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ABSTRACT

In-network data aggregation is a useful technique to reduce
redundant data and improve communication efficiency. One
challenge in data aggregation is how reports can be routed
to the same node so that the reports can be merged. Most of
existing approaches rely on maintaining a routing structure
to achieve this purpose. However, these approaches are not
applicable to the mobile environment of Vehicular Ad hoc
Networks (VANETS). In this paper, we design a cooperative
model to facilitate the aggregation of adjacent traffic reports.
The basic idea behind this work is that we can adaptively
change the forwarding delay of individual reports in a man-
ner that a report can have a better chance to meet other
reports. The decision is made distributedly by each vehicle
based on local observations. Actually, our scheme is also a
tradeoff between communication overhead and propagation
delay. Simulation results based on realistic map data and
traffic models demonstrate that our scheme can effectively
reduce communication overhead with acceptable delay.

Categories and Subject Descriptors

H.4.3 [Information Systems Applications]: Communi-
cations Applications; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design—~Network
communications, Wireless communication

General Terms

Algorithms, Design, Performance

Keywords

Vehicular networks, Data aggregation, Routing

1. INTRODUCTION

Vehicular Ad hoc Networks have been regarded as an
emerging and promising field in both industry and academia.
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It has the potential to improve the efficiency and safety of
future highway systems. One good example is traffic con-
gestion detection. Once a vehicle detects the number of its
neighboring vehicles exceeds a certain limit, it will broadcast
a warning to the vehicles following behind. This warning
could travel a rather long distance so that vehicles, possi-
bly several kilometers away, can have enough time to choose
an alternate route. Since each vehicle in VANETS is able
to detect traffic conditions and generate traffic reports dis-
tributedly and independently, a great amount of redundant
reports can be generated and forwarded in the network, con-
suming considerable bandwidth.

Bandwidth limitation and channel collision could be se-
rious issues for VANET communications. Dedicated Short
Range Communications (DSRC) [1] is a physical and MAC
layer communication protocol for VANETs. In DSRC, the
communication range (or the interference range) can be up
to 1000m, while the data rate is only 6 to 27 MBPS [1]. A
growing concern is bandwidth limitation and channel col-
lision. Imagine the rush hour traffic, it is very likely that
there are hundreds of vehicles within the range of 1000m,
all of which compete and interfere with each other for the
limited channel resource. Moreover, the channel is shared
with a variety of applications including safety applications.
Bandwidth limitation and channel collision may even impair
the availability of safety applications.

Data aggregation could be a potential approach to relieve
this problem. It consists of a variety of adaptive methods
which can merge information from various data sources into
a set of organized and refined information. The process of
data aggregation can be performed in-network so that com-
munication overhead can be effectively reduced soon after
redundant information is generated. It can be applied to
any distributed information collection application, such as
sensor networks and vehicular networks.

Existing data aggregation techniques cannot meet the re-
quirements of VANETSs environments. In sensor networks,
researchers have proposed a number of structure-based ag-
gregation schemes [9][8][10][12][13], which need to establish
a fixed routing structure in advance. Certainly, they are not
applicable to dynamic VANETSs environments. Fan et al.
[6] proposed a structure-free aggregation protocol based on
randomized waiting. However, this probabilistic approach
cannot guarantee aggregation of packets from a single event
source. Later, the authors presented a semi-structured ap-
proach [7] to improve the aggregation degree, but this ap-
proach still needs to maintain a routing structure. Several
VANET projects, such as Self-Organizing Traffic Informa-



tion System(SOTIS) [20][19] and TrafficView [15], are also
related to data aggregation. However, their simplest ap-
proach, periodical rebroadcasting, could further increase the
chance of channel collision [18].

This paper is motivated by two unique features of VANETS.

First, unconstrained by power supply, the powerful on-board
computer can eavesdrop the channel and log every channel
transmission into its storage. Later, when a traffic report
arrives at this node, previous local observations can facil-
itate aggregation decisions. Second, traffic information is
not delay sensitive, and traffic conditions don’t change a
lot within a short period. Even a delay of tens of seconds
is still acceptable. This delay-insensitive property provides
us an opportunity to trade off increased delay for reduced
communication overhead.

