
8. Selected DHT Algorithms

Stefan Götz, Simon Rieche, Klaus Wehrle (University of Tübingen)

Several different approaches to realizing the basic principles of DHTs have
emerged over the last few years. Although they rely on the same fundamental
idea, there is a large diversity of methods for both organizing the identifier
space and performing routing. The particular properties of each approach
can thus be exploited by specific application scenarios and requirements.

This overview focuses on the three DHT systems that have received the
most attention in the research community: Chord, Pastry, and Content Ad-
dressable Networks (CAN). Furthermore, the systems Symphony, Viceroy,
and Kademlia are discussed because they exhibit interesting mechanisms and
properties beyond those of the first three systems.

8.1 Chord

The elegance of the Chord algorithm, published by Stoica et al. [575] in
2001, derives from its simplicity. The keys of the DHT are l-bit identifiers,
i.e., integers in the range [0, 2l − 1]. They form a one-dimensional identifier
circle modulo 2l wrapping around from 2l − 1 to 0.

8.1.1 Identifier Space

Each data item and node is associated with an identifier. An identifier of
a data item is referred to as a key, that of a node as an ID. Formally, the
(key, value) pair (k, v) is hosted by the node whose ID is greater than or
equal to k. Such a node is called the successor of key k. Consequently, a node
in a Chord circle with clockwise increasing IDs is responsible for all keys that
precede it counter-clockwise.

Figure 8.1 illustrates an initialized identifier circle with l = 6, i.e., 26 = 64
identifiers, ten nodes and seven data items. The successor of key K5, i.e.,
the node next to it clockwise, is node N8 where K5 is thus located. K43’s
successor is N43 as their identifiers are equal. The circular structure modulo
26 = 64 results in K61 being located on N8.

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 95-117, 2005.
 Springer-Verlag Berlin Heidelberg 2005

96 8. Selected DHT Algorithms

N8 + 1

N8 + 32

N8 + 16

N8 + 8

N8 + 2

N8 + 4

N10

N10

N15

N18

N24

N43
K38

K43

K26

K49

N8

N48

N57

N10

N29N35

N43

K51

K5K61

N15

N18

N24

Target ID SuccessorIdx

0

1

2

3

4

5

Finger Table of N8

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host
which keys. Black lines represent the fingers of node N8.

8.1.2 Routing

Given a Chord identifier circle, all identifiers are well-ordered and keys and
nodes are uniquely associated. Thus, each (key, value) pair is located and
managed on a single, well-defined node. The DHT is formed by the set of
all (key, value) pairs on all nodes of an identifier circle. The key to efficient
lookup and modification operations on this data is to quickly locate the node
responsible for a particular key.

For a very simple routing algorithm, only very little per-node state is re-
quired. Each node needs to store its successor node on the identifier circle.
When a key is being looked up, each node forwards the query to its successor
in the identifier circle. One of the nodes will determine that the key lies be-
tween itself and its successor. Thus, the key must be hosted by this successor.
Consequently, the successor is communicated as the result of the query back
to its originator.

This inefficient form of key location involves a number of messages linear
to the number of nodes on the identifier circle. Chord utilizes additional per-
node state for more scalable key lookups.

Each node maintains a routing table, the finger table (cf. Figure 8.1),
pointing to other nodes on the identifier circle. Given a circle with l-bit
identifiers, a finger table has a maximum of l entries. On node n, the table
entry at row i identifies the first node that succeeds n by at least 2i−1, i.e.,
successor(n + 2i−1), where 1 ≤ i ≤ l. In Figure 8.1, for example, the second
finger of node N8 (8+21 = 10) is node N10 and the third finger (8+22 = 12)
is node N15. The first finger of a node is always its immediate successor on
the identifier circle.

As a finger table stores at most l entries, its size is independent of the
number of keys or nodes forming the DHT. Each finger entry consists of
a node ID, an IP address and port pair, and possibly some book-keeping

8.1 Chord 97

information. Even for large identifiers, e.g., l = 256, this is a relatively small
amount of data per node which can be efficiently managed and searched. The
routing information from finger tables provides information about nearby
nodes and a coarse-grained view of long-distance links at intervals increasing
by powers of two.

The Chord routing algorithm exploits the information stored in the finger
table of each node. A node forwards queries for a key k to the closest pre-
decessor of k on the identifier circle according to its finger table. When the
query reaches a node n such that k lies between n and the successor of n on
the identifier circle, node n reports its successor as the answer to the query.

Thus, for distant keys k, queries are routed over large distances on the
identifier circle in a single hop. Furthermore, the closer the query gets to
k, the more accurate the routing information of the intermediate nodes on
the location of k becomes. Given the power-of-two intervals of finger IDs,
each hop covers at least half of the remaining distance on the identifier circle
between the current node and the target identifier. This results in an average
of O(log(N)) routing hops for a Chord circle with N participating nodes. For
example, a Chord network with 1000 nodes forwards queries, on average, in
roughly O(10) steps. In their experiments, Stoica et al. show that the average
lookup requires 1

2 log(N) steps.

8.1.3 Self-Organization

The Chord system described so far also needs to allow for nodes joining and
leaving the system as well as to deal with node failures.

Node Arrivals

In order to join a Chord identifier circle, the new node first determines some
identifier n. The original Chord protocol does not impose any restrictions on
this choice. For example, n could be set at random assuming that the prob-
ability for collisions with existing node IDs is low in a identifier space large
enough. There have been several proposals to restrict node IDs according to
certain criteria, e.g., to exploit network locality or to avoid identity spoofing.

