
r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

Pr
ak

tis
ch

e
In

fo
rm

at
ik

 I
V

–
U

ni
ve

rs
itä

t
M

an
nh

ei
m

W
ol

fg
an

g
Ef

fe
ls

be
rg

 /
 T

ho
m

as
 H

ae
ns

el
m

an
n

Exercise 6.1:

In Chord, a node forwards a request to a neighbor which was addressed by what we called the
i-th finger. Implement the function (in java, C or pseudocode) with the signature given below.
It should return the best fitting neighbor (don't overshoot the mark, we can not go back easily)
from the list successor[] who is best suited for the key hash_value. You can assume
that our hashes fit into a long integer. Our own ID is: node.ID

long returnFinger(long successor[], int no_entries, long hash_value);

Solution 1:

long returnFinger(long successor[], int no_entries, long hash_value)
{

long best_i = -1;

 long relative_hash = (hash_value – node.ID);
if(relative_hash < 0) relative_hash = (1 << no_entries) + relative_hash;

for(int i = 0; i < no_entries; i++) {
 if(relative_hash >= (1 << i))
 best_i = i;

 } // for

return successor[best_i];
} // returnFinger

Peer-to-peer networks – (due till April 22, 2009)

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

Pr
ak

tis
ch

e
In

fo
rm

at
ik

 I
V

–
U

ni
ve

rs
itä

t
M

an
nh

ei
m

W
ol

fg
an

g
Ef

fe
ls

be
rg

 /
 T

ho
m

as
 H

ae
ns

el
m

an
n

Exercise 6.1:

Solution 2:

long returnFinger(long successor[], int no_entries, long hash_value)
{
 long relative_hash = (hash_value – node.ID);

if(relative_hash < 0) relative_hash = (1 << no_entries) + relative_hash;

 long best_i = (int)(log(relative_hash)/log(2));

 return successor[best_i];
} // returnFinger

Peer-to-peer networks

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

Pr
ak

tis
ch

e
In

fo
rm

at
ik

 I
V

–
U

ni
ve

rs
itä

t
M

an
nh

ei
m

W
ol

fg
an

g
Ef

fe
ls

be
rg

 /
 T

ho
m

as
 H

ae
ns

el
m

an
n

Exercise 6.2: Arrival of a new node in Chord

a) In the lecture, we learned how the Chord protocol manages the key space and
how routing is done. We also saw a brief outline of the insertion of a new
node. The text

chord.pdf

on our homepage gives further details on how the insertion is actually
implemented. Describe the soft-state approach adopted by the designers of
Chord.

Solution:

A new node N queries the network for its own ID and gets its successor S as a
result. It then chooses S for its 2^0 finger and queries the nodes for all other
finders. In addition, N asks S to register him as his predecessor. So far, no one
else except for S knows about N. As a consequence, all nodes in the network
will route to the well-known S and not to N. However, S can route the query
back to N via its predecessor pointer.
Once in a while, all nodes query the network for their finger entries and
sooner or later learn about the existence of N.

Peer-to-peer networks – (due till April 23, 2008)

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

Pr
ak

tis
ch

e
In

fo
rm

at
ik

 I
V

–
U

ni
ve

rs
itä

t
M

an
nh

ei
m

W
ol

fg
an

g
Ef

fe
ls

be
rg

 /
 T

ho
m

as
 H

ae
ns

el
m

an
n

Exercise 6.2: Arrival of a new node in Chord

b) Can you think of advantages and disadvantages of the soft-state solution?

Solution: Since every node has to update every finger periodically, the effort for
the network is log(N x log(N)) every once in a while. The effort gets worse
with a decreasing time between the updates. A longer time means outdated
finger entries and possibly more effort for the forwarding along the
predecessor-pointers. The frequency of updates depends heavily on the rate
of joining and leaving nodes which are not easy to anticipate and which will
not be constant over time.

c) Find a more deterministic solution which does not build on top of a random
choice.

Peer-to-peer networks

-1-2-4-8

Solution: A node t could store a backward-pointer to every node
that ever included t into its finger table. When getting a
predecessor, t could inform these nodes about the change.
They can then decide to keep their reference to t or rather to
point a the predecessor if appropriate. Still unsolved problem:
If t drops out, other nodes keep pointing at t. The soft-state
approach solved this problem with the continuous updates.

	Folie 1
	Folie 2
	Folie 3
	Folie 4