In this paper, we propose a data aggregation scheme for
VANETS, namely, Catch-Up. First, we define the aggrega-
tion problem in VANETS, which is quite different from that
in sensor networks. The basic idea in this scheme is to insert
a delay before forwarding a report to the next hop. How-
ever, our scheme makes this delay more controllable in order
to increase the probability that a report can be merged with
reports ahead or reports behind. Intelligent delay control
policies are made based on local observations of individual
vehicles. We design a future reward model to define the ben-
efits of different delay-control policies, and then we establish
a decision tree to help a vehicle to choose an optimal pol-
icy from the perspective of long-term rewards. The Catch-
Up scheme has a desirable property that for a given time
frame and a given road section, the scheme can guarantee
to aggregate all traffic reports into a single report within a
certain distance. This property is particularly appealing for
the facts that traffic reports could travel tens of kilometers,
and a highly aggregated report could save a lot in commu-
nication overhead. We conducted simulation experiments
with NS2 [3] and GrooveNet [2][14], which demonstrate the
effectiveness of the scheme we developed.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces related work. Section 3 presents the system
model for our scheme. Section 4 describes the details of our
aggregation scheme. Section 5 discusses two properties of
our scheme. Section 6 presents simulation results. Section
7 concludes the whole paper.

2. RELATED WORK

In mobile ad hoc networks, data aggregation is studied in
two main aspects: routing-related and data-related aspects.
The routing-related aspect focuses on routing problems such
as when and where two (or more) packets can meet each
other and then be aggregated, while the data-related aspect
focuses on the coding, calculation, and compression of ag-
gregatable data from mutiple packets. In this paper, we only
consider the routing-related aggregation in VANETS.

In the routing-related aspect, great efforts have been made
in ad hoc networks in the past few years. We classify the ex-
isting data aggregation schemes in the literature into three
categories: 1) Structured Aggregation. In this category of ap-
proaches [9][8][10][12][13], a fixed forwarding structure, such
as forwarding tree, is established in advance, and then, pack-
ets can be aggregated at the tree forks. These fixed-structure
approaches can meet the requirement of simple queries in
sensor networks, but they incur too much communication
overhead in constructing and maintaining tree structures
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and are not applicable to dynamic environments; 2)Struc-
tureless Aggregation. Boulis et al. [4] proposed a flooding-
based periodic aggregation scheme, but his scheme is con-
strained to simple exemplary queries such as MIN MAX. Fan
et al. [6] proposed a structure-free data aggregation proto-
col. However, his approach is a probabilistic approach and
can not guarantee optimal aggregation of packets from a sin-
gle event source. In VANETS, two projects, SOTIS [20][19]
and TrafficView [15], also implemented simple data aggre-
gation mechanisms. In these schemes, traffic information
is collected, aggregated, and rebroadcasted by each node
in a periodical and stochastic manner. However, period-
ical broadcast could dramatically increase communication
overhead, potentially impairing the functionality of other
applications in VANETS, as pointed out in [17][18]. 3)Semi-
structured Aggregation. Fan el al. later proposed a semi-
structure aggregation scheme [7], intended to combine the
benefits of structured and structureless aggregation. How-
ever, actually, this approach introduces more complicated
aggregation structures, which are not suitable for dynamic
environments.

In the data-related aspect, the work focuses on data rep-
resentation and process in data aggregation. In TAG [12],
the authors studied the properties of aggregation functions
(MAX, MIN, AVERAGE, etc.). Nath [16] and Considine
[5] use probabilistic counting to improve the resilience of
data aggregation in sensor networks. Lochert et al. [11]
also applied probabilistic counting to a duplicate-insensitive
aggregation scheme for VANETSs.

Based on above analysis, we can find that existing ap-
proaches cannot meet the application requirements in the
dynamic environment of VANET'S, and we are motivated to
study the problem of communication-efficiency in data ag-
gregation in VANETS.

3. SYSTEM MODEL

In this section, we introduce the system model which is
applicable to our aggregation scheme.

Aggregatable Reports. A physical event can be a change in
traffic conditions. For example, from an individual vehicle’s
point of view, a change in the number of neighboring vehicles
can be an event. The generation of reports is event-driven,
and any vehicle traveling on a road can generate a report.
If there are no changes in traffic conditions, no reports need
to be generated. We divide roads into road sections and
divide the time axis into time frames. If two reports are
generated from the same road section and from the same
time frame, they are called two aggregatable reports. We
define Event Frame as a tuple (p1,p2,t1,t2), where p; and
p2 are the starting and ending positions of a road section
and ¢; and t2 are the starting and ending time of a time
frame. In other words, two aggregatable reports originate
from the same event frame.