For the new node n, another node o must be known which already par-
ticipates in the Chord system. By querying o for n’s own ID, n retrieves its
successor. It notifies its successor s of its presence leading to an update of
the predecessor pointer of s to n. Node n then builds its finger by iteratively
querying o for the successors of n + 21, n + 22, n + 23, etc. At this stage, n
has a valid successor pointer and finger table. However, n does not show up
in the routing information of other nodes. In particular, it is not known to
its predecessor as its new successor since the lookup algorithm is not apt to
determine a node’s predecessor.

98 8. Selected DHT Algorithms

Stabilization Protocol

Chord introduces a stabilization protocol to validate and update successor
pointers as nodes join and leave the system. Stabilization requires an addi-
tional predecessor pointer and is performed periodically on every node. The
stabilize() function on a node k requests the successor of k to return its
predecessor p. If p equals k, k and its successor agree on being each other’s
respective predecessor and successor. The fact that p lies between k and its
successor indicates that p recently joined the identifier circle as k’s successor.
Thus, node k updates its successor pointer to p and notifies p of being its
predecessor.

With the stabilization protocol, the new node n does not actively de-
termine its predecessor. Instead, the predecessor itself has to detect and fix
inconsistencies of successor and predecessor pointers using stabilize(). Af-
ter node n has thus learnt of its predecessor, it copies all keys it is responsible
for, i.e., keys between predecessor(n) and n, while the predecessor of n re-
leases them.

At this stage, all successor pointers are up to date and queries can be
routed correctly, albeit slowly. Since the new node n is not present in the
finger tables of other nodes, they forward queries to the predecessor of n
even if n would be more suitable. Node n’s predecessor then needs to forward
the query to n via its successor pointer. Multiple concurrent node arrivals
may lead to several linear forwardings via successor pointers.

The number of nodes whose finger table needs to be updated is in the
order of O(log(N)) in a system with N nodes. Based on the layout of a
finger table, a new node n can identify the nodes with outdated finger tables
as predecessor(n − 2i−1) for 1 < i ≤ l. However, the impact of outdated
finger tables on lookup performance is small, and in the face of multiple node
arrivals, the finger table updates would be costly. Therefore, Chord prefers to
update finger tables lazily. Similar to the stabilize() function, each node
n runs the fix fingers() function periodically. It picks a finger randomly
from the finger table at index i (1 < i ≤ l) and looks it up to find the true
current successor of n + 2i−1.

Node Failures

Chord addresses node failures on several levels. To detect node failures, all
communication with other nodes needs to be checked for timeouts. When a
node detects a failure of a finger during a lookup, it chooses the next best
preceding node from its finger table. Since a short timeout is sufficient, lookup
performance is not significantly affected in such a case. The fix fingers()
function ensures that failed nodes are removed from the finger tables. To
expedite this process, fix fingers() can be invoked specifically on a failed
finger.

8.2 Pastry 99

It is particularly important to maintain the accuracy of the successor
information as the correctness of lookups depends on it. If, for example, the
first three nodes in the finger table of node n fail simultaneously, the next live
finger f might not be the true live successor s. Thus, node n would assume
that a certain key k is located at f although it is located at s and would
accordingly send incorrect replies to queries for k. The stabilization protocol
can fail in a similar fashion when multiple nodes fail, even if live fingers are
used as backups for failed successors.

To maintain a valid successor pointer in the presence of multiple simul-
taneous node failures, each node holds a successor list of length r. Instead of
just a single successor pointer, it contains a node’s first r successors. When
a node detects the failure of its successor, it reverts to the next live node
in its successor list. During stabilize(), a successor list with failed nodes
is repaired by augmenting it with additional successors from a live node in
the list. The Chord ring is affected only if all nodes from a successor list fail
simultaneously.

The failure of a node not only means that it becomes unreachable but also
that the data it managed is no longer available. Data loss from the failure of
individual nodes can be prevented by replicating the data to other nodes. In
Chord, the successor of a failed node becomes responsible for the keys and
data of the failed node. Thus, an application utilizing Chord ideally replicates
data to successor nodes. Chord can use the successor list to communicate this
information and possible changes to the application.

Node Departures

Treating nodes that voluntarily leave a Chord network like failed ones does
not affect the stability of the network. Yet it is inefficient because the failure
needs to be detected and rectified. Therefore, a leaving node should transfer
its keys to its successor and notify its successor and predecessor. This ensures
that data is not lost and that the routing information remains intact.

8.2 Pastry

The Pastry distributed routing system was proposed in 2001 by Rowstron and
Druschel [527]. Similar to Chord, its main goal is to create a completely de-
centralized, structured Peer-to-Peer system in which objects can be efficiently
located and messages efficiently routed. Instead of organizing the identifier
space as a Chord-like ring, the routing is based on numeric closeness of iden-
tifiers. In their work, Rowstron and Druschel focus not only on the number
of routing hops, but also on network locality as factors in routing efficiency.

100 8. Selected DHT Algorithms

K01

N01
K03

N10

K12K22

K32 N33

K33

N21

N23

Fig. 8.2: A 4-bit Pastry identifier space with six keys mapped onto five nodes.
Numeric closeness is an ambiguous metric for assigning keys to nodes as
illustrated for key K22.

8.2.1 Identifier Space

In Pastry, nodes and data items uniquely associate with l-bit identifiers, i.e.,
integers in the range of 0 to 2l−1 (l is typically 128). Under such associations,
an identifier is termed a node ID or a key, respectively. Pastry views identifiers
as strings of digits to the base 2b where b is typically chosen to be 4. A key
is located on the node to whose node ID it is numerically closest.

Figure 8.2 illustrates a Pastry identifier space with 4-bit identifiers and
b = 2, so all numbers are to the base of 4. The closest node to, e.g., key
K01 is N01, whereas K03 is located on node N10. The distances of key K22
to node N21 and N23 are equal so both nodes host this key to satisfy the
requirements.

