RoboCup 2010

1. Color and Luminance

Digital Image

Definition:

- Digital image / raster image / bitmap image:
- Finite set of digital values (pixels)
- Fixed number of rows and columns of pixels (defines width and height of the image)
- Stored as a two-dimensional array of integer values
- Fixed range of pixel values:
- Binary: \{0, 1\}
- Greyscale: $\{0 . .255\}$
- Color (RGB) : $\{0 . .255\}$ for each color channel
- Video from camera: sequence of images (frames)
- File formats to store images: JPEG, BMP, GIF, PNG

Definition of Colors (I)

Definitions:

- Color: Sense perception (no physical feature) when light of a certain wavelength falls on the retina of the eye. The sensory cells in the human eye (cones for colors, rods for brightness value) release impulses to the brain, which perceives these as colors. Human possesses three types of cones (sensitive for red, green, and blue).
- Visible light: between 400 - 700 nm

- Color space: group of colors to be available
- Color model: Describes the color space an input or output device (display, scanner, printer, projector, photo, camera, television) is able to illustrate.

RoboCup 2010	Dr. Stephan Kopf
Image and Video Processing	Praktische Informatik IV

UNIVERSITY OF MANNHEIM

Definition of Colors (II)

Basis of colors:

- discovery 1666 by Newton: sunlight which falls through a prism is split up into a continuous range of colors.

RoboCup 2010	Dr. Stephan Kopf
Image and Video Processing	Praktische Informatik IV

Human Perception (l)

The retina of the human eye does consist of:

- Cones (cone cells): Identification of colors
- Rods (rod cells): Identification of brightness values

Cones contain three types of pigments which are sensitive to specific colors:

- Low frequencies: blue colorings
- Median frequencies: green/yellow colorings
- High frequencies: red colorings

source: Gabriel Marcu, Apple
UNIVERSITY OF MANNHEIM

Human Perception (II)

Human Perception (III)

Ishihara test for the detection of color blindness

Color space (I)

Composition of a color space:

- Coordinate system in which single colors define the axes (due to the human eye's construction mostly 3 dimensions).
- Physical color models (mixture of colors): RGB, CMYK (printer)
- arrangement as dice
- modification of a color \rightarrow simultaneous modification of brightness, chroma, and coloring
- In 1931, definition of the elementary colors by the CIE (International Commission on Illumination): red ($=435,8 \mathrm{~nm}$), green ($=546,1 \mathrm{~nm}$), and blue ($=700 \mathrm{~nm}$)
- Perception oriented color models (description by brightness, chroma, and coloring): HSV, HSI
- description by cylindrical coordinates (angle defines the color)

UNIVERSITY OF MANNHEIM

Color space (II)

Additive color space

- Elementary colors add up to white
- Displays / projectors use the elementary colors RGB

Subtractive color space

- Elementary colors are subtracted from white
- Ink jet printer (pixels absorb white light),
- Slides in front of a white lamp filter single color components

Color space (III)

Physical color model: RGB color space

- idea: out of the colored light of three elementary colors one can mix arbitrary colors
- additive color space (colors add up to white)
- 8 bit / 16 bit per color channel

Color space (IV)

Perception-oriented color model: HSV color space

- Hue (color): dominant wavelength (dominant color by which a human describes an object)
- Saturation (chroma): describes how strong a color is, i.e. the mixture ratio of one color with another color (ratio of dominant wavelength to other wavelenghts).
- Value (intensity): brightness of a color

Color space (V)

Color displays (I)

Color displays (II)

Comparison of CRT and TFT displays (same color ranges)

Human Perception (V)

Luminance is affected by forms, objects, and their shades

Human Perception (VI)

Colors are affected by neighboring color regions

identical color
source: Gabriel Marcu, Apple
UNIVERSITY OF
MANNHEIM

Challenges

Object recognition based on colors:

- Luminance and luminance changes
- Viewing direction of camera (lens aperture)
- Automatic camera adjustment (white ballance)
- Reflections
- Many colors describe one object
- Shadows
- Blurring
- ...