However, redundant event reports may be generated for
two reasons. 1) The length of a road section can be longer
than a vehicle’s signal range. Two vehicles, out of the signal
range of each other, may generate two reports, which repre-
sent two traffic conditions at two locations respectively. 2) A
vehicle may miss a report from its immediate neighbor due
to packet loss and then generate a second redundant one.
For these reasons, in-network data aggregation is necessary
to reduce redundant reports and improve communication ef-
ficiency.
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Figure 1: Dissemination tree. If data from differ-
ent events are propagating in the same direction,
they can be aggregated for reducing communication
overhead.

—> Dissemination direction for event A

——-—-> Dissemination direction for event B

Our aggregation goal is to generate a single overview re-
port for all aggregatable events from an event frame (p1, p2,
t1,t2). Of course, if no events happen in an event frame, no
overview report is generated.

Data Dissemination. As soon as a report is generated for
a local event, it will be disseminated to any traffic (vehicles)
coming toward this road section. Reports have the same pre-
defined maximal dissemination distance. On a straight road,
reports can be propagated with the help of data forwarding
protocols in VANETS (such as MDDV [21]). At road in-
tersections, a report is duplicated, and each copy goes to
one branch. We can have a dissemination tree rooted at the
vehicle which generates the report. We can have multiple
dissemination trees rooted at different vehicles in the same
road section, and our work is to merge these tree branches.
These trees are partially overlapped and aggregation can
only happen at the overlapped sections, as shown in Fig.1.

Aggregation. There are two aspects for aggregation: data-
related and routing-related. In the data-related aspect, two
or more reports can be merged into one report with aggrega-
tion functions such as MAX,MIN,AVG, or the probabilistic
aggregation [11]. We also assume that the aggregation op-
eration is not reversible. That is, once two or more reports
are aggregated, they can no longer be split. The routing-
related aspect deals with how two aggregatable reports can
meet each other at the same node (vehicle) and at the same
time, and that’s exactly our task in this paper.

4. DISTRIBUTED COORDINATED
AGGREGATION

The motivation behind our design is that, in order to make
reports meet each other, we must have some reports go faster
and others go slower. We can control the forwarding speed
by applying a delay before forwarding a report to the next
hop. Then, we need to design a distributed scheme to help
individual vehicles control forwarding delays in an intelligent
manner that reports have a better chance to meet each other.

The uniqueness of our problem make it different from
those problems in existing decision making algorithms. First
of all, each vehicle can only obtain a partial observation of
the world, and the observation could be incomplete and out-
dated. Second, this is also a distributed cooperation prob-
lem. Vehicles need to make local decisions to achieve bet-
ter global performance (reduced total communication over-
head). Finally, we cannot introduce much extra communi-
cation overhead for node coordination. In other words, if
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we allow vehicles to communicate with each other for bet-
ter cooperation, this may counteracts the original purpose
of reducing communication overhead.

In Section 4.1, we introduce a global Markov Decision
Process (MDP) model to describe the problem from a global
perspective. In Section 4.2, we introduce a distributed MDP
model which is applicable to our problem. The model ex-
plains the relation among internal states, local observations,
and actions. In Section 4.3, we define the reward function to
evaluate potential future rewards, and we also introduce the
concept of virtual report to facilitate the cooperation among
vehicles. In Section 4.4, we propose to use the decision tree
to find an optimal policy. In Section 4.5, we discuss sev-
eral practical issues when implementing our scheme in real
VANET environments.

4.1 Global MDP Model

We first introduce a global Markov Decision Process (MDP)
model for better understanding of the problem from the
global perspective.

The global MDP model can be described as a tuple (S, A, U,
Ry, T) , where

e S is a finite set of the world states;

e A is a finite set of actions a vehicle can perform, and
in our scheme we define A = {WALK, RUN};

U is the set of all possible action vectors that can be
performed by all vehicles in the system, and U = A",
where n is the total number of vehicles;

e R;: S x A—R,is the global reward function;

e T: SxU— S, is the global transition function.

A world state can be regarded as a vector of states of all
reports in the system, ie., s = (r',72,...,7"), s € S. We
define two actions for a vehicle to process each individual
report: WALK and RUN. The purpose of WALK and RUN
is to insert different delays before the vehicle forwards the
report to the next hop. The RUN action applies a short
delay and the WALK applies a longer delay. WALK is in-
tended to let the vehicle wait longer for future arrivals of
aggregatable reports, while RUN is intended to forward the
report quickly in the hope that the report can be merged
with reports ahead.

