that is affected by the use of local knowledge only is the PCC flow’s
raterNA. While rNA may vary greatly between different flows carrying different types of non-
adaptable media, this has no effect on the average expected rate of each flow, which ispON � rNA =
rTCP for rNA � rTCP , and thus on the average amount of bandwidth taken up by the aggregation
of all PCC flows.

Using local values forrNA and the estimate ofrTCP , Equation 4.2 can be restated as

nX
i=1

piON � riNA =
nX
i=1

riTCP (4.4)

where n is the number of PCC flows.

Obviously, Equation 4.4 holds forpiON =
ri
TCP

ri
NA

.

This shows that global knowledge about network conditions (and thus about the average expected
TCP-friendly rate) is not necessary, though it would be useful if available. It is important to note
however, that global averages of the PCC flows’ send rate and their off and protected times should
not be used even if they were available. The result of using these global values would be a globally
uniform probability valuepON . While this, too, would ensure that n PCC flows do not use up more
than n times the TCP-friendly rate, this approach has important drawbacks:

� Using global averages would offset the less-than-TCP-friendly rate of some PCC flows against
too high rates by others. When in a network with n PCC flows and a number of TCP flows,
n
2 PCC flows choose to send very little for a while, the othern

2 PCC flows would be allowed
to send at almost twice the TCP-friendly rate. The bandwidth freed by a self-limited TCP
flow would however (through lower loss event rate and shorter round-trip time) benefit PCC
flows as well as TCP flows, because the TCP congestion control mechanism is based on local
knowledge only. When attempting to achieve TCP-like overall behavior, the bandwidth freed
by a flow sending at less than TCP-friendly rate should benefit all flows in the network to the
same extent. This is achieved by the sole use of local knowledge.

� Using global values would result in bad intra-protocol fairness: If all flows had the same
probability to stop at each experiment, flows sending at a lower rate while on would also have
a low average rate, while high-bandwidth flows could send at a higher than TCP-friendly
average rate. The penalty for sending at a high rate would not be borne by the high-bandwidth
flow alone, but shared across all PCC flows. Using local knowledge only on the other hand
results in each flow’s average expected rate being adjusted to the TCP-friendly rate.
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4.4 Experiments after Protected Time

4.4.1 Protected Time

Condition C1 stating that a good estimate ofrTCP is instantly available is of course not realistic in
all cases.

The current loss event rate and round-trip time are two network conditions that will always need to
be measured - explicitly or implicitly - for any sensible attempt to estimaterTCP . This is because
TCP itself relies heavily on the (implicit) measurement of these conditions.

Naturally, the loss event rate can only be measured when the flow is transmitting. When an ex-
periment is staged after the flow has already been transmitting for a sufficient time, the ongoing
measurement of network conditions will be able to instantly provide PCC with a good estimate.
When however the flow is only just starting or restarting after a period of being off, some time is
necessary to reliably take measurements and arrive at a good estimate forrTCP . It is not acceptable
at this point to base the estimate solely on past measurements taken before the flow was turned off,
as network conditions my have changed drastically in the meantime.

When measuring a network’s current loss event rateler, an average time of 1
2�ler�rNA

seconds passes
before the first loss event occurs and the first value for the measurement can be taken. One value
is however not enough to generate a reliable estimate, so a multiple of that time is necessary. The
average time that passes between two consecutive loss events is1

ler�rNA
.

For a reliable measurement of the round-trip timeRTT , some transmission of data and/or control
packets is also necessary. This usually takes less time than an estimate forler.

During the time it takes to arrive at a good estimate forrTCP , a random experiment to calculate
pON would be based on bad measurement values. Furthermore, if these measurements provoke a
strong under-estimation ofrTCP , the experiment may well result in a PCC flow stopping that would
not be required to stop in an experiment using a good estimate. This problem is not fully offset by
potential over-estimations, because these will often result inpON > 1, which is treated aspON = 1,
as explained above. Performing experiments with such bad measurement values would thus result
not only in unnecessary variation, but also in actual under-allocation of PCC bandwidth.

To obviate this problem, it is necessary to protect the PCC flow from being required to stop for the
time it takes to arrive at a good estimate. We call this time interval protected time (TPROT ). The
duration ofTPROT can vary, especially with the current loss event rate. We propose to protect the
(re-)starting PCC flow for a fixed number of loss events as well as for a fixed number of round-trip
times. Protected timeTPROT will thus be as long as the maximum of the timeTLER it takes to get
a reliable measurement for the loss event rate and the timeTRTT necessary for a good estimate of
the round-trip time:

TPROT = max(TLER; TRTT ) (4.5)

With network conditions typically experienced in today’s Internet,TPROT can be expected to be
in the range of a few seconds to half a minute. For some sample calculations ofTPROT , see Ap-
pendix A.
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It may be considered problematic to let a flow send instantly with its full rate forTPROT seconds,
since this essentially violates the idea of exploring the available bandwidth as it is done, e.g., by TCP
slowstart. However, requirements R1 (high level of statistical multiplexing) and R3 (no synchro-
nization at start up) prevent that this causes excessive congestion. In addition the value ofTPROT
will usually get smaller the more congested the network is, since loss events become more frequent
and therefore the estimate converges more quickly.

Also during protected time, the average rate of the non-adaptable flowrNA is calculated, e.g.,
using exponentially moving weighted averages, unless this rate is otherwise determined. Another
possibility to determinerNA is the use of application-level knowledge. In the trivial case of a
constant bit rate flow, no further action is necessary.

4.4.2 Making Up for Protected Time

If the same formula as in the ideal case were used to perform the random experiment after protected
time, the amount of data the flow already transmitted duringTPROT would not be accounted for,
leading to over-allocation of PCC bandwidth.

To account for that data, a different formula is used that meets the following requirement: The
expected average of the amount of data transmitted by any PCC flow in protected time and in the
TOFF interval afterwards (which is the interval this formula decides about) should be the same as
the amount of data transmitted by a TCP flow within the same time interval ofTPROT + TOFF :

TPROT � rNA + pON � TOFF � rNA = (TPROT + TOFF ) � rTCP (4.6)

This results in a different formula forpON to be used in the first experiment after protected time:

pON =
(TPROT + TOFF ) � rTCP � TPROT � rNA

TOFF � rNA
(4.7)

Note that in analogy to Equation 4.4 for the ideal case, we can use local values for all elements of
the formula.

With Equation 4.7, the average expected rate of a flow in the time spanningTPROT and the first
TOFF after that can be set to the TCP-friendly rate. With Equation 4.3, the same can be done for
any later intervalTOFF . As long as a smooth transition from the non-ideal phase to the ideal phase
can be assured (how this is achieved will be explained in a later section), this means that the average
expected rate of a flow within the time from the beginning of protected time up to the beginning of
the next protected time after the flow has been turned off is TCP-friendly. It then follows that the
flow’s average expected rate is TCP-friendly over the complete time it is active.

4.4.3 Handling Negative Protected Times

After solving Equation 4.7,pON can be in any one of the three following ranges:

� pON � 1: The non-adaptable flow consumes less or equal bandwidth than a TCP flow would
do under the same conditions. The flow should therefore stay on.
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� 0 � pON < 1: The non-adaptable flow consumes more bandwidth than a TCP flow would
do under the same conditions. The flow should be turned off with the probabilitypOFF =
1� pON .

� pON < 0: The non-adaptable flow transmitted more data duringTPROT than a TCP flow
would carry duringTPROT + TOFF .

The third range is specific to the non-ideal case. As noted above,pON cannot be negative in the
ideal case. When howeverpON is calculated to make up for the bandwidth used by the PCC flow
during protected time,pON can be negative if duringTPROT , the non-adaptable flow has already
transmitted more than a TCP flow would do duringTPROT + TOFF .

For the purpose of the random experiment,pON can only be treated as 0 (there is no negative
probability). However, the extra bandwidth the PCC flow used up still remains to be made up for.
Since the data transmission of the PCC flow duringTPROT cannot be undone, we need to find some
other way to do this.

The idea is to extend the timeTOFF the flow is required to stop to such an extent that re-calculating 4.7
with the resulting extended off timeTOFF;EXT gives the valuepON = 0, which is the one that is
effectively used in the random experiment:

0 =
(TPROT + TOFF;EXT ) � rTCP � TPROT � rNA

TOFF;EXT � rNA
(4.8)

or

TOFF;EXT =
TPROT � (rNA � rTCP )

rTCP
(4.9)

Note that this is the same as to say the off time is extended so that during protected time plus off
time, a TCP flow can transmit as much data as the PCC flow transmitted duringTPROT . This can
be easily shown by restating 4.9 as follows:

(TOFF;EXT + TPROT ) � rTCP = TPROT � rNA (4.10)

While there is the obvious need to adjustTOFF in the case ofpON < 0, such an adjustment is not
necessary, or indeed possible in the opposite case ofpON > 1. In that case, the flow does not stop,
therefore an adjustment ofTOFF could only take effect the next time the flow is required to stop.
At that point however, network conditions have changed,pON is again< 1, and the original value
for TOFF needs to be used.

It can be seen from Equation 4.10 that withpON < 0, the main requirement for PCC, that the
expected average amount of data transmitted by a PCC flow be equal to that of a TCP flow, holds
for time periodTPROT + TOFF;EXT .

After the calculation ofTOFF;EXT , TOFF can be adjusted to that value either temporarily or per-
manently:
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Temporary Adjustment of TOFF

Some applications using PCC may rely on being able to transmit at least some data after the preset
off time of TOFF in most cases. For these applications, a permanent adjustment ofTOFF to the
new value is not acceptable. Thus, to make up for the unfair amount of data the flow transmitted in
protected time, the off time immediately following the experiment that resulted inpON < 0 is set
to TOFF;EXT , while all further calculations are again based onTOFF .

This assumes thatTOFF only needs to be extended in rare exceptional cases. With 4.7 (also com-
pare 4.9), this means thatTOFF

TPROT
should be greater or equal torNA

rTCP
�1 in all but a few cases. If this

is not the case, the application will need to decide whether it will permanently adjustTOFF itself,
accept the extended off times when they occur, or, if neither is feasible, stop sending altogether.

Permanent Adjustment ofTOFF

Some applications on the other hand may not mind a permanent extension ofTOFF , but may expect
that parameter to remain as constant as possible. For this type of application,TOFF should be
adjusted to the new value ofTOFF;EXT , and this value should be used in further calculations, e.g.
of pON . If network conditions do not worsen after that,pON can be expected to always be� 0.

After permanently adjustingTOFF it is however advisable to monitor whetherpON would be< 0
again if the original value were used, and if this is not the case for a sufficient time, to revert back to
the original value. This avoids having short and rare periods of high congestion permanently change
TOFF from its preset, and thus desirable, setting.

It should be noted here that using different values forTOFF across different PCC flows does not
harm overall fairness, since every flow calculates a probability value appropriate to its off time.

4.4.4 Maximum Value for Protected Time

It can be seen from Equation 4.9 that without a limitation onTPROT , TOFF;EXT can also become
very large. This may not be desirable for some applications that expect to be able to transmit at least
some data at more or less regular intervals. Also, it has been noted that for applications adjusting
TOFF only temporarily onpON < 0, TOFF

TPROT
should in most cases be� rNA

RTCP
� 1. Finally, large

values forTPROT may not be desirable in terms of fairness as they make PCC less robust against
some amount of synchronization at start-up (R3).

Therefore, a limiting parameterTPROT;MAX may be be necessary that cuts off protected time even
if the preset number of loss events and round-trip times has not yet occurred. While this limit can
help to alleviate the above effects and allows the use of smaller values forTOFF , these positive
effects come at the cost of higher variance in the estimation ofrTCP , since there are fewer measure-
ments of the network condition available. As has been noted in Section 4.4.1, a higher variance can
also lead to under-allocation of PCC bandwidth. Therefore,TPROT;MAX should be chosen large
enough that in most cases, enough measurements are taken to arrive at an acceptable estimate of
rTCP .
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The minimum value forTPROT;MAX should be the number of round-trip times necessary to get a
meaningful measurement for that value. This is not normally a strong limitation on any application
(see Appendix A). However, there may well be the case that in protected time there occur no loss
events at all up to the end ofTPROT;MAX . This should be handled by settingrTCP to infinity,
which results inpON > 1, thus the flow can stay on. This method seems reasonable if the value for
TPROT;MAX has been chosen large enough to provide PCC with meaningful values in most cases,
since in that case, no loss event duringTPROT;MAX means that loss event rate is indeed low. Also,
if TPROT;MAX is chosen very small, the flow will mostly avoid experiments using the formula for
the non-ideal case, but the the amount of data transmitted inTPROT;MAX that this formula intends
to make up for is not very relevant. In addition, this amount of data is offset by the chance that there
is a loss event in that time period, a case that would lead to a strong over-estimation of the loss event
rate, which usually leads topON < 1.

4.5 Continuous Evaluation

If we could assume that the level of congestion stayed more or less constant, then the further behav-
ior of PCC would be fairly simple. AfterTOFF seconds a flow that is in the on state would have
to repeat the estimation and random experiment step. This time the parametersrNA, TPROT , and
rTCP can be monitored during the previousTOFF seconds, so we instantly have good measurement
values at the time of the experiment, and there is no need for a protected time period (TPROT = 0).
This is the ideal case, so Equation 4.3 can be used to calculatepON .