8.2.2 Routing Information

Pastry’s node state is divided into three main elements. The routing table,
similar to Chord’s finger table, stores links into the identifier space. The
leaf set contains nodes which are close in the identifier space (like Chord’s
successor list). Nodes that are close together in terms of network locality are
listed in the neighborhood set.

Pastry measures network locality based on a given scalar network proxim-
ity metric. This metric is assumed to be already available from the network
infrastructure and might range from IP hops to actual the geographical lo-
cation of nodes.

8.2 Pastry 101

Leaf Set

103123 103210 103302 103330

Neighborhood Set

031120 312201 120132 101203

Routing Table

031120 1

1100030

100221

0

1

2

3

4

5

101203

103112

103210

0

201303

120132

102303

2

2

312201

132012

3

103302

Node 103220

Fig. 8.3: Pastry node state for the node 103220 in a 12-bit identifier space and a
base of 4 (l = 12, b = 2). The routing table lists nodes with the length
of the common node identifier prefix corresponding to the row index.

Routing Table

A Pastry node’s routing table R (see Figure 8.3) is made up of l
b rows with

2b − 1 entries per row (an additional column in Figure 8.3 also lists the
digits of the local node ID for clarity). On node n, the entries in row i hold
the identities of Pastry nodes whose node IDs share an i-digit prefix with n
but differ in digit n itself. For example, the first row of the routing table is
populated with nodes that have no prefix in common with n. When there
is no node with an appropriate prefix, the corresponding table entry is left
empty.

Routing tables built according to the Pastry scheme achieve an effect
similar to Chord finger tables. A node has a coarse-grained knowledge of
other nodes which are distant in the identifier space. The detail of the routing
information increases with the proximity of other nodes in the identifier space.
Without a large number of nearby nodes, the last rows of the routing table
are only sparsely populated. Intuitively, the identifier space would need to be
fully exhausted with node IDs for complete routing tables on all nodes. In
a system with N nodes, only log2b(N) routing table rows are populated on
average.

In populating the routing table, there is a choice from the set of nodes
with the appropriate identifier prefix. During the routing process, network
locality can be exploited by selecting nodes which are close in terms of a
network proximity metric.

Leaf Set

The routing table sorts node IDs by prefix. To increase lookup efficiency, the
leaf set L of node n holds the |L| nodes numerically closest to n. The routing

102 8. Selected DHT Algorithms

table and the leaf set are the two sources of information relevant for routing.
The leaf set also plays a role similar to Chord’s successor lists in recovering
from failures of adjacent nodes.

Neighborhood Set

Instead of numeric closeness, the neighborhood set M is concerned with nodes
that are close to the current node with regard to the network proximity
metric. Thus, it is not involved in routing itself but in maintaining network
locality in the routing information.

8.2.3 Routing Procedure

Routing in Pastry is divided into two main steps. First, a node checks whether
the key k is within the range of its leaf set. If this is the case, it implies that k
is located on one of the nearby nodes of the leaf set. Thus, the node forwards
the query to the leaf set node numerically closest to k. In case this is the
node itself, the routing process is finished.

If k does not fall into the range of leaf set nodes, the query needs to be
forwarded over a longer distance using the routing table. In this case, a node
n tries to pass the query on to a node which shares a longer common prefix
with k than n itself. If there is no such entry in the routing table, the query
is forwarded to a node which shares a prefix with k of the same length as n
but which is numerically closer to k than n.

For example, a node with a routing table as in Figure 8.3 would send a
query for key 103200 on to node 103210 as it is the leaf set node closest to
the key. Since the leaf set holds the closest nodes, the key is known to be
located on that node. A query for key 102022, although numerically closer to
node 101203, is forwarded to node 102303 since it shares the prefix 102 with
the key (in contrast to 10 as the current node does). For key 103000, there is
no routing table entry with a longer common prefix than the current node.
Thus the current node routes the query to node 103112 which has the same
common prefix 103 but is numerically closer than the current node.

This scheme ensures that routing loops do not occur because the query
is routed strictly to a node with a longer common identifier prefix than the
current node, or to a numerically closer node with the same prefix.

8.2.4 Self-Organization

In practice, Pastry needs to deal with node arrivals, departures, and failures,
while, at the same time, maintaining good routing performance if possible.
This section describes how Pastry achieves these goals.

8.2 Pastry 103

Node Arrival

Before joining a Pastry system, a node chooses a node ID. Pastry itself allows
arbitrary node IDs, but applications may have more restrictive requirements.
Commonly, a node ID is formed as the hash value of a node’s public key or
IP address.

For bootstrapping, the new node n is assumed to know a nearby Pastry
node k based on the network proximity metric. Now n needs to initialize its
node, i.e., its routing table, leaf and neighborhood set. Since k is assumed to
be close to n, the nodes in k’s neighborhood set are reasonably good choices
for n, too. Thus, n copies the neighborhood set from k.

To build its routing table and leaf set, n needs to retrieve information
about the Pastry nodes which are close to n in the identifier space. To do
this, n routes a special “join” message via k to a key equal to n. According
to the standard routing rules, the query is forwarded to node c with the
numerically closest node ID. Due to this property, the leaf set of c is suitable
for n, so it retrieves c’s leaf set for itself.

The join request triggers all nodes, which forwarded the request towards
c, to provide n with their routing information. Node n’s routing table is
constructed from the routing information of these nodes starting at row zero.
As this row is independent of the local node ID, n can use the entries at row
zero of k’s routing table. In particular, it is assumed that n and k are close
in terms of the network proximity metric. Since k stores nearby nodes in its
routing table, these entries are also close to n. In the general case of n and k
not sharing a common prefix, n cannot re-use entries from any other row in
k’s routing table.