We define vw arx and vrun as the physical speed (in me-
ters per second) at which a report can be forwarded among
vehicles. In Section 4.5, we introduce how this is imple-
mented in pratice.

Actually, it is infeasible for individual vehicles to obtain
global state s, global reward R, as well as the transition
model T'(s,u,s’), and it is infeasible to implement such cal-
culation in practice. Based on this global model, we design
a distributed MDP model for each individual vehicle.

4.2 Distributed MDP Model

In this subsection, we introduce a distributed MDP model.
This model is designed for individual vehicles and tries to im-
prove global performance through distributed cooperation.
We define the model and introduce the main components in
the model.

Our distributed MDP model can be described as a tuple
(S,A,U,T,Q, Ry, B, 1), where
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Figure 2: Distributed MDP model.

e S U, A, T have the same meanings as them in the global
model;

e () is a finite set of local observations a vehicle could
obtain;

e B is a finite set of internal states, which is an incom-
plete estimation of the world state.

e R;: B — R, is the expected reward function;

e II: B — A, is the policy, which establishes a mapping
from current internal states to the next action.

In general, a vehicle interact with its environment via ob-
servation and action, as depicted in Fig. 2. The outside
world can provide each vehicle with an incomplete obser-
vation. Each vehicle has two components: State Estima-
tor(SE) and Decision Maker (IT). The state estimator uses
local observations as input, and then calculates an estimate
of the world state, which is represented as internal state
B. Then, the decision maker uses the internal state to esti-
mate potential future rewards, and finally make a decision
a, a € A.

The observation is defined as a set of observed reports,
o= (0", ...,0%, ...,0%), where 0" is a tuple (, trime_stamp, Vrco)-
Actually, each observation is an overheard report, which was
transmitted in the channel. r is the report; ttime_stamp is the
time stamp when this report was overheard; vy, is the next
hop receiver (vehicle) of this report.

The internal state is defined as a set of estimated re-
port positions, b = (b(r'), ..., b(r%), ..., b(r?)), where b(r?) is
a probabilistic distribution of report r%’s position. Since we
know the minimal and maximal speeds of a report (vwarLk
and vruN), we can calculate the position range of report 7
at a given time ¢, [p(vwark,t),p(vrun,t)]. For simplicity,
we can assume that the position of report r* is uniformly
distributed over range [p(vwark,t),p(vrRuN,t)].

4.3 Expected Future Reward and
Coordination

In this subsection, we first define the expected future re-
ward function for an arbitrary policy, and then we introduce
the concept of virtual report in order to improve cooperation
among vehicles.

We can use 7 to represent a complete policy from now
to the future, i.e. a sequence of actions. Then, we can use
the reward function to evaluate the expected reward value
of this policy over current internal belief state b. The local
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reward function can be written as

Ry(m) = B(Y_7'wi), (1)

where 7y is a discount factor for future rewards, and wy, t > 1,
is a future reward based on policy 7. In our model, if no
aggregation happens at time ¢ for the current report, then
the reward, wy, is ZERO; otherwise, the reward is the saved
communication overhead for two merged reports, described
as follows:

cost(r?) + cost(r?) — cost(agg(r, 7))

wt(ri7rj) = 2 )

(2)

where cost(r?) calculates the rest communication overhead
for report r¢, and agg(-) is the merge function, which merges
two reports into one.

Since we know the predefined maximal propagation dis-
tance for each report, we can calculate the rest propagation
distance for each report. We can also approximately regard
the communication overhead function cost(-) as a function
of propagation distance.

Further, given a policy = = (a1, az, ..., at, ...), report * can
calculate a sequence of its future positions, (p1, p2, D3, ..., Pt, -.-).
Based on the current vehicle’s internal states, the vehicle can
calculate the expected reward if report % is merged with re-
port 77 at time ¢:

b(rjvpt)wt(ri7 Tj) ’

®3)

where b(rj7pt) is the probability that report 77 is at position
p: at time t. Finally, we get the total average reward for
policy 7 based on current belief states:

> Yi<j<q PO p)we (', 7)

Ry(m) = P

) (4)

t>1

where ¢ is the number of overheard reports.

We can regard our problem as a cooperative game, where
some vehicles need to slow down, while the others need to
speed up. A vehicle should have both reports ahead and
possible reports behind considered so that it can make a
better decision. Based on this motivation, we introduce a
concept of virtual report to improve the cooperation among
vehicles. The virtual report is an estimation of a possible
report behind.