Unfortunately, in a real network the level of congestion is not constant and may change significantly
within a time frame much smaller thanTOFF . There are two cases to look at: the congestion
situation may improve (i.e. the rate that a TCP flow would have under the same conditions increases)
or the congestion situation may get worse.

The first case is not problematic since it does not endanger the overall performance of the network.
In this situation, PCC flows have been treated unfairly in that they have been turned off with a higher
probability than they should have been (in retrospect). However, afterTOFF they will be turned on
again and react to the new congestion situation (i.e. the likeliness that they will be turned off again
adapts to the new situation).

The second case is much more dangerous to the network. In order to prevent an unfair treatment of
competing TCP flows or even a congestion collapse, it is very important that PCC flows react fast
if the congestion situation becomes worse. Condition C2 (Section 4.2), thatTEXP = TOFF can
no longer be assumed. Instead, a smallerTEXP is used and PCC continuously calculates the value
for pON everyTEXP , using Equation 4.7 if the flow is still in the firstTOFF after the initialization
or Equation 4.3 if it is not. IfpON < 1, the random experiment is continued in the same way as
described above.

Obviously, it would not acceptable to simply re-calculatepON without accounting for the fact that
the flow could have been turned off during another experiment in the previousTOFF . This would
treat PCC flows in an unfair manner compared to TCP flows: for a value ofpON smaller than one
PCC would continue to perform the same random experiment again and again, even if the congestion
situation stayed constant. The probability of a flow being turned off within a time-frame ofTOFF
would increase from1 � pON to 1 � peON , with e being the number of experiments performed in



4.5 Continuous Evaluation 20

TOFF , TOFF
TEXP

. Remember that the calculation ofpON is based on the time periodTOFF .

In order to solve this problem, PCC modifies the valuerNA by taking into account all random
experiments that have been performed for the flow during the lastTOFF . The general idea is that
the modified value should represent the current expected average data rate of the flow. For this
purpose PCC maintains a setP of the probabilitiespiON 2 (0; 1] with which the flow stayed on
during the previousTOFF

TEXP
random experiments. The raterNA of the flow is then adjusted based on

this information. This adjusted rate is called effective rate (rEFF ). It is determined according to
Equation 4.11. IfP is empty thenrEFF is set torNA. For the continuous evaluation and random
experimentsrEFF replacesrNA in Equation 4.3.

rEFF =

(
rNA �

Q
pi
ON

2P pi forP 6= ;

rNA forP = ;
(4.11)

In Equation 4.7 for the non-ideal case,rEFF is not used to replace all appearances of the variable
rNA. Instead, only the variable describing the data rate duringTOFF , which appears in the denomi-
nator of 4.7 is adjusted. In the numerator, the original value forrNA is used, since this describes the
data rate duringTPROT , which is completely unaffected by any experiments. Thus, Equation 4.7 is
modified to Equation 4.12:

pON =
(TPROT + TOFF ) � rTCP � TPROT � rNA

TOFF � rEFF
(4.12)

A value forTEXP should be chosen by dividingTOFF by an integer. It is also possible to handle
values whereTOFF is not a multiple ofTEXP in this context, but this would introduce additional
mathematical complexity that is usually not necessary.

SincerEFF is the expected average rate of the PCC flow, and the formulas used to calculatepON
are designed to accomplish an expected average rate equal to the TCP-friendly rate (or slightly less,
taking into account the protected time, in the case of Equation 4.7),pON will be exactly one in all
further experiments until some values “drop out of”P , if network conditions and the flow’s rate do
not change. If conditions improve,pON will be greater than one, if they worsen, it will be less than
one. Only in the last case will a random value need to be generated and the flow possibly be turned
off.

By this method, the probabilitypON can be calculated based on the off periodTOFF , while being
re-calculated at a much higher frequency. The first is necessary becauseTOFF is the smallest
granularity of time a decision can be made about, and the second is essential for a good reaction of
PCC flows to increased congestion.

Some additional work is required to ensure a smooth transition from Equation 4.12 used in the
first TOFF after protected time to Equation 4.3 used subsequently. If network conditions remain
stable, every further experiment should result inpON = 1. This should also be the case if some
experiment in the continuous evaluation within the firstTOFF interval results in a probability value
in (0; 1). This value is calculated from Equation 4.12, which ensures that if no further network
changes occur, the following experiments using the same formula and the resultingrEFF will give
pON = 1. However, when,TOFF after the end of protected time, Equation 4.3 were used with the
values that were added toP before that transition, those (lower) values would result inpON > 1.
While it may be argued that this has no different effect from usingpON = 1 (the flow stays on), this
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is still not acceptable, because this means that for a slight increase in congestion, the probability to
remain on would still be greater or equal to one.

To solve this problem, during the transition, the values added toP during the firstTOFF interval
after protected time need to be re-calculated in such a way that they represent the values that would
have resulted from using Equation 4.3 instead of 4.12 during that time. Alternatively, a second
setP � can be used to calculate values with 4.3 in parallel.P would then be set toP � during the
transition.

The behavior of PCC using a second setP � is summarized in the finite state machine given in
Figure 4.1.
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Figure 4.1: The PCC Scheme as a Finite State Machine

4.6 Misbehaving Participant Issues

In order to explore the vulnerabilities of the PCC scheme to misbehaving participants, the four cases
of misbehaving senders or receivers in the sender- or receiver-based case shall be studied separately:

The two cases where the misbehaving participant is the one that has control over the congestion
control scheme are trivial: since the well-behaved participant has only a passive role in the scheme,
there is no way it can punish the other one for its behavior, or indeed even realize that it is misbe-
having.

The only way for a receiver in a sender-based scenario to misbehave to its advantage is to “fake”
information about the network condition, such as reporting fewer than the actual number of loss
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events. This is hard to detect unless the sender has additional information about the network condi-
tion from other sources.

In a receiver-based scenario, the most obvious way for a sender to misbehave is to ignore any
signals by the receiver to stop transmission. Such behavior is of course detected by the receiver,
which receives additional data when it expects to receive none.

Receiving data while the flow should be off is not necessarily a sign for the receiver that the sender
is misbehaving. Another reason this can happen is that the signal to stop has been lost. The receiver
should therefore repeat the signal in such a case.

Another thing the receiver can do in response to a sender that does not react to off signals is to simply
not accept data anymore, i.e. not to pass the excessive data on to the application. This would elim-
inate any profit the sender gets from misbehaving and thus the incentive to behave uncooperatively
(see [1]).

However, this approach is highly debatable, since it involves discarding some amounts of data that
have already got all the way through the network. Not only does the approach not benefit the
network situation directly (only indirectly through demotivation of further malicious activity), it
may also provoke a situation where this same data is re-transmitted, thus causing more network
load than without the approach. Also, it is important to note that the sender usually draws little
profit from transmitting more data, as it is the receiver that requests and ultimately uses the data.
Other methods using router support in order to discard excess data early in the network may be more
effective, though out of the scope of PCC.

Another way how a misbehaved sender can exploit PCC in order to send more than its fair share of
data is to split up one large flow into many smaller flows that send at a rate smaller than the TCP-
friendly rate and are thus not required to stop. This method assumes however, that the receiving
application is able to make use of the partial flows.

It should be noted at this point, that the possibilities of exploiting PCC described above are no more
and no less harmful than the possibilities of exploiting other protocols currently used in the Internet,
such as TCP. A misbehaved TCP-sender might choose not to decrease its send rate in response to
loss events, while a misbehaved TCP-recipient could make use of such mechanisms as implemented
in TCP Daytona [13].

4.7 Example of PCC Operation

A brief example, depicted in Figure 4.2, shall illustrate the operation of PCC in the receiver-based
case:

Given is a non-adaptable flowfNA. After TPROT = 3 seconds the receiver has determined an initial
estimation ofrNA = 100kbit=s andrTCP = 80kbit=s. The application developer decided that for
the given application a good value forTOFF is 60 seconds. With this information we are able to
derive the probabilitypON for keeping the flow in the on state from Equation 4.7.

Equation 4.7 yields the resultpON = 0:79 when the parameters from flowfNA are used. This is
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Figure 4.2: PCC Operation Example

reasonable considering thatrTCP is one fifth less thanrNA and there is a short protected time to
be made up for. Now a random number is drawn from the interval(0; 1] deciding whether the flow
will stay on or be turned off. Given that we have a high number of statistical multiplexing (R1) this
would result in roughly 1 out of 5 PCC flows being turned off, so that the remaining PCC flows use
a fair, TCP-friendly overall share of the bandwidth.

Let us assume that for the flow we are examining the random number is0:6. In this case the flow
will continue to be on.pON is saved as the first value in the setP , while p�ON = rTCP

rNA
= 0:8 is

inserted into a temporary setP �. Now consider the case that the congestion in the network increases
after a few seconds and that the receiver will now estimaterTCP to be only60kbit=s. In order to
calculate a newpON for this situation PCC uses Equation 4.12 withrEFF = 0:79�rNA = 79kbit=s.
This results in the new value forpON = 0:73. SincepON is now again in the interval(0; 1)
another random number is drawn to decide whether the flow should stay on or not. Let us assume
that the random number is0:4, so that the flow will stay on.pON is added to setP , making
rEFF = 0:79 � 0:73 � rNA = 58kbit=s. p�ON = rTCP

rEFF
= 60

0:8�100 = 0:75 is added toP �.

TOFF seconds after the initialpON has been calculated, that value times out and is removed from
the setP . For the same reason, the initialp�ON is removed fromP �, thenP � replacesP . The new
value forpON is calculated based on Equation 4.3 (usingrEFF instead ofrNA), because the flow is
no longer in the firstTOFF after its initialization.rEFF is calculated to be0:75 � rNA = 75kbit=s,
since0:75 is now the only value in setP . If the value forrTCP has not changed this results in a new
value forpON = 60

75 = 0:8, which is inserted intoP . This time0:9 is drawn as the random number
and therefore the flow is turned off forTOFF , before it will start again with a period of protected
time. At this point,rEFF has the value of0:75 � 0:8 � rNA = 60kbit=s.



24

Chapter 5

PCC Implementation for the Network
Simulator

Testing a new protocol directly in the real life Internet would involve not only extensive and complex
setups but also the considerable risk of severely damaging network conditions with errors in the
protocol and/or the protocol implementation. For this reason, the network simulator ns-2 [14] was
used to evaluate PCC fairness and throughput, and a special version of the protocol for that simulator
was implemented.

Besides avoiding damage to a real life network, protocol testing with a simulator has further ad-
vantages, including the ability to control the network environment, the lack of limitation on the
number of participating clients, and better comparability of results. The drawback is of course that
simulations can always model real-life conditions only to a certain extent.

The following section gives a brief overview of the ns-2 Network Simulator, before the further
sections go into details on the implementation of the protocol. For a more detailed version of the
overview, see [15].

5.1 The Network Simulator ns-2

The ns Network Simulator (current version ns-2) is an event driven simulator for computer networks
and network protocols. Since it is widely used in and contributed to by the research community, a
large number of network components are available for ns. Amongst others, ns supports the following
technologies:

� Point-to-point connections

� Different router discard strategies (DropTail, RED, etc.)

� IP

� Multicast
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� TCP, UDP, and several experimental transport protocols

� Applications (Telnet, FTP, WWW-like traffic, etc.)

� Network emulation (i.e. interaction of the network simulator with a “real” operating network
node)

The simulator framework uses a split-language programming approach. The simulator core, in-
cluding the actual protocol implementations, is written in C++, while the control structure and the
description of simulation scenarios is done in OTcl, an object oriented version of Tcl. This ap-
proach utilizes the flexibility advantages of a scripting language for scenario creation while taking
advantage of the better efficiency of compiled code where necessary.

Any useful ns scenario consists of the following components:

� The topology

� Communication Patterns

� Events

The topology is made up of nodes with queues and links between the nodes, and defines network
conditions such as the link bandwidth, delay, random losses, and queue sizes. Communication
Patterns determine what kinds of traffic are transmitted between the nodes. Common events are
starting and stopping a flow, or changing the random loss rate on a link.

A protocol implementation for ns mainly consists of two objects representing sender and receiver,
with methods deciding when to send what kinds of packets and how to react to incoming packets.

5.2 Major Design Choices

Rather than trying to re-invent the wheel, PCC uses existing mechanisms to measure loss event rate
and round-trip time, as well as to estimate the TCP-friendly rate from these measurements. We
chose to use the mechanisms provided by TFRC [5], mostly because a TFRC implementation is
available with ns-2, but also because of interesting possibilities for future extensions to PCC which
will be discussed in Chapter 8. The PCC implementation reuses some TFRC methods with few or
no changes, while other methods were largely rewritten.

An important design decision was to implement a receiver-based version of PCC. The general idea
is to let the receiver perform as many congestion control related tasks as possible, most prominently
the estimation of the TCP-friendly rate and the decision whether to turn a flow on or off. The main
reason for this design decision is that it simplifies a future extension of PCC to multicast.