The route of the join message from n to c leads via nodes v1...vn with
increasingly longer common prefixes of n and vi. Thus, row 1 from the routing
table of node v1 is also a good choice for the same row of the routing table of
n. The same is true for row 2 on node v2 and so on. Based on this information,
the routing table can be constructed for node n.

Finally, the new node sends its node state to all nodes in its routing
data. These nodes can update their own routing information accordingly. In
contrast to the lazy updates in Chord, this mechanism actively updates the
state in all affected nodes when a new node joins the system. At this stage,
the new node is fully present and reachable in the Pastry network.

The arrival and departure of nodes affects only a relatively small number
of nodes in a Pastry system. Consequently, the state updates from multiple
such operations rarely overlap and there is little contention. Thus, Pastry uses
the following optimistic time-stamp-based approach to avoid major inconsis-
tencies of node state: the state a new node receives is time-stamped. After
the new node initializes its own internal state, it announces its state back
to the other nodes including the original time-stamps. If the time-stamps do
not match on the other nodes, they request the new node to repeat the join
procedure.

104 8. Selected DHT Algorithms

Node Failure

Node failure is detected when a communication attempt with another node
fails. Routing requires contacting nodes from the routing table and leaf set,
resulting in lazy detection of failures. Since the neighborhood set is not in-
volved in routing, Pastry nodes periodically test the liveness of the nodes in
their neighborhood sets.

During routing, the failure of a single node in the routing table does not
significantly delay the routing process. The local node can choose to forward
the pending query to a different node from the same row in the routing table.
Alternatively, a node could store backup nodes with each entry in the routing
table.

Failed nodes need to be evicted from the routing table to preserve routing
performance and correctness. To replace a failed node at entry i in row j of
its routing table (Ri

j), a node contacts another node referenced in row i.
Entries in the same row j of the the remote node are valid for the local node.
Hence it can copy entry Ri

j from the remote node to its own routing table
after verifying the liveness of the entry. In case it failed as well, the local
node can probe the other nodes in row j for entry Ri

j . If no live node with
the appropriate node ID prefix can be obtained in this way, the local node
expands its horizon by querying nodes from the preceding row Rj−1. With
very high probability, this procedure eventually finds a valid replacement for
the failed routing table entry Ri

j , if one exists.
Repairing a failed entry in the leaf set L of a node is straightforward by

utilizing the leaf sets of other nodes referenced in the local leaf set. The node
contacts the leaf set entry with the largest index on the side of the failed
node in order to retrieve the remote leaf set L′. If this node is unavailable,
the local node can revert to leaf set entries with smaller indices. Since the
entries in L′ and L are close to each other in the identifier space and overlap,
the node selects an appropriate replacement node from L′ and adds it to its
own leaf set. In the event that the replacement entry failed as well, the node
again requests the leaf sets of other nodes from its local leaf set. For this
procedure to be unsuccessful, |L|

2 adjacent nodes need to fail simultaneously.
The probability of such a circumstance can be kept low even with modest
values of |L|.

Nodes recover from node failures in their neighborhood sets in a fashion
similar to repairing the leaf set. However, failures cannot be detected lazily
since the nodes in the neighborhood set are not contacted regularly for rout-
ing purposes. Therefore, each node periodically checks the liveness of nodes
in its neighborhood set. When a node failure is detected, a node consults
the neighborhood sets of other neighbor nodes to determine an appropriate
replacement entry.

8.2 Pastry 105

Node Departure

Since Pastry can maintain stable routing information in the presence of node
failures, deliberate node departures were originally treated as node failures
for simplicity. However, a Pastry network would benefit from departure opti-
mizations similar to those proposed for Chord. The primary goals would be
to prevent data loss and reduce the amount of network overhead induced by
Pastry’s failure recovery mechanisms.

Arbitrary Failures

The approaches proposed for dealing with failures assumed that nodes fail
by becoming unreachable. However, failures can lead to a random behavior
of nodes, including malicious violations of the Pastry protocol. Rowstron and
Druschel propose to amend these problems by statistically choosing alter-
native routes to circumvent failed nodes. Thus, a node chooses randomly,
according to the constraints for routing correctness, from a set of nodes to
route queries to with a bias towards the default route. A failed node would
thus be able to interfere with some traffic but eventually be avoided after a
number of retransmissions. How node arrivals and departures can be made
more resilient to failed or malicious nodes is not addressed in the original
work on Pastry.

8.2.5 Routing Performance

Pastry optimizes two aspects of routing and locating the node responsible for
a given key: it attempts both to achieve a small number of hops to reach the
destination node, and to exploit network locality to reduce the overhead of
each individual hop.

Route Length

The routing scheme in Pastry essentially divides the identifier space into
domains of size 2n where n is a multiple of 2b. Routes lead from high-order
domains to low-order domains, thus reducing the remaining identifier space
to be searched in each step. Intuitively, this results in an average number of
routing steps related to the logarithm of the size of the system. This intuition
is supported by a more detailed analysis.

It is assumed that routing information on all nodes is correct and that
there are no node failures. There are three cases in the Pastry routing scheme,
the first of which is to forward a query according to the routing table. In
this case, the query is forwarded to a node with a longer prefix match than
the current node. Thus, the number of nodes with longer prefix matches is

106 8. Selected DHT Algorithms

reduced by at least a factor of 2b in each step, so the destination is reached
in log2b(N) steps.

The second case is to route a query via the leaf set. This increases the
number of hops by one.

In the third case, the key is neither covered by the leaf set nor does the
routing table contain an entry with a longer matching prefix than the current
node. Consequently, the query is forwarded to a node with the same prefix
length, adding an additional routing hop. For a moderate leaf set of size
|L| = 2 ∗ 2b, the probability of this case occurring is less than 0.6% so it is
very unlikely that more than one additional hop is incurred.