The virtual report is assumed to be trying to catch up
with the current vehicle. Then, the problem is what’s the
expected reward if the current report slows down (WALK)
and waits for the follower.

First we define a report arrival model as follows. The
arrival event of a report is described as a random variable
A. Here, “arrival” means that a vehicle receives a report.
Let arr(t) be the density function of random variable A. In
queuing theory, the most common choice for A is the expo-
nential distribution, so we can describe the density function
as

arr(t) = Xe

where A is the arrival rate.

The practical meaning of A can be the event generation
rate of a road section. Since each vehicle maintains a traffic-
state list of the road sections ahead, a vehicle can calculate
A with the history data in its memory.



Based on this arrival model, we can insert an internal
state, b(r?), into the vehicle’s internal states, i.e. b = (b(r°),
b(r'),...,b(r?). Here, r° represents the virtual report.

We suppose report ¢ is on the current vehicle. Given pol-
icy m, we can calculate report r'’s future position p; at time
t. We suppose that at time ¢; the virtual report arrives at
the current vehicle, and at time 2 the virtual report catches
up with report 7*. Through simple deductions, we can easily
obtain

Pty — Po

VRUN

t1 =12 — (5)
where po is the current vehicle’s position and p, is the future
position where the virtual report catches up with report 7.

Then, the probability that report r* and the virtual report
can meet at time ¢ is

b(r°, 1) = / arr(ts — P20, (6)
ta €[t t+1] VRUN

We can further change the form of this equation:

b(r’,t) = / arr(wtz)dtz ) (7
ta€lt,t+1]

VRUN

where @ is the average forwarding speed of report r* between
po and p,, which can be calculated based on the policy .
It’s evident that the more closer to vru v the average speed
¥ is, the less possibility that report r* could encounter the
virtual report. In other words, the equation proves that the
policy = for report r* will affect the possibility of encounter-
ing the virtual report.

Finally, we establish the belief state for both overheard
reports (local observations) and the virtual report. The next
step is to determine the optimal policy 7 based on the belief
states.

4.4 Decision Trees

In this section, we use a decision tree to find the optimal
forwarding policy 7 over the current vehicle’s belief state.

Fig. 3 is a good example of decision tree. As shown in
the figure, the decision tree is a binary tree. At each node,
we have two choices, WALK and RUN, which lead us to the
left child node or the right. A path from the root node to a
leaf node represents a possible policy 7.

At a node in a given path, we can calculate the corre-
sponding node reward :

o Zlgqu b(rjfpt)wt(riv Tj)
7 .

The path reward can be obtained as follows:

(8)

Wnode (t)

wpath(ﬂ-) = Z ﬂytwnode(t) ) (9)
t

where « is the future reward discount. After we explore all
possible paths, we can obtain an optimal path, i.e. optimal
policy 7*.

In Fig. 3, we can find an example of optimal policy. In this
policy, report ' first chooses WALK; at time ¢, report r°
could be aggregated with the virtual report 7° with reward
wy; after that, report r* changes to RUN; at time ¢3, report
r* could be aggregated with report r/ with reward ws. Of
course, report 7* is not really merged with the virtual report.
This is only intended to encourage report r* to cooperate in
some conditions.
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D Aggregation

—> Policy Path

Figure 3: Decision tree for potential forwarding poli-
cies.

After the vehicle obtains the optimal policy 7 for report
7%, the vehicle will execute the first action in the policy,
i.e., WALK or RUN to the next hop. Since we don’t want
to increase the communication overhead, report will be for-
warded without a decision tree or anything else. After re-
ceiving the report, the next-hop vehicle will set up a new
decision tree based on its local observations.

The computational complexity of this search algorithm is
O(2"), where n is the height of the tree. We can add some
constraints to the search path to reduce the complexity. For
example, if at most ¥ WALK actions are allowed in one
policy, then through computational complexity analysis, the
complexity is reduced to O(n*) (k is a constant). Since there
is only one virtual report behind the current vehicle, k can
be used to serve as a parameter to control the degree of
cooperation. The bigger k is, the more willing a vehicle is
to cooperate with reports behind it.

4.5 Other Issues

In this subsection, we discuss several other issues in our
aggregation scheme.

In order to control report forwarding speed (WALK or
RUN), a vehicle can insert an intentional delay, At, before
it forwards the report to the next host. Since vehicles are
equipped with GPS devices, and their time can be synchro-
nized, it’s easy to calculate an appropriate delay At to match
the designated speed of a report. In this way, vwarkx or
vruN can be set to a physical speed in meters per second.