In the process of implementation, the receiver-based version of PCC evolved in three steps: First,
the sender-based version of TFRC provided with ns-2 was rewritten into a receiver-based version,
dubbed RTFRC. Next, this version of TFRC was stripped of all functionality not required by PCC,
such as slowstart, resulting in a working, though in terms of congestion control useless basic proto-
col. Finally, PCC functionality was added to the basic protocol.
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Further design choices were:

Support for TPROT;MAX . Support for a maximum protected time application parameter is pro-
vided for the variety of reasons mentioned in Section 4.4.4. Most scenarios deployed in protocol
evaluation use a value ofTPROT;MAX = 30s, since it is well below the 60s used forTOFF and
high enough to become relevant in only a few cases for most network conditions. A designer of a
scenario who does not wish to use this parameter is free to set it to a value large enough never to
become relevant (e.g., a value larger than the number of seconds the scenario is scheduled to run).

Temporary adjustment of TOFF . We assume that for most applications using this protocol, the
exact value ofTOFF given as a system parameter is important. Therefore,TOFF is not adjusted
permanently whenpON is negative. Instead, the extended value is used only for the off time directly
succeeding the experiment in question. While a real life implementation should probably support
both types of adjustment, it can be expected that for purposes of evaluating protocol fairness and
throughput, both alternatives are largely equivalent.

Application knowledge of send rate.In order to avoid the added complexity of measuring the send
rate at the receiver, the use of application knowledge of that rate is assumed. This is straight-forward
for thens implementation, since the application and the protocol are integrated into the same ob-
jects. The send rate is determined by an application parameter at the sender that can be set from a
scenario script by ns events, and passed on to the receiver as control information. Furthermore, in
most test scenarios, this parameter is not changed, so that effectively a constant bit rate flow is used.

Avoiding phase effects.A highly deterministic model like the network simulator is prone to phase
effects that can seriously degrade the quality of test results. Therefore, a random element is used
to give some degree of variance to the otherwise constant send rate. The approach for this is taken
directly from the TFRC implementation.

5.3 PCC Control Mechanisms

PCC control mechanisms rely mainly on the transmission of control data from receiver to sender
and vice versa, and the utilization of various timers:

5.3.1 PCC Control Packets

As in TFRC, control packets are used by the receiver to pass information to the sender. In receiver-
based PCC, this information includes a timestamp used for round-trip time calculation and, most
importantly, the rate at which the sender is allowed to transmit packets. This rate is always either 0,
meaning the flow is off and the sender may not transmit any data, or infinity (represented by a very
large double), meaning the flow is on and the sender may transmit at any rate it chooses. While a
binary flag would be enough to carry this information, the double value used by TFRC was retained
in order to facilitate an integration of PCC and TFRC as described in Chapter 8.

Control packets by the receiver are transmitted at least once every round-trip time, if new packets
arrive in that time. If no packets arrive after a control packet has been sent, there is usually no new
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information to be sent. However, in order to take into account the possibility of losses on the path
to the sender, control packets are transmitted even when no new data arrives, but at a much lower
frequency. Control packets are not transmitted when the sender is a) supposed to be off and b) not
transmitting data. A control packet with rate = infinity turns a flow that was off on again.

To minimize the delay between the decision to turn the flow off and the actual stop of transmission,
control packets by the receiver are transmitted immediately when an experiment fails.

Control data going from the sender to the receiver is transmitted via header fields in every data
packet. This includes timestamp information for round-trip time calculation as well as the current
send rate (application level knowledge) and a sequence number used to detect packet loss.

Figure 5.1 visualizes the types of control data flowing between sender and receiver along with some
of the main tasks performed by the participants.

(data, reflected timestamp, sequence number)
data packets

receiver

sender

control packets
(flow state: on/off, timestamp)

− start / stop flow
− reflect timestamp

    on/off−probability calculation

− parameter measurements
− TCP−friendly rate and

− random experiment

Figure 5.1: Flow of PCC Control Data

5.3.2 PCC Timers

The PCC receiver uses timers to decide when to send the next control packet, when to stage the next
experiment, and when to turn a flow that was off back on:

Thecontrol packet timer is set to the current smoothed value of the round-trip time every time it
expires. The decision whether to actually send a control packet is done at every expiration. When
the flow is off, the control packet timer is not rescheduled, to save unnecessary overhead.

Theexperiment timer is set to the application parameterTEXP after every successful experiment.
After an unsuccessful experiment, the timer is only rescheduled after the experiment following the
protected time after the flow has been turned on again. The expiration of the experiment timer
invokes the next experiment.

Theoff timer is set to the application parameterTOFF after an unsuccessful experiment. When it
expires, the flow is turned back on by transmitting a corresponding control packet. Also, the control
packet timer is rescheduled to turn regular transmission of control packets back on.

The PCC sender uses timers to decide when to send the next data packet, and to react to the contin-
uous absence of expected control packets from the receiver:
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Thesend timer is set to the inter-packet gap defined as packet size divided by the desired send rate
whenever it expires. In addition, a random element is used that varies this gap by at most 50%1 in
order to avoid phase effects. When the timer expires, a data packet is sent. This method ensures an
approximate send rate of the desired value.

Theno feedback timeris set to the current smoothed round-trip time (which is part of the receiver’s
control data) multiplied by a constant (currently 24) whenever a new control packet provides feed-
back from the receiver. When the timer expires, the sender assumes extreme congestion in the
network or failure of the receiver and stops transmission. The no feedback timer is based on the
round-trip time, because the receiver intends to transmit one control data packet per round-trip time.
The constant is meant to secure the mechanism against sudden increases in round-trip time (not yet
reflected by the smoothed value) as well as the possibility of control data packet loss.

5.4 TFRC Mechanisms Used to Calculate the TCP-Friendly Rate

TFRC mechanisms are deployed by the PCC implementation for ns-2 to measure the round-trip
time, to measure the loss event rate, and to estimate the TCP-friendly rate from these measurements.
The full TFRC specification is available in [5]. The following subsections describe the mechanisms
as they are used by PCC:

5.4.1 Measuring the Round-Trip Time

The sender and receiver cooperate to measure the round-trip time using timestamps. Every control
packet by the receiver contains the time that packet was sent, and this timestamp is echoed by the
sender with every transmitted data packet. In addition, the data packets contain an offset giving
the time that passed from the moment the sender received the control packet until the data packet
containing the echo was sent.

The round-trip timeRTT is derived from the information in a data packet received at timetRCV as
RTT = tRCV � echo � offset. The receiver then smooths the measured round-trip time using
an exponentially weighted moving average (EWMA). The weight gives a trade-off between the
responsiveness to changes in round-trip time and the reliability of the measurement.

Note that by this method, the one half of each round-trip time measurement pertaining to the path
from receiver to sender remains constant for all measurements between two control packets, while
there is a new value each time for the opposite path. An alternative to this is to only use one
measurement per round-trip time. However, it seems reasonable to make use of the information the
other, semi-current values provide as well, and to use a correspondingly smaller EWMA weight.

1The maximum variance can be set by an application parameter.
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5.4.2 Measuring the Loss Event Rate

Loss events are used as an indicator of congestion rather than single losses since the same is true for
TCP, where an adaptation of the send rate to a lower value in response to packet loss is performed at
most once per round-trip time. See [5] for more discussion on this subject. Loss events are detected
through the use of sequence numbers in data packets. A loss event is caused by any number of
missing packets within one round-trip time.

A good method for measuring the loss event rate should respond quickly to an increase in the loss
event rate, while also showing an acceptable response to a decreasing rate. The Average Loss Inter-
val method used by TFRC and also employed by PCC was developed to meet these requirements.

The basic idea of this method is to count the number of packets between two loss events (the “loss
intervals”), then adding up a certain number of loss intervals using weights, and finally taking the
inverse value as the loss event rate. The number of loss interval samples used for the measurement
in PCC is an application parameter (NSAMP ).

“There is a clear trade-off between measuring the loss event rate over a short period of time and
responding rapidly to changes in the available bandwidth, versus measuring over a longer period of
time and getting a signal that is much less noisy” [5].

The weights used by the Average Loss Interval method are designed to result in a behavior that is
somewhere between that of the Dynamic History Window method (where every value has the same
weight, and no distinction is made between more and less current values) and that of the EWMA
method (where the weights effectively decrease from value to value). Equal weights are used for
the newestNSAMP

2 loss intervals, while the older intervals receive linearly decreasing weights. With
NSAMP = 8, weights would be 1 for the newest four intervals, then 0.8, 0.6, 0.4, and 0.2 for the
rest (see Figure 5.2). The average loss interval is arrived at by dividing the sum of the weighted
intervals by the sum of the weights, in this example by six. The main advantages of this method are

weight

packets / loss intervals

0.2

0.6

0.4

0.8

1.0

Figure 5.2: Weights Used in the Average Loss Interval Method

that the most recent interval is not over-emphasized and that the “use of a weighted average by the
Average Loss Interval method reduces sudden changes in the calculated rate that could result from
unrepresentative loss intervals leaving the set of loss intervals” [5].
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For a givenn = NSAMP , the average loss intervalŝ(1;n) is calculated as a weighted average of the
lastn intervalssi as given in [5]:

ŝ(1;n) =

Pn
i=1 wisiPn
i=1wi

(5.1)

for weightswi:
wi = 1; 1 � i � n=2 (5.2)

and

wi = 1�
i� n=2

n=2 + 1
; n=2 � i � n (5.3)

An important note here is that this method also allows for calculating an average loss interval when
fewer thanNSAMP intervals are available. In this case, the weights remain the same, but both sums
in the fraction in 5.1 run only up to the number of available values. This possibility is important for
PCC, where the application parameter giving the number of loss events expected for protected time
is usually smaller thanNSAMP in order to keep protected time as short as necessary, and this option
is in fact implemented in both PCC and TFRC.

The interval since the last loss events0 is dealt with in this context by only including it in the
calculation if it is large enough so that this will increase the average. Optionally, whens0 grows to
more than twice the average loss interval,history discountingcan be used for a faster response to
the decrease in congestion responsible for this size ofs0. For more discussion on this subject, see
[5]. History discountingis described in detail in [16].

5.4.3 Estimating the TCP-Friendly Rate

Whether the goal of a congestion control scheme is the TCP-friendly behavior of each single flow
(as in TFRC) or of an aggregation of flows (as in PCC), a good estimation of the bandwidth a
conformant TCP flow would use under comparable conditions is required. The designers of TFRC
elected to use the TCP response function from Padhye et. al. [7] for this purpose:

rTCP =
s

RTT
q

2p
3 +RTOmin(1; 3

q
3p
8 )p(1 + 32p2)

(5.4)

This gives the average send rate of a conformant TCP flow in bytes/sec, assuming no limitation by
the advertised window and a bulk data transfer, with packet sizes, round-trip timeRTT , steady-
state loss event ratep, and the TCP retransmit timeoutRTO. For simplicity, TFRC and PCC set
RTO to 4 � RTT . This has proven to be sufficiently accurate in practice (compare [5]).

Equation 5.4 models a TCP flow that does not use delayed ACKs. A further parameterb, giving the
number of packets that are acknowledged by a received ACK, is used in [5] to adapt the equation
to other TCP versions that do use this mechanism. In heterogeneous networks where a relevant
number of different versions of TCP coexist, a good average needs to be chosen forb. How this
average can be arrived at is out of the scope of this work.

Note that withRTO = 4 �RTT , rTCP is inversely proportional to the round-trip time. Also,rTCP
decreases with increasing loss event ratep.

Since the requirements for a TCP-friendly rate estimator are similar in PCC and TFRC, PCC also
uses response function 5.4 to estimate the TCP-friendly rate.
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5.5 Activity Diagram for the Design of a PCC Receiver

The following UML activity diagram illustrates the flow of control within a PCC receiver, starting
with the initialization of the receiver and ending when the sender closes the connection2. Since the
chosen design is receiver-based, the sender side is much less interesting and therefore not presented
in a diagram.

For better clarity, Boolean variables are used in the diagram, while these are, due to the lack of a
Boolean type in C++, implemented as integers.

update loss event measurement
increment protected_losses

estimate TCP−friendly rate and perform experiment

send control packet (rate = inf)

��
��
��
��

�
�
�
�

[initialization]

[new loss event]

set on = true
protect = true

protected_losses = 0
protected_rtts = 0

update RTT measurement
increment protected_rtts

[no new loss event]

[protected_losses < protLossEvents
 || protected_rtts < protRTTs]

[experiment successful]

[experiment failed]

protected_time = now

[ReExpTimer expired]

set on = false

start OffTimer
send control packet (rate = 0)

[OffTimer expired]

[protected_losses >= protLossEvents

[sender closes connection]

 && protected_rtts >= protRTTs]

end protected time: protect = false
set protected_time = now−protected_time

receive packets
send control packets (rate = inf)

[incoming packets from sender]

start ReExperimentTimer
update P
receive packets
update measurements

(rate = inf)
send control packets

[sender closes connection]

Figure 5.3: UML Activity Diagram of a PCC Receiver

2Receiver-initiated open and close of connection is not presented since this is out of the scope of the PCC congestion
control protocol
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Chapter 6

Simulation Results

The network simulator ns-2 has been used to simulate PCC flows competing with TCP traffic across
a wide variety of network conditions. Most simulations showed very good results in terms of fair-
ness and throughput. However, the simulations also proved very helpful for detecting some weak-
nesses of the PCC implementation connected with the use of the TFRC mechanisms for estimating
the fair rate.