As a result, the complexity of routing remains at O(log2b(N)) on average.
Higher values of b lead to faster routing but also increase the amount of
state that needs to be managed at each node. Thus, b is typically 4 but
Pastry implementations can choose an appropriate trade-off for the specific
application.

Locality

By exploiting network locality, Pastry routing optimizes not only the number
of hops but also the costs of each individual hop. The criteria to populate a
node’s routing table allow a choice among a number of nodes with matching
ID prefixes for each routing table entry. By selecting nearby nodes in terms
of network locality, the individual routing lengths are minimized. This ap-
proach does not necessarily yield the shortest end-to-end route but leads to
reasonable total route lengths.

Initially, a Pastry node uses the routing table entries from nodes on a
path to itself in the identifier space. The proximity of the new node n and
the existing well-known node k implies that the entries in k’s first row of
the routing table are also close to n. The entries of subsequent rows from
nodes on the path from k to n may seem close to k but not necessarily to
n. However, the distance from k to these nodes is relatively long compared
to the distance between k and n. This is because the entries in later routing
table rows have to be chosen from a logarithmically smaller set of nodes in
the system. Hence, their distance to k and n increases logarithmically on
average. Another implication of this fact is that messages are routed over
increasing distances the closer they get to the destination ID.

8.3 Content Addressable Network CAN

Ratnasamy et al. presented their work on scalable content-addressable net-
works [505] in 2001, the same year in which Chord and Pastry were intro-
duced. In CAN, keys and values are mapped onto numerically close nodes.
Locating objects and routing messages in CAN is very simple as it requires

8.3 Content Addressable Network CAN 107

(0−31,48−63)

C

B

(0−31,32−47)

D

(32−63,32−63)

(0−63,0−31)

A

(63,0)

(63,63)

(0,0)

(0,63)

Fig. 8.4: A two-dimensional six-bit CAN identifier space with four nodes. For sim-
plicity, it is depicted as a plane instead of a torus.

knowledge only about a node’s immediate neighbors. However, CAN intro-
duces the notion of multi-dimensional identifier spaces by which routing effi-
ciency is greatly improved compared to linear neighbor traversal in a single
dimension. CAN generalizes the Chord and Pastry approaches in certain areas
and introduces design optimizations also applicable to other DHT systems.

8.3.1 Identifier Space

A CAN identifier space can be thought of as a d-dimensional version of a
Chord or Pastry identifier space. Each data item is assigned an identifier,
e.g., of the form < x, y, z > for d = 3. All arithmetic on identifiers is again
performed modulo the largest coordinate in each dimension. The geometrical
representation of a CAN identifier space is thus a d-torus. The original work
on CAN suggests a space with continuous coordinates between 0.0 and 1.0
but it also applies to discrete coordinate spaces.

The identifier space in CAN is partitioned among the participating nodes
as shown in Figure 8.4. Each node is said to own a zone, i.e., a certain
part of the identifier space. CAN ensures that the entire space is divided
into non-overlapping zones. In Figure 8.4, a two-dimensional identifier space
(represented by a plane instead of a torus for simplicity) is divided into four
zones. In contrast to Chord and Pastry, CAN does not assign a particular
identifier to a node. Instead, the extent of its zone is used to locate and
identify a node.

As typical for (key, value) pairs in DHTs, CAN keys are derived from the
value (or a representation of it) by applying a uniform hash function. The
easiest way of deriving multi-dimensional identifiers from flat hash values
is to apportion a fixed set of bits to the coordinate in each dimension. For
example, a 160-bit hash value would be divided into two 80-bit segments

108 8. Selected DHT Algorithms

N5

N6

N2N1

N4

N3

K

Fig. 8.5: The route from node N1 to
a key K with coordinates
(x, y) in a two-dimensional
CAN topology before node
N7 joins. Neighbor set of
N1: {N2, N6, N5}

N5

N6

N2

N4

N3 N1

N7

Fig. 8.6: New node N7 arrives in the
zone of N1. N1 splits its
zone and assigns one half to
N7. Updated neighbor set
of N1: {N7, N2, N6, N5}.

which represent < x, y > coordinates in a two-dimensional identifier space.
Because a key represents a point P in the identifier space, (key, value) pairs
are stored on the node owning the zone which covers P .

8.3.2 Routing Information

For routing purposes, a CAN node stores information only about its immedi-
ate neighbors. Two nodes in a d-dimensional space are considered neighbors
if their coordinates overlap in one dimension and are adjacent to each other
in d−1 dimension. Figure 8.5 illustrates neighbor relationships. For example,
node N1 and N6 are neighbors as they overlap in the y dimension and are
next to each other in the x dimension. At the same time, node N5 and N6 are
not neighbors as they do not overlap in any dimension. Similarly, node N1
and N4 overlap in the x dimension but are not adjacent in the y dimension,
so they are not neighbors of each other.

The routing information in CAN is comprised of the IP address, a port,
and the zone of every neighbor of a node. This data is necessary to access
the CAN service on a neighbor node and to know its location in the identifier
space. In a d-dimensional identifier space partitioned into zones of equal size,
each node has 2d neighbors. Thus, the number of nodes participating in a
CAN system can grow very large while the necessary routing information per
node remains constant.

8.3 Content Addressable Network CAN 109

8.3.3 Routing Procedure

Conceptually, routing in CAN follows a straight line in the cartesian identifier
space from the source to the destination coordinates. Each node contributes
to this process utilizing its neighbor information.

Each CAN message contains the destination coordinates. If the local node
does not own the zone that includes these coordinates, it forwards the message
to the neighbor with the coordinates closest to the destination, as illustrated
in Figure 8.5. In a d-dimensional space equally partitioned into n zones, this
procedure results in an average of O((d/4)(n

1
d)) routing steps. This expresses

the intuitive consequence that increasing the number of dimensions signifi-
cantly reduces the average route length.

