
r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

Pr
ak

tis
ch

e
In

fo
rm

at
ik

 I
V

–
U

ni
ve

rs
itä

t
M

an
nh

ei
m

W
ol

fg
an

g
Ef

fe
ls

be
rg

 /
 T

ho
m

as
 H

ae
ns

el
m

an
n

Exercise 6.1: Fingers in Chord

In Chord, a node forwards a request to a neighbor which was addressed by what
we called the i-th finger. Implement the function (in java, C or pseudocode)
with the signature given below. It should return the best fitting neighbor (don't
overshoot the mark, we can not go back easily) from the list successor[]
who is best suited for the key hash_value. You can assume that our hashes
fit into a long Integer.

long returnFinger(long successor[], int no_entries, long hash_value);

The ID of a node can be accessed with

node.ID

Peer-to-peer networks – (due till April 22, 2009)

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

Pr
ak

tis
ch

e
In

fo
rm

at
ik

 I
V

–
U

ni
ve

rs
itä

t
M

an
nh

ei
m

W
ol

fg
an

g
Ef

fe
ls

be
rg

 /
 T

ho
m

as
 H

ae
ns

el
m

an
n

Exercise 6.2: Arrival of a new node in Chord

a) In the lecture, we learned how the Chord protocol manages the key space and
how routing is done. We also saw a brief outline of the insertion of a new
node. The text

chord.pdf

on our homepage gives further details on how the insertion is actually
implemented (read sections „Node arrival“ and „Stabilization Protocol“).
Describe the soft-state approach adopted by the designers of Chord.

b) Can you think of advantages and disadvantages of the soft-state solution?

c) Find a more deterministic solution which does not build on top of a random
choice.

Peer-to-peer networks

	Folie 1
	Folie 2