6.1 Simulation Settings

Table 6.1 gives the PCC and network settings used in the standard scenario. The standard scenario
is meant to simulate an average PCC-based application in a stable network with a single bottleneck
link exhibiting the bandwidth and round-trip time of a common Internet connection. Figure 6.1
shows the “dumbbell” topology that was used for all scenarios, with two PCC and two PCC senders
and receivers1.

Sender 1
(PCC)

Receiver 1
(PCC)

Router
2

Sender 2
(PCC)

Sender 3
(TCP)

Sender 4
(TCP)

Router
1

(PCC)
Receiver 2

Receiver 3
(TCP)

Receiver 4
(TCP)

bottleneck link

Figure 6.1: Dumbbell Topology for Simulations

All scenarios compare PCC flows with a fixed application send rate to TCP flows performing bulk

1In order to achieve a high level of statistical multiplexing (R1), the standard scenario uses 50 senders and receivers
each
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parameter value

rNA 32 packets/s
PCC Packet Size 1000 bytes
TCP Packet Size 1000 bytes
PCC Control Packet Size 40 bytes
RTT EWMA Weight 0.2
NSAMP 24
History Discounting used
RTTs for Protected Time 5
Loss Events for Protected Time 3
TPROT;MAX 30 seconds
TOFF 60 seconds
TEXP 2 seconds
Simulation Run-Time 1800 seconds

Number of PCC flows 50
Number of TCP flows 50
Bottleneck Bandwidth 25600 kbit/s
tRTT 100 ms
Router Discard Strategy DropTail
Random Packet Loss none

Table 6.1: PCC and Network Parameters Used in the Standard Scenario

data FTP transfers. With bulk data transfers, TCP send rate is limited only by network conditions,
and not by the application. Note that the same is true for the effective send rate of a PCC flow, if
rNA � rTCP .

In the following sections of this chapter, the term “simulation” will be used as describing a single
run of the network simulator providing one fairness result. The term “simulation set” shall refer to
a set of simulations using the same scenario but varying one or more parameters, resulting in a plot
of fairness values. Also, in order to achieve good averages in the face of random effects and other
variance, three simulations were usually staged per parameter value (or combination of parameter
values) in a simulation set. The values displayed in the plot are the averages of the three simulations.
In addition, to provide some information about variance, the three single simulation results were in
most cases added to the plot. While fairness is the most prominent characteristic investigated, a
number of other attributes such as throughput were measured and plotted.

6.1.1 Example of a Single Simulation

The following figure shows an exemplary simulation using a PCC application send rate of 48 pack-
ets/s and otherwise the parameters given above. Plotted is the throughput over time of a single PCC
flow and of a single TCP flow. In addition, the average throughput and a line signifying the fair
share for each class of flows is displayed. Throughput values are averaged over 10 seconds.

In this example, the PCC flow is turned off ten times; the third time it is turned off immediately
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Figure 6.2: Throughput Over Time of a PCC and a TCP Flow

after protected time. Since in this example PCC and TCP throughput both oscillate around 50%, the
fairness value in terms of PCC share of bandwidth resulting from this simulation is approximately
50%. For each of the simulation sets described below, three such simulations were run per parameter
combination for in order to achieve reliable values.

6.2 Metrics for Fairness and Throughput

The goal of the simulations was to see how PCC behaves in terms of fairness and throughput when
confronted with a variety of network conditions. We use the following metrics for measuring these
characteristics:

6.2.1 Metrics for Fairness

An aggregation of flows is deemed fair to the same number of parallel TCP flows if both use the
same amount of bandwidth. As there are only PCC and TCP flows in the network in our scenarios
and most use an equal number of PCC and TCP flows, fairness in those scenarios is optimal if PCC
gets exactly 50 percent of the bandwidth that is actually in use, as measured in the sum of packets
received by all PCC receivers divided by the sum of packets received by all PCC and TCP receivers
over the course of the simulation.

For scenarios with the number of PCC flowsNPCC equal to the number of TCP flowsNTCP ,
ThpPCC

ThpPCC+ThpTCP
(with ThpX being the aggregate throughput of all flows using protocol X) would

therefore be an intuitive fairness metric, where 50 percent means completely fair,> 50% means
PCC is overly aggressive, and< 50% means PCC is not aggressive enough. We call this metric the
“share of bandwidth”.

While this metric is very intuitive for scenarios where the same number of PCC and TCP flows
is used, it is less useful in cases where the number of PCC and TCP flows is different, or indeed
varying, as in this case a bandwidth share of 25 percent may well be the fair share. To accommodate
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these cases, the metric is normed using the average per-flow throughput of TCP and PCC:

PCC share of bandwidth =

ThpPCC
NPCC

ThpPCC
NPCC

+ ThpTCP
NTCP

(6.1)

With this normed metric, PCC is fair at 50%, regardless of the relative numbers of PCC and TCP
flows.

We chose to use this metric because it is intuitive for most of the simulation sets that were performed.
Another advantage is that where the metric shows some degree of unfairness, the degree shown is
meaningful. For example, a PCCshare of bandwidthof 10% means that PCC receives only one
fifth of the share it should, while a share of 60% means PCC is more aggressive than it should be.

In the following sections, the term “fairness” will be used synonymously with “share of bandwidth”.

While theshare of bandwidthis very intuitive in showing the relative fairness of an aggregation of
PCC flows compared to an aggregation of TCP flows, it says nothing about the fairness of one PCC
flow to another. This so-calledintra-protocol fairnessis interesting, since it may not be desirable to
have many PCC flows receive very little bandwidth over the course of the simulation while others
send at the full rate most of the time.

In order to measure intra-protocol fairness, we chose to use thefairness indexproposed by Jain,
Chiu, and Hawe [17]:

fA(x) =
(
P

xi)
2

n �
P

x2i
(6.2)

wherex is a set of valuesxi, in our case a set of single flow throughput values over the course of a
simulation.

Thefairness indexyields continuous values in(0; 1] independently of the number of values inx and
of the measurement unit. Other metrics, such as theCoefficient of Variationand theMin-Max Ratio
have been studied in [17], but all lack at least one of these properties.

A drawback of thefairness indexis some lack of intuitiveness due to the fact that relatively large
values can be achieved with a relatively low degree of fairness. A number of flows with a throughput
of zero and the same number of flows sending at full rate would for example still achieve afairness
indexof 0.5, and some half-rate flows pitched against the same number of full-rate flows would get
a fairness indexas high as 0.9. Therefore, only values above 0.9 should be considered as showing
good fairness.

Thefairness indexwas also used to measure fairness across PCC and TCP flows, though this is less
meaningful, as it aggregates the effects of PCC and TCP intra-protocol fairness as well as that of
PCC fairness towards TCP.

6.2.2 Metrics for Throughput

To measure the average throughput of PCC and TCP flows as well as the average throughput of all
flows in a way that makes it easy to compare results gained from different simulation sets, a metric
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giving relative values was employed. In addition, the absolute average throughput of all flows was
measured.

Relative Throughput. The average relative throughput of PCC flows, TCP flows or all flows is
measured as the average number of packets actually transmitted in one second by all respective
flows divided by the number of packets that would be transmitted by the same number of flows at
exactly the fair rate. The fair rate is defined as the total bottleneck link bandwidth divided by the
number of all active2 flows. The resulting value is multiplied by 100 to give the throughput as a
percentage of the fair bandwidth.

Absolute Throughput. The average absolute throughput of all PCC and TCP flows is measured
simply as the average number of packets actually transmitted in one second divided by the number
of flows.

6.3 Correspondence of Fairness with TCP-Friendly Rate Estimation

An obvious simulation set to stage is to take the setup presented at the beginning of the chapter and
to vary the send rate of all PCC flows, testing PCC behavior at rates below the fair rate as well as
rates above the fair rate. The expected fairness result of this simulation set is shown in Figure 6.3.
Sending at a lower than fair rate, PCC should not be required to turn any flows off, and TCP, due to
its property of quickly searching out free bandwidth, should send at an accordingly higher rate. If
for example all PCC flows send at three quarters of the fair rate, an equal number of TCP flows can
send at114 times the fair rate, whereby the PCCshare of bandwidthshould be 0:75

0:75+1:25 = 0:375.
Sending at the fair rate or a higher rate, PCC should receive exactly 50% of the bandwidth.
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Figure 6.3: Expected Fairness when Varying Send Rate

While Figure 6.3 shows the expected fairness, the actual values can differ considerably due to ran-
dom effects, even if the protocol implementation were working perfectly. Since the main goal of
any effort in congestion control is to prevent congestion collapse, bandwidth shares in the range
from 30% to 70% can be considered acceptable. This is also the range that other efforts such as

2A PCC flow is called active when it is transmitting data, but also when it is temporarily in the off state. The same
holds for a TCP flow currently performing exponential back-off after a timeout.
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TFRC have achieved. However, any clear tendencies revealed in a simulation set plot, especially
one that uses averages over a number of similar simulations, need to be studied carefully as they are
likely to be caused by some other effects than randomness.

Figure 6.4 shows the actual results of this simulation set superimposed on the optimum line from
Figure 6.3. In addition to the average, the three single simulation results are displayed as the lines
tagged i) through iii). While the actual fairness values correspond well to the expectations and
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Figure 6.5: Estimated TCP-Friendly Rate when
Varying Send Rate

all values from the fair rate onwards remain within the acceptable range, some other properties of
Figure 6.4 point to potential problems:

� All single simulations have a fairness below 50% for the fair rate.

� The PCC share of bandwidth has a very clear tendency of increasing above 50% with an
increasing application send rate.

These problems were in fact confirmed in most other simulation sets. They will be discussed in
detail in the following two sections.

Another property of PCC that has been widely confirmed by other simulation sets can be seen when
comparing Figures 6.4 and 6.5. The development of fairness values corresponds very closely to that
of the average TCP-friendly rate estimate, normed to a percentage of the fair rate in Figure 6.5.

This property indicates a crucial point: The core PCC mechanism, which is responsible for adapting
the average expected send rate to the estimated TCP-friendly rate by turning flows on and off appears
to be working very well, while the estimation of the TCP-friendly rate used in the implementation
seems problematic. The following sections will in fact point to possible causes of the problems seen
in Figure 6.4 that are connected with the estimation of the TCP-friendly rate, more to the point, with
the measurement of the loss event rate necessary for the estimation. It should also become clear why
these mechanisms work well in TFRC and less well when used in the PCC context.

The attentive reader may have noticed that the correspondence of Figures 6.4 and 6.5, while apparent
in tendency, is not so close in value. With the PCC mechanism working well, it should be expected
that an estimate of above 100% would yield a fairness of above 50%, which is not the case e.g. for
the fair rate of 32 packets/s. However, this upward shift in the estimate curve should be attributable
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to the fact that PCC flows are more likely to be turned off when they encounter low TCP-friendly
rate estimates. Therefore, flows temporarily under-estimating that rate will be turned off sooner,
thereby producing fewer estimates, while flows temporarily over-estimating the rate will remain on
and produce more estimates. For the measurement of the average TCP-friendly rate estimate, all
single estimates of all flows are averaged, more of which come from flows with mostly higher than
average estimates.

6.4 Effect of Variation in Loss Event Rate Measurement on PCC Flows

In a dynamic network, there is a certain degree of variation to most network parameters, most
notably to the loss event rate. This is enhanced by the presence of TCP flows exhibiting TCP’s
well-known saw-tooth behavior. Only to some degree can this variation be compensated by a larger
measurement interval (i.e. a larger number of samples), since a very large interval would base the
measurement too much on old values that have little significance for the current network situation.

It is therefore inevitable that the loss event rate is at times over-, at other times under-estimated. In
simulations even with a relatively stable network environment, this variation has commonly shown
to be in the range of up to +/-40%.

The formula from [7] that is used by the current PCC implementation to estimate the TCP-friendly
raterTCP is based on the measurement of the loss event rate and the round-trip time. Therefore,
there will be a considerable amount of variation in this estimation and thereby in the probability
valuepON as well, even if it is assumed that the average round-trip time can be estimated well (an
assumption that is supported by most simulation results).

As long as all estimations ofpON are smaller than one, variation does not pose a problem. The
statistical likelihood is that over a sufficient amount of time and/or with sufficient multiplexing,
the effects of over- and under-estimations will cancel each other out. While some flows stop when
they would not need to, other flows will remain on when they would normally be required to stop.
Therefore, variation does not pose a problem in situations where the effective PCC send raterEFF
is considerably higher than the fair rate. Note however that during continuous evaluation,rEFF
is usually close to the fair rate unless network conditions change or significant values are removed
from setP .

Variation also does not pose a problem in situations whererEFF is considerably lower than the fair
rate. Here, all estimations ofpON are larger than one, and no flow is required to stop.