8.3.4 Self-Organization

CAN dynamically organizes nodes into an overlay network which implements
the operations in the identifier space. It assigns zones of the identifier space
to individual nodes in such a way that zones do not overlap and there are no
gaps in the identifier space. This partitioning needs to be robust when nodes
join or leave a CAN system or when they fail.

Node Arrival

A node n joining a CAN system needs to be allocated a zone and the zone
neighbors need to learn of the existence of n. The three main steps in this
procedure are: to find an existing node of a CAN system; to determine which
zone to assign to the new node; and to update the neighbor state.

Like Chord and Pastry, CAN is not tied to a particular mechanism for
locating nodes in the overlay network to be joined. However, Ratnasamy et
al. suggest using a dynamic DNS name to record one or more nodes belonging
to a particular CAN system. The referenced nodes may in turn publish a list
of other nodes in the same CAN overlay. This scheme allows for replication
and randomized node selection to circumvent node failures.

Given a randomly chosen location in the identifier space, the new node
n sends a special join message via one of the existing nodes to these coordi-
nates. Join messages are forwarded according to the standard CAN routing
procedure. After the join message reaches the destination node d, d splits
its zone in half and assigns one half to n (cf. Figure 8.6). In order to ease
the merging of zones when nodes leave and to equally partition the identifier
space, CAN assumes a certain ordering of the dimensions by which zones
are split. For example, zones may be split along the first (x) dimension, then
along the second (y) dimension and so on. Finally, d transfers the (key, value)
pairs to n for which it has become responsible.

110 8. Selected DHT Algorithms

Node n and d exchange neighborhood information such that n learns of its
neighbors from d and d adds n to its own set of neighbors. Then node n im-
mediately informs all its neighbors of its presence. Through update messages,
every node in the system also provides its direct neighbors periodically with
its own neighborhood and zone information. Thus, only a small region of the
identifier space is affected by node arrival. Its size depends on the number of
dimensions but stays constant with the total number of nodes in the system.

Node Failure

The zones of failing or leaving nodes must be taken over by live nodes to
maintain a valid partitioning of the CAN identifier space. A CAN node de-
tects the failure of a neighbor when it ceases to send update messages. In such
an event, the node starts a timer. When the timer fires, it sends takeover mes-
sages to the neighbors of the failed node. The timer is set up such that nodes
with large zones have long timeouts while small zones result in short time-
outs. Consequently, nodes with small zone sizes send their takeover messages
first.

When a node receives a takeover message, it cancels its own timer pro-
vided its zone is larger than the one advertised in the message. Otherwise,
it replies with its own takeover message. This scheme efficiently chooses the
neighboring node with the smallest zone volume. The elected node claims
ownership of the deserted zone and merges it with its own zone if possible.
Alternatively, it temporarily manages both zones.

The hash-table data of a failed node is lost. However, the application
utilizing CAN is expected to periodically refresh data items it inserted into
the DHT (the same is true for the other systems presented here). Thus, the
hash table state is eventually restored.

During routing, a node may find that the neighbor to which a message
is to be forwarded has failed and the repair mechanism has not yet set in.
In such a case, it forwards the message to the live neighbor next closest to
the destination coordinates. If all neighbors failed, which are closer to the
destination, the local node floods the message in a controlled manner within
the overlay until a closer node is found.

Node Departure

When a node l deliberately leaves a CAN system, it notifies a neighbor n
whose zone can be merged with l’s zone. If no such neighbor exists, l chooses
the neighbor with the smallest zone volume. It then copies the contents of its
hash table to the selected node so this data remains available.

As described above, departing and failing nodes can leave a neighbor node
managing more than one zone at a time. CAN uses a background process

8.3 Content Addressable Network CAN 111

which reassigns zones to nodes to prevent fragmentation of the identifier
space.

8.3.5 Routing Performance

CAN comes with a number of design optimizations which focus both on
reducing the number of hops in a CAN overlay and on lowering path latencies.
In combination, these steps result in a significant overall improvement of
routing performance.

Increasing the number of dimensions in the identifier space reduces the
number of routing hops and slightly increases the amount of neighbor state
to store on each node. The average path length in a system with n nodes
and d dimensions scales as O(d(n

1
d)). Higher dimensionality also improves

routing fault tolerance because each node has a larger set of neighbors to
choose from as alternatives to a failed node.

CAN also supports multiple instances of a DHT in different coordinate
spaces termed realities. A node is present in all identifier spaces and owns a
different zone in each of them. In each reality, all DHT data is replicated and
distributed among the nodes. Thus, a system with r realities implies that
each node manages r different zones and neighbor sets, one for each reality.

With multiple realities, data availability is improved through the replica-
tion of data in each reality. Also, a node has more options to route around
failed neighbors. Furthermore, a node can choose the shortest route from
itself to a destination in all realities. Thus, the average length of routes is
reduced significantly. The different advantages and per-node state require-
ments of multiple dimensions and realities need to be traded off against each
other based on application requirements.

The nonconformance of a CAN overlay and the underlying IP infrastruc-
ture may lead to significantly longer route lengths than direct IP routing.
Hence, CAN suggests incorporating routing metrics which are not based on
the distance between two nodes in the identifier space. For example, each
node could measure the round-trip time (RTT) to neighboring nodes and
use this information to forward messages to those neighbors with the best
ratio of RTT and ID space distance to the destination. Experiments show an
improvement of 24% to 40% in per-hop latency with this approach [505].

Another optimization is to overload a zone by allowing multiple nodes to
manage the same zone. This effectively reduces the number of nodes in the
system and thus results in fewer routing hops. Each node also forwards mes-
sages to the neighboring node with the lowest RTT in a neighbor zone, thus
reducing per-hop latency. Finally, when the DHT data for a zone is replicated
among all nodes of that zone, all these nodes need to fail simultaneously for
the data to be lost.

