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Exercise 6.1: Fingers in Chord

In Chord, a node forwards a request to a neighbor which was addressed by what 
we called the i-th finger. Implement the function (in java, C or pseudocode) 
with the signature given below. It should return the best fitting neighbor (don't 
overshoot the mark, we can not go back easily) from the list successor[] 
who is best suited for the key hash_value. You can assume that our hashes 
fit into a long Integer.

long returnFinger(long successor[], int no_entries, long hash_value);

The ID of a node can be accessed with

node.ID
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Exercise 6.2: Arrival of a new node in Chord

a) In the lecture, we learned how the Chord protocol manages the key space and 
how routing is done. We also saw a brief outline of the insertion of a new 
node. The text

chord.pdf

on our homepage gives further details on how the insertion is actually 
implemented (read sections „Node arrival“ and „Stabilization Protocol“). 
Describe the soft-state approach adopted by the designers of Chord.

b) Can you think of advantages and disadvantages of the soft-state solution?

c) Find a more deterministic solution which does not build on top of a random 
choice.
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