A problem arises in situations whererEFF is close to the fair rate. Consider the case ofrEFF =
actualrTCP . Here, an under-estimation ofrTCP will lead topON < 1, so that there is some chance
that the flow has to stop, whereas an over-estimation ofrTCP will increasepON to a value> 1,
which merely has the same effect aspON = 1, that is the flow can remain on. This effect is present
not only in the case ofrEFF = fair rate, but in any case where variation can cause some estimates
to be< 1 and others> 1, though it has the strongest impact on fairness in that case. The upshot
of this effect is that in these cases, PCC uses less than its fair share of bandwidth. This lack of
aggressiveness at a send rate close to the fair rate can be observed well in Figure 6.4.

The existence of this effect is further evidenced by the following simulation set, wherein the number
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of loss event samples is varied from 4 to 32 for PCC flows sending at exactly the fair rate. Obviously,
with fewer samples, the variance in the loss event measurement and therefore the variance in the
TCP-friendly rate estimate is higher, so the effect should be more visible. This can indeed be seen
in Figure 6.6.
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Figure 6.6: Fairness when Varying the Number of Loss Event Samples

The effect described in this section does not apply to the TFRC protocol, since it is a direct result
of PCC treating probabilities> 1 as one, and TFRC does not use any probabilities. TFRC over-
estimatesrTCP and thereby the rate a TFRC sender is allowed to send at to the same amount that
it under-estimates that rate at other times. However, the effect is still caused by the measurement
mechanism used for the loss event rate. If there was a mechanism at the disposal of a PCC imple-
mentation that always yielded the correct average loss event rate of the network, this effect would
not persist. Due to the limited amount of measurement data that is available locally though, such
a mechanism would probably need to involve global knowledge. It is very likely that it is better to
either accept this (comparatively slight) effect or to work out a way to heuristically increasepON
when the send rate is close to the fair rate, than to put up with the problems a global knowledge
approach would pose.

6.5 Problems of TCP-Friendly Rate Estimation Based on the Loss
Event Rate

The problem of a share of bandwidth increasing with the application send rate that was noticed in the
simulation set described in Section 6.3 corresponds to increasing TCP-friendly rate measurements,
which are in turn caused by a decrease in the loss event rate measured by the PCC flows. This can
be seen by comparing Figures 6.4 and 6.5 with Figure 6.7. Notice that the loss event rate decreases
with increasing send rate, whereas the loss rate actually goes up. While the increase in loss rate
follows from the increased aggressiveness of the aggregation of PCC flows, as expressed by the
share of bandwidth, the reasons for the decrease in loss event rate, which is clearly the cause of that
aggressiveness, are more complex.

A PCC flow sending constantly at the fair rate is (apart from the effect described in Section 6.4)
not required to stop, so it behaves like a normal constant bit rate flow. With the premise of random
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packet lossp (with very high multiplexing, packet loss in real-life networks is indeed close to
random), the expected loss event ratelEXP that such a flow experiences is given in [18] as

lEXP = N � (
1� (1 � p)

TSIM �rNA

N

TSIM � rNA
) (6.3)

whereTSIM is the run-time of the simulation andN the number of round-trip times in the simula-
tion.

A PCC flow sending at a higher than fair rate is occasionally required to temporarily stop sending,
while it is allowed to send at that higher rate otherwise, effectively transmitting the same overall
number of packets as a flow sending at the fair rate. A higher send rate means that more packets are
transmitted per round-trip time. No packets are transmitted in the round-trip times during off times,
so fewer round-trip times are needed to transmit the same number of packets as in the fair rate case.

Obviously, when more packets are transmitted in a single round-trip time, the statistical likelihood
of multiple losses in one round-trip time increases. By definition of the loss event rate, multiple
losses in a single round-trip time are treated as a single loss event. Therefore, with the same number
of losses as in the fair case, the number of loss events can be expected to be smaller. Figure 6.8
shows a plot of Equation 6.3 withTSIM � rNA = the overall number of packets sent being constant,
and varying the number of round-trip timesN3 caused by the varying send rate (in addition, the
network situation from the simulation set resulting in Figure 6.7 is assumed; in particular, the loss
rate is set to 1%).

The discrepancy between the very slight decrease of the expected loss event rate and the compara-
tively strong decrease in the simulation (even in the face of an increase in loss rate) is attributable to
the limited amount of multiplexing in the simulation, which causes packet loss to be correlated to a
significant extent. Correlation intensifies the noted effect, since loss bursts are likely to account for
fewer loss events if the number of packets transmitted in one round-trip time is large.

So the situation is this: a higher send rate results in a lower loss event rate measurement, which

3Only “active” round-trip times where at least one packet is transmitted are counted, since no losses can occur in
others.
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in turn causes a higher TCP-friendly rate estimate and therefore increasing aggressiveness of the
PCC flow. Note that if a substantial amount of bandwidth is at any time taken up by PCC flows,
the observed mathematical effect is dimmed by the increase in loss rate that this aggressiveness
causes. This is the case when an overly aggressive behavior of PCC would be most dangerous to
the network in terms of congestion collapse. Another hopeful sign for the deployment of PCC in
real-life networks comes from Figure 6.8, which shows that the effect described in this section is
much slighter when packet loss is closer to random. This assumption is supported by simulation
sets performed with varying degrees of multiplexing.

However, with some correlation and at very high PCC send rates, the effect of a lower loss event rate
can cause PCC flows to behave unfairly to a significant amount. Figure 6.9 shows that PCC flows
at high send rates use up to 80% of the bandwidth, considerably discriminating TCP flows. On the
other hand, it must be said that the send rates used in 6.9 are extreme cases that would not be used
in any sensible PCC-based applications. A send rate of more than five times the TCP-friendly rate
results in a PCC flow being off on average four fifths of the time, the remaining fifth being largely
used for short periods of protected time. Hardly any application is conceivable that would profit
from such behavior. In the range of up to three times the TCP-friendly rate, which can be seen as
the maximum reasonable PCC send rate, PCC share of bandwidth is still good.
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Figure 6.9: Fairness when Varying Send Rate up to 25 Times the Fair Rate

The question arises why PCC share of bandwidth is not larger than 50% already at slightly above
the fair rate, even when disregarding the effect described in Section 6.4. The answer is of course that
TCP flows also exhibit varying send rates, sending more than average packets in some round-trip
times, while sending fewer or even none at all (during exponential back-off) in others. Therefore,
the loss event rate experienced by TCP flows is also lower than the expected loss event rate given
in 6.8, which assumes a constant bit-rate (CBR) flow. Sending at around the TCP-friendly rate,
therefore rarely stopping transmission, PCC flows send more evenly than TCP flows. With a more
even send rate, PCC flows measure a loss event rate that is closer to the value expected for CBR
flows and therefore higher than that of TCP flows. Therefore, PCC under-estimates the TCP-friendly
rate and behaves slightly too passively. This goes a long way in explaining the difference of 5% to
the optimum value in Figure 6.6 even when a large number of loss event samples is used.

An interesting side note is that since the mechanism used to measure loss event rate in PCC is
taken from TFRC, it is not unlikely that TFRC too suffers from this problem. In fact, since TFRC
was designed to achieve a smoother send rate than TCP, it is quite likely that loss event rate is
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over-estimated, much in the same way as it is for a PCC flow sending at near-TCP-friendly rate.
However, the fundamental difference in approach that makes each single TFRC flow adapt its send
rate to the TCP-friendly estimate lets this over-estimation of the loss event rate remain at more or
less the same, relatively low percentage in all situations. A TFRC flow can never send at many times
the fair rate in the way a PCC flow can (while on). Still, J¨org Widmer of the TFRC development
team agrees that it might be interesting to run a series of tests to see if this is indeed an effect visible
in TFRC.

6.5.1 A Quick and Dirty Solution

We implemented the following adjustment mechanism to alleviate the problem of PCC aggressive-
ness increasing with application send rate. It is based on the assumption of random packet loss and
uses Formula 6.3 for the expected average loss event rate given in [18].

//compute TCP-friendly rate
tcprate = p_to_b(loss, rtt_, 4*rtt_, psize_, bval_);
if (adjust_rate) { //rate adjustment optional for application

//use model from Ramesh and Rhee 1999 to compute expected loss
//event rate using (erroneous) TCP-friendly rate as sendrate
loss = (1 - pow((1-lossrate),(int)(rtt_*tcprate/psize_)))

/ (rtt_*tcprate/psize_);
//re-compute TCP-friendly rate with this loss event rate estimate
tcprate = p_to_b(loss, rtt_, 4*rtt_, psize_, bval_);

}

The idea is to use the estimate for the TCP-friendly rate that is based on the erroneous loss event
rate measurement (but still relatively close to the actual value) to compute the average loss event
rate expected for an application sending at that estimated rate, then to use this value to re-compute
the TCP-friendly rate. This process could be repeated to achieve more exact results, but a number
of numerical examples have shown that that would achieve little additional precision.

The mechanism has shown to be successful in a small simulation set that induced actual random loss
by using an error model provided by ns-2, while setting bandwidth and queue sizes large enough to
ensure that no significant number of possibly correlated losses occur due to packets being dropped
from queues. A comparison of this simulation set using the mechanism in one case and not using
it in the other is shown in Figure 6.10. On the other hand, when used in a scenario with a large
number of correlated losses, the method naturally performs very badly. Since correlated losses lead
to loss event rates that are considerably lower than the one expected with random loss, the high loss
event rate computed by our mechanism heavily discriminates PCC flows (see Figure 6.11).

Therefore, this method can only be recommended if (close to) random loss can be assumed for a
given network. Further work will be necessary to find a way to adjust the measured loss event rate
taking into account correlated losses.
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6.6 PCC Throughput

Since the share of bandwidth is defined on the average throughput of PCC and TCP flows, the
throughput of PCC flows is similar to that of competing TCP flows when the share of bandwidth is
50%. Packet loss rates in a scenario with correlated losses have shown to be slightly higher for PCC
flows than for TCP flows.

Another thing is how PCC behaves in terms of throughput in a scenario where the bottleneck link
is shared by PCC flows only. In the optimal case, the average absolute throughput should be close
to the fair rate independently of the application send rate. What we find however in the simulation
set displayed in Figure 6.12 is that while throughput is optimal up to the fair send rate, it decreases
notably with higher rates.
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Figure 6.12: Absolute Throughput of an Average PCC Flow when Varying Application Send Rate

It is no surprise that throughput is optimal (all flows can continually transmit at their application
send rate) up to the fair rate. While at fair rate there are some losses caused by slight variations
in send rate, the number of resulting loss events is too small to ever yield a TCP-friendly rate low
enough to cause the flow to stop.
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On the other hand, at higher send rates, some loss is unavoidable, since this is the only valid local
indicator of congestion available to the congestion control mechanism. The decrease of throughput
with increasing send rate may be explained by the statistical likelihood that more than the fair
number of flows are occasionally transmitting data. Such situations lead to high loss, which is not
fully offset by situations where fewer than the fair number of flows are transmitting. This effect
gets worse with increasing send rate, since loss in such situations becomes more drastic. Also,
high loss rates result in higher probabilities to stop, so situations where fewer than fair PCC flows
are transmitting may become more frequent. There may be a feedback problem here, since a large
number of flows being turned off at high congestion would again cause high congestion if all re-
started after the sameTOFF . A possible solution to this could be the introduction of a random
element in the determination of the time a flow should remain off.

Note again however that even in this extreme scenario, the behavior of PCC with send rates in the
range of up to three times the fair rate is still acceptable.

The above observations are supported by the following 3D plots of a simulation set varying the
number of PCC flows and the number of TCP flows. The plots of the relative (for better comparison)
PCC throughput also show that throughput is in the expected range when approximately one-fifth
of all flows or more are TCP flows.
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Figure 6.13: PCC Throughput at the Fair Rate
Varying with the Number of PCC and TCP
Flows
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Figure 6.14: PCC Throughput at Twice the Fair
Rate Varying with the Number of PCC and TCP
Flows

The high level of variation for small numbers of PCC flows is a measurement problem. With few
PCC flows, few measurements are available for PCC throughput. The fair bandwidth is defined as

NPCC
NPCC+NTCP

� bandwidth, whereNX is the number of flows using protocolX.

The following plots of the PCC share of bandwidth measured in the same simulation set also support
much of what has been said before. Most importantly, they show that PCC fairness towards TCP
does not depend on the ratio of the number of PCC flows to the number of TCP flows, as long as
there are not too few TCP flows on the link.

The drastic decrease in PCC share for very few TCP flows in Figure 6.16 is a logical result of the
decreasing PCC throughput for high send rates and mostly PCC flows explained at the beginning of
this section, low multiplexing, and TCP’s property of quickly searching out free bandwidth. When
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Figure 6.16: PCC Share of Bandwidth at Twice
the Fair Rate Varying with the Number of PCC
and TCP Flows

PCC throughput decreases, the TCP flows quickly take hold of any bandwidth freed by this. Since
there are very few TCP flows, each single flow gets a relatively high amount of additional average
throughput. The PCC share of bandwidth, comparing the average throughputs of PCC and TCP
flows, therefore deceases rapidly.

