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ABSTRACT
This paper deals with group (or inter-destination) synchro-
nization control over haptic media in the case where two
groups each of which consists of two players play a networked
real-time game in which the two players in each group work
with each other collaboratively. The group synchronization
control adjusts the output timing of haptic media among the
players’ terminals. We enhance the synchronization maestro
scheme, which the authors previously proposed, for the con-
trol so that we can handle two reference output timings, to
which the players’ terminals adjust their output timings. We
examine the influence of the determination methods of the
reference output timings on the fairness among the players
and the efficiency of the work. By experiment, we demon-
strate the effectiveness of a method which employs two refer-
ence output timings. The method adjusts the output timing
of a terminal with the smaller network latency in a group to
that in the other group, and it also adjusts the remaining
two output timings.

Keywords
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1. INTRODUCTION
By using haptic interface devices in networked 3-D virtual
environments, we can largely improve the efficiency of col-
laborative work such as remote surgery simulation and im-
merse ourselves in playing networked games [1], [2]. How-
ever, the network delay and its jitter in a network may de-
grade the efficiency of the work and the fairness among play-
ers because of disturbance of the temporal relations among
multiple haptic media streams [2]–[4].

In [3], by making an experiment in which two users manipu-
late an object collaboratively with haptic interface devices,
Hikichi et al. investigate the influence of network delay on

the manipulation. As a result, they show that a user with
the smaller network latency can help (cover) the other user
to work. In [4], the authors demonstrate the effectiveness
of group (or inter-destination ) synchronization control [5],
which adjusts the output timing of haptic media among mul-
tiple destinations (i.e., terminals), in similar work to that
in [3]. They show that by adjusting the output timing of
haptic media to the earlier output timing, the group syn-
chronization control improves the efficiency of the work.

On the other hand, in [2], the authors deal with a networked
real-time game in which two players play with each other by
using haptic interface devices. They illustrate the effective-
ness of the group synchronization control under which the
output timing of haptic media is adjusted to the later output
timing in terms of the fairness between the two players.

In networked real-time games, multiple players often col-
laborate with each other and fight against other multiple
players. When each player has the output timing different
from the other players, the fairness among the players are
damaged. To solve this problem, we need to carry out group
synchronization control. For example, the output timings of
all the terminals are adjusted to the latest output timing
among the timings under the control. However, since multi-
ple players do collaborative work in the games, the efficiency
of the work may be improved by adjusting the output tim-
ings to the earliest output timing. This is because a player
with an earlier output timing can help other players with
later output timings. Thus, we should study group synchro-
nization control in this case. However, to the best of the
authors’ knowledge, there is no paper which addresses this
issue.

This paper deals with group synchronization control over
haptic media in the case where two groups each of which
consists of two players play a networked real-time game in
which the two players in each group do collaborative work
in a 3-D virtual space by using haptic interface devices. We
also investigate how to adjust the output timing among the
players’ terminals by experiment. We enhance the group
synchronization control so as to achieve fine-grained adjust-
ment of the output timing by handling two reference output
timings. Furthermore, we examine the effects of the group
synchronization control from the viewpoints of the fairness
and the efficiency of the work.
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The remainder of the paper is organized as follows. Section 2
describes the networked real-time game with collaborative
work. Section 3 outlines the group synchronization control,
enhance the control, and explain how to adjust the output
timing under the enhanced control. Section 4 illustrates
the method of the experiment, and experimental results are
presented in Section 5. Section 6 concludes the paper.

2. NETWORKED REAL-TIME GAME
In this section, we explain the networked real-time game
with collaborative work. We also describe a system model
of the game.

2.1 Game with Collaborative Work
As shown in Fig. 1, two groups (referred to as groups α and
β in this paper) each of which consists of two players play
the networked real-time game in a 3-D virtual space (height:
120 mm, width: 160 mm, depth: 70 mm). The two players
in each group collaborate with each other and fight against
those in the other group by using haptic interface devices.
We employ the PHANToM Omni [6] (just called PHANToM
here) as a haptic interface device.

Each player manipulates the cursor of the PHANToM in
the 3-D virtual space. The cursor denotes a point which
the player tries to touch with the device. The two players
of each group cooperatively lift and move an object (a rigid
cube with a side of 30 mm and with a mass of 500 g) which
is assigned to the group so as to contain the target (a sphere
with a radius of 12.5 mm) by putting the object between
the two cursors of the PHNAToMs. If the object is not
pushed from both sides strongly to some extent, it drops
on the floor. The gravitational acceleration is assumed to
be 2.0 m/s2. Each object does not collide with the target
or the other object. If the distance between the center of
the object and that of the target is less than 8 mm, we
judge that the object contains the target. When the target
is contained by either of the two objects, it disappears and
then appears at a randomly-selected position in the space.
The two groups compete on the number of eliminated targets
with each other.

