Sommersemester 1999 Klausur Informatik Hauptdiplom Prof. Dr. W. Effelsberg

Teilgebiet: SW-technische Aspekte verteilter MM-Systeme (S. Fischer)

Name:	Vorname:
Matrikel-Nummer	.Studiengang:
Dauer: 33 Minuten	

Ergebnisse:

Aufgabe	Maximale Punktzahl	Erreichte Punktzahl
1	17	
2	16	
Gesamt	33	

Aufgabe 1: Quality of Service [3+3+6+5=17 Punkte]

1. Erläutern Sie, warum für die Übertragung von Audio- und Videodatenströmen bestimmte Dienstgütegarantien notwendig sind. [3]

2. Welche Angaben müssen zwischen Dienstnutzer und –erbringer während der Dienstgüteaushandlung ausgetauscht werden? [3]

3.	Was versteht man unter	"QoS Mapping"?	Warum ist	diese Fu	unktion n	otwendig
	innerhalb einer QoS-Arc	hitektur? [6]				

4. Nehmen Sie nun an, ein Video der Größe 640x320 Pixel (bei 8 Bit je Pixel) soll mit einer Rate von 25 Bildern pro Sekunde übertragen werden. Welche minimale Datenrate ist zur Übertragung an der Transportschnittstelle (in Mbit/s) notwendig, wenn keine Kompression eingesetzt? [5]

Aufgabe 2: Kompressionsmethoden [4+12=16 Punkte]

1. Nennen Sie mindestens zwei Ansatzpunkte, wie sich digitale, in RGB-Format vorliegende Videos komprimieren lassen. Begründen Sie jeweils! [4 Punkte]

2. Betrachten Sie nun Verfahren zur Bewegungsvektorerkennung. Gegeben sei dazu folgende 8x8 Matrix M:

x :	0	1	2	3	4	5	6	7	у
	171	155	130	117	136	165	189	195	0
	150	143	145	119	134	160	175	183	1
	155	147	188	123	135	155	170	185	2
Μ.	_140	165	172	(153)	153	153	169	185	3
IVI -	124	126	155	149	172	175	170	180	4
	111	124	143	143	165	155	160	173	5
	117	113	130	145	150	155	142	144	6
	120	125	178	150	155	153	148	186	7

sowie folgender in der Matrix zu suchende 2x2 Bildblock B:

$$B = \frac{141}{147} \quad 143$$

(a) Definieren Sie eine sinnvolle Fehlerfunktion, die es Ihnen erlaubt, die Ähnlichkeit eines Bildausschnitts mit dem gesuchten Bildblock B zu beschreiben. [3 Punkte]

(b) Wenden Sie nun dieses Fehlermaß an, um mittels des Algorithmus der *zweidimensionalen logarithmischen Suche* einen möglichst ähnlichen Block herauszufinden. Beginnen Sie die Suche an Position (3,3) des Blocks. Geben Sie bei jedem Schritt des Algorithmus die Koordinaten des aktuell besten Blocks an. Geben Sie schließlich den Ergebnisblock sowie dessen Fehlermaß an. Die Suchraumgröße sei mit p=3 gegeben. Zur Arbeitserleichterung können Sie einige der unten vorgegebenen Matrizen verwenden. [9 Punkte]

x:	0	1	2	3	4	5	6	7	y
	171	155	130	117	136	165	189	195	0
	150	143	145	119	134	160	175	183	1
1.7	155	147	188	123	135	155	170	185	2
	_140	165	172	153	153	153	169	185	3
<i>M</i> :	124	126	155	149	172	175	170	180	4
	111	124	143	143	165	155	160	173	5
	117	113	130	145	150	155	142	144	6
	120	125	178	150	155	153	148	186	7

x:	0	1	2	3	4	5	6	7	У
	171	155	130	117	136	165	189	195	0
	150	143	145	119	134	160	175	183	1
	155	147	188	123	135	155	170	185	2
М -	140	165	172	153	153	153	169	185	3
<i>M</i> =	124	126	155	149	172	175	170	180	4
	111	124	143	143	165	155	160	173	5
	117	113	130	145	150	155	142	144	6
	120	125	178	150	155	153	148	186	7

x:	0	1	2	3	4	5	6	7	у
	171	155	130	117	136	165	189	195	0
	150	143	145	119	134	160	175	183	1
	155	147	188	123	135	155	170	185	2
M -	140	165	172	153	153	153	169	185	3
<i>M</i> =	124	126	155	149	172	175	170	180	4
	111	124	143	143	165	155	160	173	5
	117	113	130	145	150	155	142	144	6
	120	125	178	150	155	153	148	186	7

x:	0	1	2	3	4	5	6	7	У
	171	155	130	117	136	165	189	195	0
	150	143	145	119	134	160	175	183	1
	155	147	188	123	135	155	170	185	2
М -	140	165	172	153	153	153	169	185	3
<i>M</i> =	124	126	155	149	172	175	170	180	4
	111	124	143	143	165	155	160	173	5
	117	113	130	145	150	155	142	144	6
	120	125	178	150	155	153	148	186	7