6.7 Intra-Protocol Fairness

For send rates up to the TCP-friendly rate, PCC intra-protocol fairness has shown to be very close
to one, since all flows are allowed to transmit (almost) all of the time, so each flow’s throughput is
almost the same. At send rates above the TCP-friendly rate, intra-protocol fairness decreases, since
here flows are occasionally turned off.

In the scenario with competing TCP flows, the decrease is slight, with intra-protocol fairness remain-
ing at good values above 0.96 for all of the most relevant cases (Figure 6.17). In the (problematic)
scenario of only PCC flows, intra-protocol fairness decreases more rapidly (Figure 6.18).
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Figure 6.17: Intra-Protocol Fairness with Com-
peting TCP Flows and Varying Send Rate
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Figure 6.18: Intra-Protocol Fairness with only
PCC Flows and Varying Send Rate
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6.8 PCC Behavior at Different Round-Trip Delays

We have tested PCC at a wide range of average round-trip delays, ranging from values as low as
four milliseconds which are typical for local area networks (LANs) to up to 1.6 seconds, which is
an extreme value even for global wide area networks such as the Internet. Typical round-trip times
in the Internet are between 50 and 400 milliseconds.

Note that the round-trip delay (RTD) comprises only the delay on the links, while the round-trip
time (RTT) is also added to by queuing delays. This is most relevant at low RTDs, where round-trip
time can be more than twice the RTD, while at the high RTD of 1.6 seconds, RTT in the simulation
was about 1.8 seconds.

The PCC implementation depends on the RTT only as an input parameter to the TCP formula. As
long as that formula accurately models TCP at all RTTs, PCC should be expected to perform well.
Indeed, Figure 6.19 shows that the PCC share of bandwidth is in the expected range up to a round-
trip delay of 800 milliseconds. The expected range is between 40% and 50%, because the fair rate is
again used as the application send rate in this simulation set, so PCC’s share is lowered by the effects
described in prior sections. Note that a logarithmic scale is used for this plot, since exponentially
increasing RTD values were employed.
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Figure 6.19: PCC Share of Bandwidth when Varying the Round-Trip Delay

However, at the high RTD of 1.6 seconds, PCC suffers considerably. We therefore assume that the
TCP formula used by this implementation of PCC under-estimates the TCP-friendly rate at very
high values for RTT.

6.9 Further Findings

6.9.1 Queue Types

It turns out that PCC Fairness improves when per-flow scheduling such as RED is used. Figure 6.20
shows that with RED queues, the PCC share of bandwidth at the fair rate is close to 50%, and the
increase in aggressiveness is held considerably lower. However, the increase is still obvious - RED
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queues alone do not solve the loss event rate estimation problem described in Section 6.5.
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Figure 6.20: PCC Share of Bandwidth with Dif-
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Figure 6.21: Overall Throughput with Different
Queue Types and Varying Send Rate

More importantly, Figure 6.21 shows that the improvement in fairness comes at the cost of lower
overall throughput, which is caused by the lower PCC throughput, from which TCP throughput
hardly profits at all. Therefore, the use of RED queues does not seem to bring any real improvement
in terms of TCP-friendliness.

6.9.2 Influence of Absolute Send Rate

The effects of a varying PCC application send rate with constant bandwidth (and thereby a constant
fair rate, as the number of flows traversing the bottleneck link is not altered) have been studied in
previous sections. The simulation set shown in Figures 6.22 and 6.23 varies both the bottleneck
bandwidth and the application send rate. The vertical plane in 6.22 indicates the points where the
send rate is the fair rate in relation to the bandwidth.
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Figure 6.22: PCC Share of Bandwidth with
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Figure 6.23: Overall Throughput with Varying
Send Rate and Bandwidth

As expected, the absolute send rate does not have a large effect on PCC fairness. With send rates
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below the fair rate, fairness is close to optimal, while the behavior beyond the fair rate is close to
that described in Section 6.3 for any bandwidth. PCC share of bandwidth is highest in the right
corner, since this is where the send rate is largest compared to the fair rate (at this point send rate is
eight times the fair rate).

Overall throughput also is only marginally affected by the absolute PCC send rate. Throughput is
slightly higher when PCC send rate is high relative to the fair rate.

6.9.3 PCC Behavior in an Unstable Environment

All simulation sets discussed so far have been performed in a very stable network environment
where only random effects and TCP’s saw-tooth behavior give any variation to the loss rate. This is
not an altogether realistic setting. In real-life networks such as the Internet, the loss rate regularly
undergoes changes, when some (large) flows start using the bottleneck link or others stop doing
so. Drastic changes to the situation on a link can happen for example when a heavily used router
decides to switch traffic to this link instead of some other that was used before.

To test PCC under such less stable conditions, a simulation set was prepared where random loss on
the bottleneck link was occasionally changed from 1% to 10% for ten or fifty seconds, then back to
1%.

The expected behavior of TCP in such a situation is to adapt the average send rate of each single
flow to the new situation almost immediately. The expected behavior for PCC is to adapt the average
send rate of all flows together to a worsening situation within the time between two experiments,
TEXP . Adaptation of PCC to an improved situation on the link is expected to be slower, since a
flow that stopped has to remain off forTOFF , in this case 60 seconds.

Figure 6.24 confirms these expectations. It shows the average throughput over periods of ten seconds
for TCP and PCC flows. PCC send rate is 128 packets/s, and thus slightly above the fair rate for a
loss rate of 1%, and far above the fair rate for 10%. Figure 6.25 shows the same plot with the send
rates of a single TCP and a single PCC flow superimposed.
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Figure 6.24: PCC and TCP Average Throughput over Time, with Loss Bursts

Note in Figure 6.24 that in the cases of short periods of high loss, the average PCC throughput



6.9 Further Findings 49

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t p

er
 F

lo
w

 [p
ac

ke
ts

/s
]

time [s]

TCP average
PCC average
TCP sample
PCC sample

Figure 6.25: PCC and TCP Average and Single Flow Throughput over Time, with Loss Bursts

increases already before the off time ends for those flows that stopped during the loss burst. This
is due to the fact that those flows that were already off at the time of the loss burst are starting up
again. In the cases of long periods of hogh loss, this effect is offset by other flows exiting.

Note in Figure 6.25 that the sample PCC flow stops during the first three loss bursts but not during
the fourth. At that time, it is one of the (few) PCC flows transmitting at the full application send
rate.

6.9.4 Protected Time

At standard Internet-like network conditions such as given with the parameters in Table 6.1, the
average protected timeTPROT is usually in the range of up to 30 seconds.TPROT usually ends when
a sufficient number of loss events have occurred (round-trip time measurements are mostly reliable
prior to that). Therefore, protected time decreases when packets are transmitted at higher rates,
since, the loss rate being equal, this means losses and therefore loss events at a higher frequency (in
time). This can be seen in Figure 6.26.
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Figure 6.26: Protected Time with Varying Send Rate and Bandwidth

Note that protected time is given as zero when the send rate is well below the fair rate, in order to
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signify that in this case, no protected time other than the one at start-up takes place, since no PCC
flow has to stop transmission at such a rate. The protected time for such flows at start-up ends when
TPROT;MAX is reached.

6.9.5 Application Parameters

Loss Events for Protected Time: In PCC, protected time usually ends when a preset number of loss
events have occurred that are expected to be sufficient to give a relatively reliable loss event rate
measurement. The round-trip time measurement, which is the other reason for protected time, is
usually reliable before that. This number of loss events can be set by the application.

In a relatively stable environment, this parameter is almost irrelevant, as demonstrated in Fig-
ure 6.27, which shows a simulation set varying the number of necessary loss events. Here, even
a single loss event appears to provide a measurement sufficiently accurate for the PCC scheme to
achieve good fairness towards TCP. This is interesting, since experiments have shown that single
loss intervals vary considerably (by about +/-70%) even in the given, relatively stable environment.
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Figure 6.27: PCC Share of Bandwidth with a Varying Number of Loss Events for Protected Time

The number of loss events for protected time can be expected to become more important in a less
stable environment such as the Internet. However, the results of this simulation set show that even
then it may not need to be very large. Most simulation sets presented in this thesis used a value of
three.

TOFF andTEXP : In an environment with a completely stable loss event rate, a random experiment
is only performed once perTOFF period, and all other experiments in continuous evaluation result
in a probability to remain on of exactly one. In such an environment,TEXP could be chosen as any
value up toTOFF .

However, in an environment with some variation in loss event rate, the choice ofTEXP does have
an effect on both PCC fairness and on the responsiveness of TCP flows. Responsiveness is certainly
the main issue. If network conditions vary quickly and strongly, a good responsiveness is crucial in
order to avoid unfairness towards other flows. Therefore,TEXP needs to be small. However, for
reasons detailed in Section 6.4, a large number of experiments within oneTOFF period results in
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a too passive behavior of PCC flows, especially when send rate is close to the TCP-friendly rate.
Therefore, the relation ofTEXP to TOFF needs to be chosen carefully to give a good balance of
responsiveness and PCC share of bandwidth.

The simulation sets shown in Figures 6.28 and 6.29 were performed in the relatively stable en-
vironment of the standard scenario. While the relative stability of the loss rate should keep PCC
passiveness in a reasonable range, the use of the fair rate results in a stronger passiveness than would
occur at other send rates in the same environment.
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Figure 6.28: PCC Share of Bandwidth with
VaryingTEXP and ConstantTOFF
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Figure 6.29: PCC Share of Bandwidth with
VaryingTOFF and ConstantTEXP

The simulation set in Figure 6.28 variesTEXP while keepingTOFF constant at 60 seconds. The
ratio of TOFF to TEXP is largest when an experiment is performed every second. With 60 exper-
iments per off time, PCC share of bandwidth is approximately 2% lower than at a ratio of one to
one.

Figure 6.29 shows the effect of varyingTOFF with a constant value of two seconds forTEXP .
With TOFF = 600s, 300 experiments are performed per off time. This results in a PCC share of
bandwidth that is about 10% lower than at the one to one ratio.

These simulation sets along with prior findings demonstrate that a PCC flow can be considerably
discriminated when the following properties are given:

� TOFF is large andTEXP is small

� loss event rate varies considerably

� the PCC flow sends at a rate close to the TCP-friendly rate

A small value ofTEXP is common, even necessary for an environment with high loss event rate
variation. On the other hand, if loss event rate varies considerably, it can be expected that the TCP-
friendly rate does the same. Therefore, it is highly improbable that the PCC send rate stays very
close to the TCP-friendly rate in most cases. Such extreme combinations should thereby be very
rare.

Packet Size: In all previously described simulation sets, equal data packet sizes were used for PCC
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and TCP. It may not be obvious that this is the only feasible setting, since the PCC implementation
uses bytes/s (as opposed to packets/s) as a measure of send rate internally. However, Figures 6.30
and 6.31 show that for smaller packet sizes, PCC receives a lower than fair share of bandwidth,
while larger packet sizes result in heavily increased aggressiveness in the case of PCC send rates
above the fair rate.
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Figure 6.30: PCC Share of Bandwidth with
Varying Packet Size at the Fair Rate
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Figure 6.31: PCC Share of Bandwidth with
Varying Packet Size at Twice the Fair Rate

In real-life networks where TCP packet size is not known it is therefore necessary to use a mecha-
nism such as path MTU discovery [19] in order to determine this value, as is also proposed for other
rate-based congestion control schemes such as TFRC.
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Chapter 7

Discussion of PCC Application
Parameters

A number of protocol parameters can be set by applications using PCC in order to account for
specific application demands and network conditions. The following discussion of these parameters
is meant to give some guidelines to future application developers employing the PCC congestion
control scheme.

Table 7.1 at the end of the chapter proposes ranges of parameter values to be used in certain exem-
plary network conditions. These propositions are based on the experiences gained from extensive
experimentation.

7.1 Off Time and Re-Experiment Interval

The timeTOFF that a PCC flow remains off when an experiment fails should be set according to the
needs of the application. While some applications may depend on being able to send at least some
data at relatively small intervals, it may be more favorable to others to transmit for long intervals
and then to remain off for longer times as well.

For reasons detailed in Section 4.4.3, if the application is not robust against extensions of the actual
off time, TOFF should be chosen such that with common values for protected timeTPROT , TCP-
friendly raterTCP , and application send raterNA, TOFF

TPROT
is greater or equal torNA

rTCP
� 1. This is

usually not a strong limitation since protected time can be bounded by the use ofTPROT;MAX .

The re-experiment intervalTEXP determines the responsiveness of the flow to sudden increase in
congestion. It should be chosen small (in the range of one second) if sudden sharp increases in
congestion are likely to occur. On the other hand, a small interval and therefore more experiments
in the same time increases the CPU time used up by the PCC scheme.

While it may be tempting to use smallTEXP to increase responsiveness even when a large off
time is used, this is not advisable, since we have shown in Section 6.4 that a large number of
experiments withinTOFF increases the chance that more flows than necessary stop transmission,
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and that therefore PCC flows get less than their fair share of the bandwidth. This is especially true
when variation in network conditions is high. With a large off time and a high degree of variation,
the choice ofTEXP is therefore a trade-off between responsiveness and less self-discrimination.