Since the main task of our scheme is only to control the
forwarding delay, our scheme runs very well with existing
VANET forwarding protocols, such as, MDDV [21], VADD
[22], etc. A vehicle chooses a next-hop candidate from its
neighbor list, and forwards a report to the next hop. The
only requirement of our scheme is that each vehicle keeps
eavesdropping the channel and logs all transmissions in the
channel. Actually, MDDV [21] already requires that the
forwarding is broadcast-based (each neighbor is supposed
to receive the packet being forwarded) in order to increase
system resilience.

Since each vehicle independently chooses a next-hop for-
warding candidate, it’s possible that a report may overtake
another report, and in this case, these two aggregatable re-
ports are still in two vehicles. For example, in Fig.4, vehicle
B is holding report ! and vehicle A forwards report 72 to ve-
hicle C. However, meantime, vehicle B also receives report
r2 by eavesdropping, so vehicle B performs the aggregation
operation and generates the aggregated report r*4r2. Then,
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Figure 4: Forwarding and aggregation.

the next step is to eliminate the redundant copy of report
2
.
We can use bloom filter (or its variants) to eliminate the
redundant report copies. Bloom filter is a space-efficient

probabilistic data structure that is usually used to test whether

an element is a member of a set. Then we can have each
report attached with a short bloom filter table, which in-
cludes information of the set of previous reports which are
merged into the current report. Later, a vehicle just needs
to look up the table to make a judgement. For example,
in Fig.4, vehicle C is holding report 72 and later vehicle C
receives report r! + 2 by eavesdropping. By checking the
bloom filter table in report r* 4+ 2, it is convinced that re-
port 72 is already merged in report r' + 72. In this way,
vehicle C just discards report 72. Of course, there is always
a possibility that vehicle C' may miss report r* + 2 due to
varying channel conditions. In this case, report r? will later
be discarded by any vehicle which receives report 7' +r? by
eavesdropping.

In addition, redundant report copies may also appear due
to multipath forwarding. For example, when a report arrives
at an intersection, we have to duplicate this report and send
a copy to each direction. However, somehow two copies may
meet each other again at another intersection due to the
special road topology. In this situation, we can also use the
bloom filter method to eliminate the redundant copies.

5. ANALYSIS

In this section, we explore several properties of our aggre-
gation scheme.

Definition 1. Given an event frame {(p1,p2,t1,t2), con-
vergence time is the time period from time t1 to the moment
when all reports from a single event frame are merged into
one report (an overview report for this event frame), and
convergence distance is the distance between the road sec-
tion and the position where the final overview report is born.

Based on above two definitions, our scheme have two prop-
erties. To simplify the analysis complexity, we assume the
communication channel is ideal. That is, no extra latency or
packet loss is caused due to the channel reason, and reports
can be forwarded freely over the underlying communication
networks.

Proposition 1. Given an event frame (p1,p2,t1,t2), the
convergence time has an upper bound:

(p2 — p1)vruN + (t2 — t1)VRUNVW ALK
vwALK (VRUN — YW ALK)

chg S

)

4 q\ 4 \ 4 q\\
i i i
N W N

Figure 5: Convergence time and distance.

and the convergence distance also has an upper bound:

(p2 — p1)vrun + (t2 — t1)VRUNVW ALK
Dcvg <
UWALK(URUN - UWALK)

*UWALK -

PrOOF. Consider an extreme example shown in Fig. 5.
This event frame generates a sequence of reports (', ..., 7%).
We suppose that at time ¢; report ! is generated at position
p2; at time ty report r? is generated at position ps; all other
reports are generated between time t; and time ¢2. There-
fore, we can regard report r! as the far-ahead report, and
report r? as the far-behind report, and then we only need to
consider the behavior of reports r! and 79 to determine the
convergence distance and convergence time.

We consider the worst case, in which all reports, except
report 79, are born close to position p2. Thus, when report
r? goes through the road section (p1,p2), it cannot find any
observation, so it just WALKSs in the hope of some reports
existing behind it. When report r? arrives at position ps, it
get all observations of other reports and begin to catch up,
RUN. On the other side, since there is no other report from
the same event frame ahead of report !, report r! would
always keep WALKing.