2.2 System Model
We show a system model of the networked real-time game
based on the client-server model in Fig. 2, where we show
what kinds of functions the server , four clients , and synchro-
nization maestro have. We will explain the synchronization
maestro in Section 3. Since each client has the same func-
tions as the other clients, we show the functions only at
client 1 in the figure. We assume that the timers of each
client, the server, and the synchronization maestro are glob-
ally synchronized with each other [7].

Each client has the PHANToM. Since the client performs
haptic simulation by repeating the servo loop [8] at a rate
of 1 kHz, it inputs/outputs a stream of haptic media units
(MUs), each of which is the information unit for media syn-
chronization, at the rate; that is, an MU is input/output
every millisecond. Each MU contains the identification (ID)
number of the client, the positional information of the cur-
sor of the PHANToM, and the sequence number of the servo
loop, which we use instead of the timestamp of the MU. MUs
input at each client are transmitted to the server.

The server carries out causality (i.e., ordinal relation in this

paper) control [9] over received MUs as in [10]. The causality
control is required to maintain the temporal order of manip-
ulation events. Each haptic MU has a time limit which is
equal to the generation time of the MU plus ∆ milliseconds
(in the experiment, ∆ = 5 ms). If the MU is received by the
server before the time limit, it is held in the buffer by the
time limit; the server arranges MUs in the buffer according
to their timestamps (i.e., the sequence numbers). Then, the
server calculates the positions of objects every millisecond
by using the information about the position of the cursor of
the PHANToM included in the MU. Otherwise, the MU is
immediately used for the calculation.

Since there are the four clients, the server would always use
four MUs for the calculation every millisecond if there were
no network delay jitter. However, there exists network delay
jitter. Therefore, the server may have more or less than
four MUs to be used for the calculation every millisecond.
If it judges that either of the objects contains the target,
the position of the target is updated. It also transmits the
positional information of the objects, the target, and the
four cursors as an MU to the four clients.

When each client receives an MU, the client updates the
positions of the objects after carrying out media synchro-
nization control, which includes group synchronization con-
trol [10], and calculates the reaction force applied to the
user. The rendering rate of the haptic media is 1 kHz at the
client as described earlier. Also, the rendering rate of the
virtual space is 30 Hz.

This paper deals with two cases depending on whether group
synchronization control is exerted or not. We employ and
enhance the synchronization maestro scheme [11] for group
synchronization control. In the synchronization maestro
scheme, the Virtual-Time Rendering (VTR) algorithm [12]
is used for intra-stream synchronization control [10], [11];
note that we do not need to carry out inter-stream synchro-
nization control [13] in this paper since the server sends a sin-
gle haptic media stream to each client. The VTR algorithm
dynamically changes the buffering time of MUs according to
the network delay jitter. When we do not perform the group
synchronization control, we use Skipping [12] and VTR for
intra-stream synchronization control. Skipping outputs only
the latest arrived MU every millisecond and skips obsolete
MUs.

3. GROUP SYNCHRONIZATION CONTROL
As described earlier, we employ the synchronization mae-
stro scheme to carry out group synchronization control. We
here describe the synchronization maestro scheme briefly.
Then, we explain how to adjust the output timing among
the four clients. We also enhance the synchronization mae-
stro scheme.

3.1 Outline of Synchronization Maestro Scheme
In this scheme, the ideal target output time [12] of an MU
is defined as the time at which the MU should be output in
the case where there is no network delay jitter. The ideal
target output time of an MU is set to the generation time
of the MU plus δ, where δ denotes the target delay time [9],
which is defined as the time from the moment an MU is
generated until the instant the MU should be output, and
0 ≤ δ ≤ ∆al. We employ the maximum allowable delay
∆al [12] in order to preserve the interactivity of haptic media
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Figure 1: A displayed image of the virtual space.

(in the experiment, the initial value of δ is set to 0 ms, and
∆al = 30 ms. Other parameters and thresholds are set to
the same values as those in [2]).

However, each MU cannot always arrive at each client by the
target delay time of the MU owing to network delay jitter.
In this case, the value of δ may dynamically be changed by
the VTR algorithm [12]. Thus, the target output time [12]
of an MU, which is defined as the time at which the MU
should be output in the case where there exists network
delay jitter, may be different from one client to another. To
adjust the target output time among the clients, each client
transmits the information about the output timing to the
synchronization maestro, which plays a role similar to that
of an orchestra conductor.

The synchronization maestro determines the reference out-
put timing [10] by making a comparison among the output
timings received from the clients. Then, the maestro trans-
mits the information about the reference output timing to
all the clients.

When each client receives the information about the refer-
ence output timing, the client compares its own output tim-
ing with the reference output timing. If they are different
from each other, the client gradually adjusts its own output
timing to the reference output timing. This is because if
the client changes the output timing largely at a time, the
output quality may be damaged seriously.

For details of the synchronization maestro scheme, the reader
is referred to the Appendix.

