Peer-to-peer networks — (due till April 22, 2009)

Exercise 6.1:

In Chord, a node forwards a request to a neighbor which was addressed by what we called the
i-th finger. Implement the function (in java, C or pseudocode) with the signature given below.
It should return the best fitting neighbor (don’t overshoot the mark, we can not go back easily)
from the list successor [] who is best suited for the key hash_value. You can assume
that our hashes fit into a long integer. Our own 1D is: node.lD

long returnFinger(long successor[], int no_entries, long hash_value);

Solution 1:

long returnFinger(long successor[], int no_entries, long hash_value)

{
long best_i = -1;

long relative_hash = (hash_value - node.ID);
if(relative_hash < 0) relative_hash = (1 << no_entries) + relative_hash;

for(int i = 0; i < no_entries; i++) {
if(relative_hash >= (1 << 1))
best_i = 1;
} // for

return successor[best_1i];
} // returnFinger

1/

£
(%)
=
-
-
=
+—
(T
=
%]
—
v
=
=
-
|
=
-~
=
(1%
£
S
G
=
(%)
=~
o
wv
=]
~
(1~
—
(a1

<
c
©
=
[}
%)
<
v
C
L
%)
9]
S
o
<
-
—~
=2
P
Y
o)
2
[
i
S d
o
c
©
<
=

Peer-to-peer networks

Exercise 6.1:

Solution 2:

long returnFinger(long successor[], int no_entries, long hash_value)

{

long relative_hash = (hash_value - node.ID);
if(relative_hash < 0) relative_hash = (1 << no_entries) + relative_hash;
long best_i = (int)(log(relative_hash)/log(2));

return successor[best_i];
} // returnFinger

Praktische Informatik TV - Universitat Mannheim

Wolfgang Effelsberg / Thomas Haenselmann

rechnernetze & multimediatechniHKk

Peer-to-peer networks — (due till April 23, 2008)

Exercise 6.2: Arrival of a new node in Chord

a) In the lecture, we learned how the Chord protocol manages the key space and
how routing is done. We also saw a brief outline of the insertion of a new
node. The text

chord.pdf

on our homepage gives further details on how the insertion is actually
implemented. Describe the soft-state approach adopted by the designers of
Chord.

Solution:

A new node N queries the network for its own ID and gets its successor S as a
result. 1t then chooses S for its 270 finger and queries the nodes for all other
finders. In addition, N asks S to register him as his predecessor. So far, no one
else except for S knows about N. As a consequence, all nodes in the network
will route to the well-known S and not to N. However, S can route the query
back to N via its predecessor pointer.

Once in a while, all nodes query the network for their finger entries and
sooner or later learn about the existence of N.

Praktische Informatik 1V - Universitat Mannheim

Wolfgang Effelsberg / Thomas Haenselmann

rechnernetze & multimediatechniHKk

Peer-to-peer networks

Exercise 6.2: Arrival of a new node in Chord
b) Can you think of advantages and disadvantages of the soft-state solution?

Solution: Since every node has to update every finger periodically, the effort for
the network is log(N x log(N)) every once in a while. The effort gets worse
with a decreasing time between the updates. A longer time means outdated
finger entries and possibly more effort for the forwarding along the
predecessor-pointers. The frequency of updates depends heavily on the rate
of joining and leaving nodes which are not easy to anticipate and which will
not be constant over time.

c¢) Find a more deterministic solution which does not build on top of a random
choice.

Solution: A node t could store a backward-pointer to every node
that ever included t into its finger table. When getting a
predecessor, t could inform these nodes about the change.
They can then decide to keep their reference to t or rather to
point a the predecessor if appropriate. Still unsolved problem:
If t drops out, other nodes keep pointing at t. The soft-state
approach solved this problem with the continuous updates.

Praktische Informatik 1V - Universitat Mannheim

Wolfgang Effelsberg / Thomas Haenselmann

	Folie 1
	Folie 2
	Folie 3
	Folie 4