We claim this is a worst case, because, first, reports r?
and r! have the maximal difference in both time and space;
in addition, the last report r? doesn’t have a choice ex-
cept WALKing slowly which further extends the convergence
time to the extreme value. Based on this reasoning, we can
get the above inequalities through simple algebraic calcula-
tions. [

From Proposition 1, we observe that when the lifetime of a
report has exceeded the convergence time upper bound, the
report doesn’t need to WALK slowly any more. Instead, the
report can move at the fastest speed. Here, we define a new
action FFLY . With this action, when a report arrives at a ve-
hicle, it will be immediately forwarded to the next hop with
no deliberate delay. The only delay is MAC-layer transmis-
sion delay. We can calculate vpry given MAC-layer delay
and transmission range. We can easily derive the following
proposition.

Proposition 2. The total latency for a report to be prop-
agated to the mazximal dissemination range Dgism has an
upper bound:

D ism T Dc'u
Tdism S maX(Tc'Ug) + d maX( g) .
VFLY

For example, we set t; = 0s, t2 = 30s, p1 = Om, p2 =
500m, vwarx = 100m/s, vrun = 1000m/s, Dgism =



Figure 6: Simulation map.

Table 1: Simulation Configurations

System Parameter Value
Road Length 10km
Vehicle Number 300
Road Section Length 1km
Time Frame 30s
Communication Range 250m
MAC layer 802.11
Mobility Model StreetSpeedModel[2]
Trip Model DjikstraTripModel[2]

10km, Atyrac = 50ms, transmission_range = 200m. We
can get Tepg < 44.4s, Deyg < 4.4km, Tyiom < 45.4s5. We
find that D.ywy << Dgism, which shows that the communi-
cation overhead after the convergence point could be effec-
tively reduced, because all reports from one event frame are
aggregated together.

In this section, for the simplicity of analysis, we assume
that there are heavy traffic on the roads and the network
is connected. If the network is partitioned, the total dis-
semination latency is very difficulty to model. However, our
scheme still can facilitate the aggregation operations within
a connected part of the network.

6. SIMULATION EVALUATION

In this section, we uses simulations to evaluate our aggre-
gation scheme and compare our approach with Randomized
Waiting [6].

6.1 Simulation Design

In our experiment, we simulate a scenario of morning rush
hour in Detroit. 300 vehicles are rushing on 194 (Interstate
Highway) in both directions. However, traffic congestion
happens at one section of 194, which is close to Woodward
Avenue. This traffic congestion information is propagated
and aggregated along 194 so that vehicles in 194, 10km away
from the congestion section, will know the congestion ahead.
The map of the scenario is shown in Fig. 6. Due to the size
of the scenario and the simulator’s constraints, we mainly
focus on how traffic updates are propagated along a 10km-
long distance in 194.

Our simulation is based on NS2 [3] and GrooveNet [2][14].
GrooveNet is a VANET simulator, which provides a variety
of useful models for VANET simulations, such as mobility
models, trip models, etc. On the other hand, NS2 presents
a lot of well-developed low-layer protocols as well as easy
programming interfaces. We think a combination of these
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tools would be a good choice. We first used GrooveNet to
design the simulation scenario and generate mobility trace
files, and then we used NS2 to load these trace files and run
our aggregation protocol. Our protocol is implemented on
NS2.

The system parameters used in our simulation are shown
in Tab. 1. The road section length is set to 1km, and the
aggregation time frame is set to 30s, meaning that we are
expecting an overview report of a 1 km-long road section
every 30 seconds. Of course, if no events happen in a 30s
time frame, no overview reports are generated. The commu-
nication range is set to 250m, which means that even when
vehicles are in the same event frame, they may not commu-
nicate with each other directly so that aggregation protocols
can make their contributions. We run the simulation for 10
minutes and have all the packet transmissions logged.

We compared our scheme with Randomized Waiting [6].
To our knowledge, this is the only existing aggregation tech-
nique that could be adapted to highly mobile environments.
Since Randomized Waiting has a different application back-
ground, we slightly change it in order to fit it into the
VANET environments. We suppose that, with this scheme,
each vehicle applies a randomized delay before forwarding a
report to the next hop. During this delay, there is a proba-
bility that the vehicle can receive other reports for aggrega-
tion. This is a probabilistic approach where reports can be
probabilistically aggregated with other reports behind.