7.2 Parameters Determining the Length of Protected Time

When a flow (re-)starts transmission, it is protected from having to stop until a certain number of
round-trip time samples have been taken and a certain number of loss events have occurred, or until
a time ofTPROT;MAX is reached.

Since the round-trip time measurement is usually quite reliable after a few samples have been taken,
it is not necessary to choose the number of round-trip time samples to be very large. This parameter
is only relevant in determiningTPROT in the case of long round-trip times and high loss rates, in
which three to five should be enough to determine a measurement reliable enough for the purposes
of PCC.

The duration of protected time is more frequently determined by the number of loss events deemed
necessary for a good loss event rate measurement. When variation in loss event rate is low, this
parameter can be chosen very small. In experiments with low variation, even a value of one provided
good results. When variation is higher, more samples are needed to achieve reliable results.

Protected time can be limited to a maximum ofTPROT;MAX . This is advisable if extensions of
the preset off time are not desirable. This value should however be set with care, since cutting
off protected time early leads to higher variation, which in turn leads to under-allocation of PCC
bandwidth. Therefore,TPROT;MAX should be set such that in most cases, enough measurements
are taken to arrive at an acceptable estimate ofrTCP , especially when variation in loss event rate is
high. For more discussion on this subject, see Section 4.4.4.

7.3 Parameters Determining Smoothness of Measurements

Whenever multiple samples are used to arrive at a smooth measurement, there is the trade-off be-
tween reducing variation as much as possible and on the other hand keeping the measurement
up-to-date. If too many samples are used, the influence of out-of-date values is too large, while
smoothness suffers if too few are used. More samples should be used if short-term variation is high
while medium-term variation is low, fewer should be used in the converse case.

In PCC, an exponentially weighted moving average (EWMA) is used to smooth the round-trip time
measurement. A large weight for the current sample makes the measurement more up-to-date (but
less smooth) and should therefore be used when short-term variation is usually low while some
rapid, longer-lasting changes in round-trip time may occur. In our experiments, this parameter has
proved to be of little relevance, good results have been achieved with weights between 0.05 and 0.5.

For smoothing the loss event rate measurement, PCC employs the Average Loss Interval method
discussed in Section 5.4.2. The number of loss event samplesNSAMP used in this context can
be set by the application. A value of 24 for this parameter has proved to achieve good results in



7.4 Packet Size 55

a setting with low medium-term variance, while it may be necessary to use a smaller value when
sudden lasting decrease in the available bandwidth is frequent, in order to avoid unfairness towards
other flows due to low responsiveness. However, the increase in variation of the loss event rate
measurement and therefore of the TCP-friendly rate estimate resulting from a smallNSAMP leads
to a more passive behavior of PCC, as has been discussed at length in Section 6.4.NSAMP should
therefore be set only as low as necessary to achieve acceptable responsiveness.

An application using PCC can chose whether to use history discounting [16] or not. It is usually
advisable to use history discounting, since it improves both smoothness and responsiveness (to
sudden long absence of congestion) of the loss event rate measurement.

7.4 Packet Size

As has been noted in Section 6.9.5, the size of PCC data packets should be the same as that of the
average TCP data packet. It is the responsibility of the application to determine the TCP data packet
size, e.g., by using path MTU discovery [19], and to set the PCC packet size accordingly.

medium-term congestion variation low high
congestion low high low high

PCC Packet Size same as actual TCP packet size in the network
RTT EWMA Weight 0.1 - 0.3 0.2 - 0.4
NSAMP 16 - 24 24 - 36 8 - 16 16 - 24
History Discounting used
RTTs for Protected Time 4 - 8 3 - 5 4 - 8 3 - 5
Loss Events for Protected Time 1 - 3 2 - 4 3 - 5 4 - 6
TPROT;MAX >=20sec >=10sec >=30sec >=20sec
TOFF determined by user expectations
TEXP ca. 1/10 ofTOFF 1 - 3 seconds

Table 7.1: Proposed PCC Application Parameter Values for Different Network Conditions

Note: The choice ofTPROT;MAX depends mostly on the type of application. If the application
expects off times to remain constant,TPROT;MAX should be chosen as discussed in Section 4.4.4.
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Chapter 8

Possible Extensions to the PCC Scheme

A number of possible extensions to the PCC congestion control scheme have been investigated,
though neither implemented nor experimentally evaluated as of yet. The examples given in this
section are therefore potential subjects of further research.

8.1 Probe While Off

PCC flows may receive less expected average bandwidth than competing TCP flows, since a flow
that has been turned off will switch to on only afterTOFF seconds, even if congestion improves
beforehand. This may be problematic, especially ifTOFF is large. In order to increase PCC’s
fairness, flows that are off could monitor network congestion by sending probe packets at a low data
rate from the sender to the receiver. The data raterOFF produced by the probe packets needs to be
taken into account in Equations 4.2 and 4.6 by adding(1� pON ) � TOFF � rOFF to the total amount
of bandwidth used by a PCC flow.

If the loss rate and the round-trip time of the probe packets signal thatrTCP has improved suffi-
ciently, a flow that has been turned off may be turned on again immediately, without waiting for
the remainder of the off time to pass, and without performing an initialization step. This may be
done only if, under the new network conditions, all experiments that were performed within the last
TOFF (before the flow was turned off) would have been positive. If the congestion situation gets
worse later on, it must be checked if any of the experiments in that time would have failed. If this
is the case, the flow must be turned off again. Only after the last entry that was included in setP
before the flow was turned off has timed out, may the flow again resume normal behavior.

The biggest problem with this method is the amount of bandwidth that is used up by the probe
packets. While the round-trip time can be determined with reasonable accuracy with just a few
packets, many more are necessary to measure the loss rate. In order to measure a loss rate of 1%, for
example, a minimum of 100 packets need to be transmitted, about 300 to achieve at least reasonable
accuracy. If measurement values older than 30 seconds are considered out-of-date, this means 10
probe packets per second, which equals 80 kbit/s if the packet size is 1000 bytes. Smaller probe
packets could be used to reduce the necessary data rate, but this would lead to an under-estimation
of the loss rate, since smaller packets are less likely to be dropped.
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The current version of PCC does not include Probe While Off. Apart from the waste of bandwidth,
Probe While Off can lead to frequent changes between the states on and off which would be dis-
tracting for the user of the application. Probe While Off may be included in a later version of PCC
as an option that can be turned on by the application. Furthermore, it could be helpful to add a
threshold to Probe While Off, so that the flow is turned on again only if the available bandwidth
increases significantly. This could improve the stability of the flow.

8.2 Probe Before On

In PCC the flow is turned on upon initialization. This has two drawbacks. First, it violates the
idea of exploring the available bandwidth as in TCP slowstart. Second, the flow may be turned
off immediately after the initialization is complete, so that the user perceives only a brief moment
where the application seems to work, before it is turned off. An alternative would be to send probe
packets at an increasing rate before deciding whether to turn the flow on or not. Only after the
parameters have been measured and the random experiment has succeeded will real data for the
flow be transmitted. The drawback of this method is that bandwidth is wasted by probe packets and
that the initial start of a flow is delayed byTPROT , with TPROT being larger than with the normal
method, since the rate starts off low.

8.3 Forward Error Correction

Since applications employing non-adaptable flows frequently have to obey real-time constraints,
they benefit from forward error correction to compensate for packet loss. However, packet loss is
typically a signal for congestion. Therefore it has long been considered inacceptable to compensate
for congestion-based packet loss by increasing the data rate of a flow with redundant information
for forward error correction. PCC does however enable the use of forward error correction in an
appropriate way.

PCC’s support for the usage of forward error correction is straight forward: when an application
decides to employ forward error correction, the newrNA is simply set to the rate of the flow in-
cluding the forward correction information. From the perspective of PCC this is equivalent to an
application increasing its sending rate and thus needs no special treatment. IncreasingrNA results
in an appropriate decrease ofpON , therefore this method is fair to competing streams.

8.4 Multicast PCC

The PCC congestion control scheme can be extended from the unicast case described in this the-
sis to the multicast domain. Given the efficiency savings of multicast, different notions of TCP-
friendliness are possible in this domain. However, we take the conservative position formulated
in [20], that “a multicast flow is acceptable if it achieves no greater medium-term (expected av-
erage) throughput to any receiver in the multicast group than would be achieved by a TCP flow
between the multicast sender and that receiver.”
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Since different receivers may experience different network conditions, the estimation of the TCP-
friendly rate and the calculation ofpON must be performed at the receivers when using multicast.
Two different general approaches are possible in how to use this value to achieve multicast TCP-
friendliness.

8.4.1 Sender-Driven Multicast PCC

In sender-driven multicast PCC, the probability values are reported back to the sender, which then
decides whether to turn the whole multicast flow off forTOFF , using the lowest of the reported
values. Probability values greater one do not need to be reported. A method to further suppress
unnecessary feedback in order to avoid feedback implosion for large receiver sets can be found
in [20]. The same paper also gives ideas on how to ensure that some feedback always reaches the
sender so that the absence of feedback can be attributed to strong congestion on the feedback path.

The drawback of sender-driven multicast PCC is that decisions can only be made for the whole
multicast flow. If congestion in some outer branch of the multicast tree is high, the sender has
to stop often enough to ensure multicast TCP-friendliness for the receivers on that branch. Other
receivers in the multicast tree experiencing much less congestion suffer from the same reduced
expected average throughput.

8.4.2 Receiver-Driven Multicast PCC

In receiver-driven multicast PCC, the probability values are not reported to the sender but used for
local decisions. If for any receiver the experiment using the locally calculated probability value
fails, that receiver temporarily leaves the multicast group, before re-joining it afterTOFF .

When all receivers behind a congested link leave the multicast group, congestion control is per-
formed implicitly by the multicast routing protocol, which prunes this branch from the multicast
tree until some receiver re-joins.

Obviously, the random numbers used in the experiments can not be generated locally. Otherwise,
the probability that at least one receiver behind the congested link remains in the group at any time
is very high, and the congestion control effect on that link is almost non-existent. Therefore, random
numbers are periodically generated by the sender and distributed as data packet header information
to all receivers.

While this method operates at a much finer granularity than the sender-driven method, it also has
several drawbacks. For one thing, probability values calculated by several receivers behind the
same bottleneck link may differ slightly due to random losses on links behind that bottleneck, or
due to different settings for certain application parameters, such as the number of loss event samples.
Therefore it is possible that withpON close to the random number, some receivers leave the mul-
ticast group while others stay in. In such a case, throughput is reduced for some receivers without
achieving any positive effect for the bottleneck link. The second drawback is that receivers in the
off state miss out on data that is transmitted to the others. While this is reasonable for example for
most real-time applications such as live video transmission, other applications may need to employ
sophisticated dynamic join and leave algorithms to ensure consistency.
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8.4.3 TCP-Friendly Rate Estimation

Most methods for the estimation of the TCP-friendly rate, such as those used in TEAR and TFRC,
require the knowledge of the current round-trip time. In multicast, feedback packets can not be
passed from each receiver to the sender and echoed back as frequently as in the unicast case, as this
would lead to feedback implosion.

Therefore, a scalable way is necessary to measure round-trip time. In the multicast extension to
TFRC, TFMCC, this is done by initializing the receiver’s round-trip time measurement using syn-
chronized clocks (if available) and adjusting that measurement using the one-way delay calculated
from data packet header information. In addition, receiver feedback is echoed infrequently to all but
one special receiver, which is the receiver that currently reports the lowest rate, the so-calledcurrent
limiting receiver(CLR). Since the CLR usually determines the allowed rate, its measurement needs
to be the most exact, therefore its feedback is echoed more regularly. For a more detailed description
of this method, see [20].

For sender-driven multicast PCC based on TFRC mechanisms for the TCP-friendly rate estimation,
this method can be copied. The current limiting receiver here is the receiver reporting the lowest
probability value. In the receiver-driven case, the notion of a CLR does not make sense, because
there is no ’global’ rate that could be limited by some single receiver. Instead, each receiver deter-
mines its own average receive rate by deciding locally whether to temporarily leave the multicast
group. Other elements of the method developed for TFMCC, such as round-trip time measurement
initialization and adjustment, are however applicable to the receiver-driven case as well.

8.5 Combining PCC with other Congestion Control Schemes

So far we have distinguished between flows that allow their rate to be adapted to any extent and
flows that do not allow any adaption at all, the so-called non-adaptable flows. It is not hard to
imagine an intermediate class of flows, that allow their rate to be adapted up to a certain minimum,
but cannot make use of any rate below that minimum. An example of such a “semi-adaptable” flow
would be a live audio transmission that can be scaled in quality, while anything below a certain
minimum quality would be considered unacceptable.

Such flows would profit from a combination of PCC and some other congestion control scheme that
adapts the rate. As long as the TCP-friendly rate is greater or equal to the minimum acceptable rate,
the rate is adapted. Once the TCP-friendly rate drops below the minimum, the send rate is set to the
minimum and PCC is used to turn the flow off at appropriate times. It is advisable to use the same
mechanism for estimating the TCP-friendly rate in both cases. The current PCC implementation
could therefore be easiest combined with TFRC.
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Chapter 9

Conclusion and Future Work

In this thesis we presented a congestion control scheme for non-adaptable flows. This type of
flow carries data at the rate determined by the application. It cannot be adapted to the congestion
situation of the network in any other way than suspending the entire flow. Existing congestion
control approaches are therefore not viable for non-adaptable flows.