112 8. Selected DHT Algorithms

With multiple hash functions, a (key, value) pair would be associated with
a different identifier per hash function. Storing and accessing the (key, value)
at each of the corresponding nodes increases data availability. Furthermore,
routing can be performed in parallel towards all the different locations of a
data item reducing the average query latency. However, these improvements
come at the cost of additional per-node state and routing traffic.

The mechanisms presented above reduce per-hop latency by increasing
the number of neighbors known to a node. This allows a node to forward
messages to neighbors with a low RTT. However, CAN may also construct
the overlay so it resembles more closely the underlying IP network. To place
nodes close to each other, both at the IP and the overlay level, CAN assumes
the existence of well-known landmark nodes. Before joining a CAN network,
a node samples its RTT to the landmarks and chooses a zone close to a
landmark with a low RTT. Thus, the network latency en route to its neighbors
can be expected to be low resulting in lower per-hop latency.

For a more uniform partition of the identifier space, nodes should not join
a CAN system at a random location. Instead, the node which manages the
initial random location queries its neighbors for their zone volume. The node
with the largest zone volume is then chosen to split its zone and assign half
of it to the new node. This mechanism contributes significantly to a uniform
partitioning of the coordinate space.

For real load-balancing, however, the zone size is not the only factor to
consider. Particularly popular (key, value) pairs create hot spots in the iden-
tifier space and can place substantial load on the nodes hosting them. In a
CAN network, overload caused by hot-spots may be reduced through caching
and replication. Each node caches a number of recently accessed data items
and satisfies queries for these data items from its cache if possible. Overloaded
nodes may also actively replicate popular keys to their neighbors. The neigh-
bors in turn reply to a certain fraction of these frequent requests themselves.
Thus, load is distributed over a wider area of the identifier space.

8.4 Symphony

The Symphony protocol can be seen as a variation of Chord that exploits
the small world phenomenon. As described by Manku et al. in [400], it is
of constant degree because each node establishes only a constant number of
links to other nodes. In contrast, Chord, Pastry, and CAN require a number
of links which depends on the total number of nodes in the system. This
basic property of Symphony significantly reduces the amount of per-node
state and network traffic when the overlay topology changes. However, with
an increasing number of nodes, it does not scale as well as Chord.

Like Chord, the identifier space in Symphony is constructed as a ring
structure and each node maintains a pointer to its successor and predeces-

8.5 Viceroy 113

sor on the ring. In Symphony, the Chord finger table is replaced by a con-
stant but configurable number k of long distance links. In contrast to other
systems, there is no deterministic construction rule for long distance links.
Instead, these links are are chosen randomly according to harmonic distribu-
tions (hence the name Symphony). Effectively, the harmonic distribution of
long-distance links favors large distances in the identifier space for a system
with few nodes and decreasingly smaller distances as the system grows.

The basic routing in this setup is trivial: a query is forwarded to the
node with the shortest distance to the destination key. By exploiting the bi-
directional nature of links to other nodes, routing both clockwise and counter-
clockwise leads, on average, to a 25% to 30% reduction of routing hops.
Symphony additionally employs a 1-lookahead approach. The lookahead table
of each node records those nodes which are reachable through the successor,
predecessor, and long distance links, i.e., the neighbors of a node’s neighbors.
Instead of routing greedily, a node forwards messages to its direct neighbor
(not a neighbor’s neighbor) which promises the best progression towards the
destination. This reduces the average number of routing hops by 40% at the
expense of management overhead when nodes join or leave the system.

In comparison with the systems discussed previously, the main contribu-
tion of Symphony is its constant degree topology resulting in very low costs
of per-node state and of node arrivals and departures. It also utilizes bi-
directional links between nodes and bi-directional routing. Symphony’s rout-
ing performance (O(1

k log2(N))) is competitive compared with Chord and the
other systems (O(log(N))) but does not scale as well with exceedingly large
numbers of nodes. However, nodes can vary the number of links they main-
tain to the rest of the system during run-time based on their capabilities,
which is not permitted by the original designs of Chord, Pastry, and CAN.

8.5 Viceroy

In 2002, Malkhi et al. proposed Viceroy [399], another variation on Chord. It
improves on the original Chord algorithm through a hierarchical structure of
the ID space with constant degree which approximates a butterfly topology.
This results in less per-node state and less management traffic but slightly
lower routing performance than Chord.

Like Symphony, Viceroy borrows from Chord’s fundamental ring topology
with successor and predecessor links on each node. It also introduces a new
node state called a level. When joining the system, a node chooses a random
level in the range from 1 to log(N). Thus, the Viceroy topology can be thought
of as log(N) vertically stacked rings. However, the node ID still serves as the
unique identifier for nodes so that no two nodes may occupy the same node
ID, regardless of their level.

114 8. Selected DHT Algorithms

Identifier Space0 MAX_ID

Level 1

Level 2

Level 3

Fig. 8.7: A Viceroy topology with 18 nodes. Lines indicate short- and long-range
downlinks; other links and lower levels are omitted for simplicity.

A Viceroy node n maintains a total of seven links to other nodes, inde-
pendent of the network size. As n’s two closest neighbors in the ID space, i.e.,
its successor and predecessor, might reside on any level, it also establishes a
level-ring link to each of the closest nodes clockwise and counter-clockwise
on its own level l. In order to connect to other levels, n creates an uplink to a
nearby node at level l−1 and a short-range and long-range downlink to level
l + 1. The long-range downlink is chosen such that it connects to a node at
a distance of roughly 1

2l . Thus, the distance covered by the long-range links
is reduced logarithmically with lower levels as depicted in Figure 8.7.