To make a fair comparison, we scale these two protocols
to the same total delay level, that is, the total end-to-end
delay in 10km. The motivation of doing this is to scale
these two protocols to the same drivers’ expectations. For
example, a driver hopes that the traffic updates 10km away
are fresh enough within 30s. For our scheme, given a set
of system parameters, we can calculate the total delay of
our protocol, Ty;sm ,using Proposition 2 in Section 5. We
assume that the physical distance of each hop is about 200m,
so 10km needs about 50 hops. Given a total delay, we can
obtain an average one-hop delay, At = Tg;sm /50, for each
hop. For Randomized Waiting, we choose a random number
in (0,2A¢t) as the delay in each hop. In this way, we scale
these two protocols to the same users’ expectation, and then
evaluate their communication overhead to the system.

6.2 Simulation Results

Our simulation focuses on two important metrics for ag-
gregation protocols: communication overhead and delay.

Fig. 7 presents the relation between propagation distance
and the number of packets pass that location. CATCHU P
(100,1000) represents our protocol with a WALK speed at
100m/s and a RUN speed at 1000m/s; CAT'C HU P(200, 2000)
has corresponding meanings. All protocols show a reduced
report number with increased distance, which proves the
contribution of aggregation operations. However, after the
point at about 3km, our aggregation protocol shows appar-
ent better performance, reducing as much as 50% reports
than Randomized Waiting. The majority of aggregation
operations in our protocol are performed close to the road
section, because as soon as reports find evidence of other
reports, they will make an optimal decision to catch up
them, whereas Randomized Waiting cannot control its wait-
ing time, and its aggregation operations are performed prob-
abilistically throughout the propagation trip. We can see
that the RW curve in the figure goes down more smoothly.
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Figure 8: Delay vs. distance.

In our simulation, we also observed that a number of pack-
ets were dropped during propagation, and this is the rea-
son which makes the curves of our protocol continue going
down slightly even after the maximal convergency distance
(The theoretical maximal convergence distance is 4.4km for

CATCHUP(100,1000), and 7.6km for CATCHUP(200,2000).).

Table 2 shows the total transmissions in our simulation.
It’s evident that our aggregation scheme outperforms Ran-
domized Waiting by a significant amount in total communi-
cation overhead. Table 2 also shows the theoretical maximal
convergence distance and convergence time for CATCHU P
(100,1000) and CATCHU P(200,2000). These theoretical
results are worst-case upper bounds. From Fig. 7, we can
estimate that the actual convergence distance is about 3km
for CATCHUP(100,1000), and about 5km for CATCHUP
(200,2000), which are much less than the theoretical values.

Fig. 8 shows the relation between delay and propagation
distance. The curves describe the average delay observed
at a given location, and at each location point, a jittering
bar is presented to show the observed minimal delay and
maximal delay. We can observe this figure together with
Fig. 7. It’s easy to find that the majority delay incurred
by our protocol is bound with aggregation operations be-
fore the convergence time. Since after the convergence time,
reports in our protocol enter FLY mode, the later delay is
almost insignificant. Also, the delay of Randomized Waiting
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is bound with its aggregation operations. However, since its
aggregation operations are performed all over the trip, the
delay is proportional to the distance. The performance of
our protocol has nothing to do with propagation distance.
Even when it applies to a longer distance propagation, the
majority of aggregation operations are still focused on the
road section close to the event source and the total delay
time is up bound by a computable limit.

Please note that traffic information is not delay sensitive,
and even tens of seconds of delay are still acceptable. Al-
though it seems that Randomized Waiting causes less de-
lay than our scheme, our scheme can reduce the commu-
nication overhead significantly, which is more important to
bandwidth-limited VANETS.

In general, all existing aggregation approaches are trying
to achieve a better tradeoff between delay and communica-
tion overheads. Structure-based aggregation protocols, such
as [12], make a forwarding schedule in advance to achieve
temporal convergence. Randomized Waiting [6] uses random
delays to remove the requirements of routing structures and
to apply to the mobile environments. Our protocol further
makes the delay time more controllable based on heuristic
local observations. Randomized Waiting uses random de-
lay to ‘wait’ for reports behind. But our protocol not only
‘waits’ for reports behind, but also ‘catches up’ with reports
ahead.

7. CONCLUSION

In this paper, we study the aggregation problem in highly
mobile environments, VANETs. We propose an aggrega-
tion scheme, Catch-Up, in which traffic reports can ‘catch
up’ other related reports based on heuristic local observa-
tions. Our contribution mainly focuses on introducing the
idea of adaptively controlling forwarding delay to facilitate
in-network data aggregation. However, extended work re-
mains to be done to implement this idea in real applica-
tions. For example, one problem is what are the optimal
delay values for WALK and RUN for our scheme; also, the
performance of our scheme in partitioned networks is to be
evaluated and improved.
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