We proposed to perform congestion control for non-adaptable flows by suspending individual flows
in such a way that the aggregation of all non-adaptable flows on a given link behaves in a TCP-
friendly manner. The decision about suspending a given flow is made by means of random experi-
ments, hence we chose the name Probabilistic Congestion Control or PCC for our approach.

In a series of simulations it has been shown that PCC displays a TCP-friendly behavior in a wide
range of network situations. We also identified a number of possible extensions to the PCC scheme.
The thesis shall conclude with a discussion of issues that will need to be investigated further in
future work.

9.1 Future Work

Apart from investigating the merits of the extensions to PCC discussed in the last chapter, some
amount of work is still necessary to further improve on PCC performance and to verify our simula-
tion results under a greater array of network conditions.

9.1.1 Improving the Loss Event Rate Measurement

As we have seen in Chapter 6, the fairness of the PCC scheme is in certain cases harmed by false
estimations of the TCP-friendly rate resulting from erroneous measurements of the loss event rate.
These measurement errors are caused by the difference in smoothness of the rates of the average
TCP and PCC flows, as was explained in Section 6.5.

One way to account for this difference in order to achieve better loss event rate measurements would
be to find a heuristic function to adjust the measurement based on experimental findings. This



9.1 Future Work 61

function would have to involve the ratio of the TCP-friendly rate (as estimated with the erroneous
measurement) to the PCC flow’s application send rate, as this determines how frequently the flow
stops and therefore how smooth the effective rate is. However, more parameters will need to be
considered, such as the correlatedness of loss events, the loss rate, and possibly the round-trip time.

Another very promising thought was brought forward by Martin Mauve when this thesis was nearly
completed, so unfortunately there has not been enough time to verify it experimentally. Consider
a PCC flow that sends at a rate considerably higher than the TCP-friendly rate when on. This flow
will transmit more packets per round-trip time than a TCP flow, so due to a higher probability of
multiple losses per round-trip time, the same number of losses for the same number of packets will
result in fewer loss event, thereby a lower loss event rate.

The idea is now to artificially reduce the number of packets used for loss event rate measurement
by only counting as many packets per round-trip time as would arrive at the estimated TCP-friendly
rate, while ignoring all other packets, which count neither as losses nor as transmitted packets for
the purpose of this measurement. Statistically, the subset of counted packets will experience the
same loss rate as if all packets were used, but the probability of multiple losses within one round-
trip time will be approximately the same as for a TCP flow. Therefore, the loss event rate should
be much closer to that experienced by TCP flows, and the increase in aggressiveness with a higher
ratio of PCC send rate to TCP-friendly rate that was noted in our experiments should not occur. On
a side note, the number of packets counted per round-trip time in loss event rate measurement will
need to be somewhat higher than with the TCP-friendly rate, to account for the fact that TCP itself
does not send smoothly and therefore has an increased probability of multiple losses per round-trip
time as well (as compared to a flow sending at a completely smooth rate). This however depends on
how smooth the PCC send rate determined by the application actually is.

9.1.2 Randomizing Off Time

If many PCC flows use the same off timeTOFF , there is the danger that some synchronization of
these flows may occur. This can happen if a large number of these flows exit at about the same time
because of a sudden drastic decrease in available bandwidth. With the sameTOFF , these flows will
also re-start at about the same time, impacting the congestion situation, thereby exiting again with
slightly higher probability.

PCC fairness as well as throughput may therefore profit from some amount of randomization of
TOFF . Whether randomization is used or not and if so at what range should be up to the application,
since some applications might not accept off times that differ much from the preset parameter. Some
experimental evaluation is necessary to find out if randomized off times actually improve PCC
performance, or if performance is on the contrary harmed by the additional element of variance.

9.1.3 ”Deterministic Congestion Control”

The use of non-determinism in PCC is responsible for some amount of intra-protocol unfairness.
Some flows will under the same conditions be forced to stop more frequently than others, though
this effect will be less noticeable for longer run-times.
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It is possible to devise a similar congestion control scheme that does not make use of non-determinism.
Instead of calculating probability values and performing random experiments, the on timeTON
could be determined directly from Equation 9.2.

(TPROT + TON + TOFF ) � rTCP = (TPROT + TON ) � rNA (9.1)

, TON =
(TPROT + TOFF ) � rTCP � TPROT � rNA

rNA � rTCP
(9.2)

As for PCC’s continuous evaluation,TON can be regularly re-computed to account for changes in
network condition. The flow stops when either it has been on for the on time that was last computed,
or when a new time is computed that is smaller than the time the flow has been on.

While it would be interesting to implement such a deterministic congestion control scheme in order
to see how well it actually performs, it should be reflected that for some applications, less regularity
in the occurrence of off times, as produced by PCC, may be preferable. Also, synchronization might
be more of a problem in the deterministic scheme.

9.1.4 Further Experimental Evaluation

Due to a limited amount of time, some simulations have not yet been performed that might provide
interesting results towards a better understanding of PCC performance in real-life networks. Most
notable among such simulations are

� Complex topologies: All simulations discussed in this thesis use the standard dumbbell
topology of a number of senders on one side transmitting data across a single bottleneck link
to a number of receivers on the other side. More complex topologies could involve several
bottlenecks with flows traversing different numbers of these links.

� Varying send rate: The current version of PCC uses constant application send rates, as this
was easiest to implement. For most applications, varying send rates are more realistic. This
should be implemented and compared to the results provided in this thesis by means of re-
running some of the simulation sets.

� Different parameters across different flows:In order to achieve significant average results,
the same application parameters were used for all PCC flows in a simulation. A more realistic
simulation would involve different values across different flows for application send rate,
TOFF , TEXP , and other parameters.

� Testing PCC against HTTP traffic: In our simulations, we have compared PCC flows
against TCP flows carrying unlimited bulk FTP data, since this makes simulation setup and
evaluation easier. In the Internet, a large amount of TCP data is however transmitted by HTTP.
It would therefore be interesting to test PCC flows against HTTP traffic.

� Testing PCC against CBR and TCP traffic: A significant amount of the traffic in today’s
Internet does not use any kind of congestion control mechanism at all. Some simulations
should be performed pitching PCC flows against some constant bit-rate flows with no con-
gestion control as well as some TCP flows, in order to see how PCC performs compared to
TCP in such an environment.



9.1 Future Work 63

9.1.5 Real-Life Implementation and Evaluation

Unless the above additional experiments indicate anything to the contrary, we believe that the PCC
congestion control scheme as it is described in this thesis can be implemented for and tested in a
real-life network such as the Internet without a significant risk of harming that network.
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Appendix A

Calculation of Protected Time under
Exemplary Network Conditions

The timeTPROT a (re-)starting flow needs to be protected from having to stop is the maximum
of the timeTLER it takes to get a reliable measurement for the loss event rate and the timeTRTT
necessary for a good estimate of the round-trip time, as was explained in Section 4.4.1.

A.1 Calculation of the Time Necessary for a Reliable LER-Measurement

With the number of loss eventsNLE the application deems necessary for a reliable loss event rate
measurement, the expected average ofTLER can be given as (compare Section 4.4.1)

TLER =
NLE �

1
2

ler � rNA
(A.1)

whereler is the actual loss event rate in the network.

It can be seen from Equation A.1 thatTLER is (almost) proportional toNLE and inversely pro-
portional toler andrNA. TLER can get very large if the loss event rate is low. However, a low
loss event rate also means that the TCP-friendly raterTCP is comparatively high. IfrNA is lower
thanrTCP , the duration of protected time does not matter, since in such a case the flow will not
be required to stop anyway. Therefore, only cases withrNA > rTCP will be considered in the
following.

Let NLE be 3 (the value used in most of our simulation sets). Furthermore, consider a network
situation withler = 0:01 andRTT = 100ms. It follows from Equation 5.4 thatrTCP is roughly
112 packets per second (pps).

The relevant cases are therefore those withrNA > 112pps. With this, we haveTLER <
2 1
2

0:01�112 =
2:23sec.

Table A.1 gives maximum relevant values forTLER arrived at in the same manner using different
values forler andRTT .
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ler=0.001 ler=0.01 ler=0.1

RTT=100ms 6.51 sec 2.23 sec 1.41 sec
RTT=200ms 13.02 sec 4.46 sec 2.82 sec
RTT=400ms 26.04 sec 8.92 sec 5.64 sec

Table A.1: Exemplary Maximum Relevant Values for the Time to Arrive at a Reliable LER-
Measurement

As can be seen from Table A.1, the maximum relevantTLER is proportional to the round-trip time.
This is due to the fact thatrTCP and therefore the minimum relevantrNA is inversely proportional
to the round-trip time (if a simple approximation to RTO is used that is a multiple of RTT).

Another result that can be drawn from Table A.1 is that (relevant)TLER gets very large only under
network conditions with a large round-trip time and at the same time a low loss event rate in the
face of high application send rate. Since large round-trip time and loss event rate are in many cases
both caused by full queues in intermediate systems, these situations can be expected to be rare.

A.2 Calculation of the Time Necessary for a Reliable RTT-Measurement

If one RTT-measurement value is taken per round-trip time, the timeTRTT necessary to arrive at
a good estimate of the round-trip time is calculated simply as the product of RTT and the number
of measurement valuesNRTT considered necessary by the application for a reliable measurement.
More than one measurement can be taken per RTT by using the one-way information provided with
each data packet. In that case,TRTT is much smaller.

With NRTT = 5 (the value used in most of our simulation sets) andRTT = 100ms, TRTT is
0.5sec. Other exemplary values are given in Table A.2.

NRTT=2 NRTT=5 NRTT=10

RTT=100ms 0.2 sec 0.5 sec 1.0 sec
RTT=200ms 0.4 sec 1.0 sec 2.0 sec
RTT=400ms 0.8 sec 2.0 sec 4.0 sec

Table A.2: Exemplary Values for the Time to Arrive at a Reliable RTT-Measurement

It can be seen from a comparison between Tables A.1 and A.2 thatTRTT is in most cases smaller
thanTLER. Therefore, in most casesTPROT = TLER.
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Appendix B

Installation Guide

In order to perform simulations with our implementation of PCC, the first requirement is to have
a working installation of the network simulator ns-2. For the latest version of ns-2 and a detailed
description of how to install it, see [14].

Once the simulator is installed, the following steps need to be performed to add PCC functionality
to it:

1: Unzip and untar the code distribution package pcc.tar.gz. This should be available from the
same source from which this thesis was obtained. The package also contains a file called
install.txt that briefly lists the following steps.

2: Move the C++ source and header files to the main code directory of ns-2.

3: Modify the file packet.hfound in the code directory: Add two lines for the new packet types
PT PCC and PTPCCACK to enum packett. Also, add the following two lines to the con-
structor of class pinfo:

name_[PT_PCC]= "probabCC";
name_[PT_PCC_ACK]= "probabCCCtl";

4: Modify the filens-default.tclin the tcl/lib/ sub-directory to include the following defaults for
the main PCC parameters:

Agent/PCC set AppRate_ 60000; # Constant Bitrate Application
Agent/PCC set overhead_ 0.5; # dither outgoing packets if >0
Agent/PCC set packetSize_ 1000
Agent/PCC set ndatapack_ 0; # Number of packets sent
Agent/PCC set printStatus_ 0

Agent/PCCSink set packetSize_ 40
Agent/PCCSink set InitHistorySize_ 100000
Agent/PCCSink set NumFeedback_ 1
Agent/PCCSink set printLoss_ 0
Agent/PCCSink set df_ 0.8; # decay factor for RTT estimate
Agent/PCCSink set bval_ 1; # Value of b for TCP formula
Agent/PCCSink set NumSamples_ -1
Agent/PCCSink set discount_ 1;# History Discounting



Agent/PCCSink set smooth_ 1; # smoother Average Loss Interval
Agent/PCCSink set totalReceived_ 0
Agent/PCCSink set protLossEvents_ 3
Agent/PCCSink set protRTTs_ 5
Agent/PCCSink set protMaxTime_ 30
Agent/PCCSink set Toff_ 60
Agent/PCCSink set Texp_ 2
Agent/PCCSink set rateDiscount_ 0.8
Agent/PCCSink set adjustRate_ 0
Agent/PCCSink set runtime_ 600

5: Modify the file tcl/lib/ns-packet.tclto include the following two lines in the list at the begin-
ning of the file:

{ PCC off_pcc_}
{ PCCSink off_pcc_sink_}

6: Modify the fileMakefile.into include pcc.o and pcc-sink.o in the list of object files.

7: Runmake depend.

8: Runmake

After following these steps, PCC and PCCSink can be used like any other agents provided with
ns-2. For an easy introduction on how to use ns-2 for simulations, read Marc Greis’ Tutorial [21].
The PCC Agent produces a constant bit rate flow at the rate given in parameter AppRate, while
the PCCSink Agent receives this flow and performs congestion control in the way described in this
thesis.
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