The routing procedure is split into three phases closely related to the
available routing information. First, a query is forwarded to level one along
the uplinks. Second, a query recursively traverses the downlinks towards the
destination. On each level, it chooses the downlink which leads to a node
closer to the destination, without overshooting it in the clockwise direction.
After reaching a node without downlinks, the query is forwarded along ring-
level and successor links until it reaches the target identifier. The authors
of Viceroy show that this routing algorithm yields an average number of
O(log(N)) routing hops.

Like Symphony, Viceroy features a constant degree linkage in its node
state. However, every node establishes seven links whereas Symphony keeps
this number configurable even at run-time. Furthermore and similar to Chord,
the rigid layout of the identifier space requires more link updates than Sym-
phony when nodes join or leave the system. At the same time, the scalability
of its routing latency of O(log(N)) surpasses that of Symphony, while not
approaching that of Chord, Pastry, and CAN.

8.6 Kademlia

In their work on Kademlia [405], Maymounkov and Mazières observe a mis-
match in the design of Pastry: its routing metric (identifier prefix length) does

8.6 Kademlia 115

00...00 11...11Identifier Space

0

0

0

0

0

0 0

0

0

0

0 0

0 0

0

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

10

0

Fig. 8.8: An example of a Kademlia topology. The black node 0010 knows about
the subtrees that do not match its identifier as indicated by the dot-
ted squares. Each node successively forwards a query to α nodes in a
destination subtree.

not necessarily correspond to the actual numeric closeness of identifiers. As a
result, Pastry requires two routing phases which impacts routing performance
and complicates formal analysis. Thus, Kademlia uses an XOR routing metric
which improves on these problems and optionally offers additional parallelism
for lookup operations.

Kademlia’s XOR metric measures the distance between two identifiers i
and j by interpreting the result of the bit-wise exclusive OR function on i
and j as an integer. For example, the distance between the identifiers 3 and
5 is 6. Considering the shortest unique prefix of a node identifier, this metric
effectively treats nodes and their identifiers as the leaves of a binary tree. For
each node, Kademlia further divides the tree into subtrees not containing the
node, as illustrated in Figure 8.8.

Each node knows of at least one node in each of the subtrees. A query
for an identifier is forwarded to the subtree with the longest matching prefix
until the destination node is reached. Similar to Chord, this halves the re-
maining identifier space to search in each step and implies a routing latency
of O(log(N)) routing hops on average.

In many cases, a node knows of more than a single node per subtree.
Similar to Pastry, the Kademlia protocols suggests forwarding queries to α
nodes per subtree in parallel. By biasing the choice of nodes towards short
round-trip times, the latency of the individual hops can be reduced. With
this scheme, a failed node does not delay the lookup operation. However,
bandwidth usage is increased compared to linear lookups.

When choosing remote nodes in other subtrees, Kademlia favors old links
over nodes that only recently joined the network. This design choice is based
on the observation that nodes with long uptime have a higher probability

116 8. Selected DHT Algorithms

of remaining available than fresh nodes. This increases the stability of the
routing topology and also prevents good links from being flushed from the
routing tables by distributed denial-of-service attacks, as can be the case in
other DHT systems.

With its XOR metric, Kademlia’s routing has been formally proved con-
sistent and achieves a lookup latency of O(log(N)). The required amount
of node state grows with the size of a Kademlia network. However, it is
configurable and together with the adjustable parallelism factor allows for a
trade-off of node state, bandwidth consumption, and lookup latency.

8.7 Summary

The core feature of every DHT system is its self-organizing distributed opera-
tion. All presented systems aim to remain fully functional and usable at scales
of thousands or even millions of participating nodes. This obviously implies
that node failures must be both tolerated and of low impact to the operation
and performance of the overall system. Hence, performance considerations
are an integral part of the design of each system.

Since the lookup of a key is probably the most frequently executed op-
eration and essential to all DHT systems, a strong focus is put on its per-
formance. The number of routing hops is an important factor for end-to-end
latency, but the latency of each hop also plays an important role. Gener-
ally, additional routing information on each node also provides a chance for
choosing better routes. However, the management of this information and of
links to other nodes in a system also incurs overhead in processing time and
bandwidth consumption.

System Routing Hops Node State Arrival Departure

Chord O(1
2
log2(N)) O(2log2(N)) O(log2

2(N)) O(log2
2(N))

Pastry O(1
b
log2(N)) O(1

b
(2b−1)log2(N)) O(log2b(N)) O(logb(N))

CAN O(D
2

N
1
D) O(2D) O(D

2
N

1
D) O(2D)

Symphony O(c
k
log2(N)) O(2k + 2) O(log2(N)) O(log2(N))

Viceroy O(c
k
log2(N)) O(2k + 2) O(log2(N)) O(log2(N))

Kademlia O(logb(N)) O(b · logb(N)) O(logb(N)) O(logb(N))

Table 8.1: Performance comparison of DHT systems. The columns show the aver-
ages for the number of routing hops during a key lookup, the amount
of per-node state, and the number of messages when nodes join or leave
the system.

8.7 Summary 117

Table 8.1 summarizes the routing latency, per-node state, and the costs
of node arrivals and departures in the systems discussed above. It illustrates
how design choices, like a constant-degree topology, affect the properties of
a system. It should be noted that these results are valid only for the original
proposals of each system and that the O() notation leaves ample room for
variation. In many cases, design optimizations from one system can also be
transferred to another system. Furthermore, the effect of implementation op-
timizations should not be underestimated. The particular behavior of a DHT
network in a certain application scenario needs to be determined individually
through simulation or real-world experiments.

	8.1 Chord
	8.2 Pastry
	8.3 Content Addressable Network CAN
	8.4 Symphony
	8.5 Viceroy
	8.6 Kademlia
	8.7 Summary