3.2 Determination Method of Reference Out-

put Timing
We deal with six methods (methods 1 through 6 ) which de-
termines the reference output timing in this paper. Meth-
ods 1 through 4 each use a single reference output timing,
and methods 5 and 6 each employ two reference output tim-
ings.

(Method 1): The latest output timing among the four out-
put timings is selected as the reference one [7].

(Method 2): The earliest output timing among the four
output timings is selected as the reference one [7].

(Method 3): We choose the later output timing as the ref-
erence one between the earlier one in a group and that
in the other group.

(Method 4): We choose the earlier output timing as the
reference one between the later one in a group and
that in the other group.

(Method 5): We choose the later output timing as one of
the reference output timings between the output tim-
ing of a client with the smaller network latency in a
group and that in the other group. We also choose the
later output timing as the other reference one between
the remaining two output timings.

(Method 6): We choose the later output timing as a ref-
erence one between the output timing of a client with
the smaller network latency in a group and that with
the larger network latency in the other group. We also
choose the later output timing as the other reference
one between the remaining two output timings.

Methods 5 and 6 can achieve finer-grained adjustment of the
output timings than methods 1 through 4 by employing two
reference output timings.

There are other determination methods of the reference out-
put timings. For example, the averages of the output timings
are chosen as the reference ones. Handling the methods is
for further study.

3.3 Enhanced Scheme
The synchronization maestro scheme in the Appendix em-
ploys a single reference output timing. However, since meth-
ods 5 and 6 uses two reference output timings, we enhance
the scheme in this paper.
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Figure 2: A system model.

In the enhanced scheme, each client sends the synchroniza-
tion maestro the information about the average network de-
lay , which is defined as the average time from the moment
an MU is generated at the server until the instant the MU
is received at the client for simplicity, as well as the infor-
mation about the output timing. It should be noted that
we here let the average network delay denote the network
latency.

In this paper, we obtain the average network delay as fol-
lows. Let the network delay of the n-th MU (n ≥ 1) be

denoted by D(n), and the average network delay by D(n).

The average network delay is calculated by D(n) = PD(n−

1) + (1 − P )D(n) [14], where P is a smoothing factor. We
set P = 0.999 in the experiment.

When the synchronization maestro receives the information
about the average network delay and output timing from a
client, the maestro compares the average network delay with
the other clients’ average network delays and determines two
pairs of clients (note that each pair consists of a client in
group α and that in group β) whose output timings are
adjusted based on methods 5 and 6. For example, when

the average network delays of clients 1 through 4, which are
assumed to belong to groups α, α, β, and β, respectively, are
5 ms, 20 ms, 10 ms, and 30 ms, respectively, clients 1 and 3
make a pair in method 5; clients 2 and 4 make the other pair.
Then, the maestro determines the reference output timing
for each pair by make a comparison between two output
timings of the pair.

Methods 5 and 6 choose the later output timing as the refer-
ence output timing as described earlier. This is because we
found that methods which choose the earlier output timing
as the reference output timing are inferior to methods 5 and
6 by experiment.

4. METHOD OF EXPERIMENT

4.1 Experimental System
As shown in Fig. 3, our experimental system consists of the
server (CPU: Pentium4 processor at 2.26 GHz, OS: Win-
dows2000) and clients 1 through 4 (CPU: Pentium4 proces-
sor at 2.80 GHz, OS: WindowsXP). The server is connected
to the four clients via an Ethernet switching hub (100 BASE-
T) and a network simulator (NIST Net [15]). The server
has a function of the synchronization maestro for simplicity.
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Figure 3: Configuration of the experimental system.

Each MU is transmitted as one packet by UDP. In the ex-
periment, clients 1 and 2 form group α, and clients 3 and 4
group β.

We generate an additional delay for each MU transmitted
from the server to each client and for each packet transmit-
ted from the synchronization maestro (i.e., the server) to
each client according to the Pareto-normal distribution [15]
by using NIST Net1. Each MU and each packet are unicast
from the server to each client in the experiment.

The additional delay of MU or packet transmitted from the
server to client i (i = 1, 2, 3, 4) is referred to as additional
delay i in this paper. To examine the influences of the dif-
ference in the additional delay among the four clients on the
fairness and the efficiency of the work, we set the averages
of additional delays 1 through 4 as shown in Table 1, where
the average of each additional delay is selected from among
0 ms, 10 ms, 20 ms, and 30 ms. We do not handle average
additional delays larger than 30 ms since it is difficult to ma-
nipulate the object owing to vibrations of the object when
the network delay is too large [2]. We also set the standard
deviation of each additional delay to 3 ms; however, when
the average additional delay is 0 ms, the standard deviation
is set to 0 ms.

We handle the following four cases depending on how to
select the average additional delay as shown in Table 1.

(Case 1): All the clients have different average additional
delays from each other.

1
We made the experiment by adding delays to MUs transmitted

from each client to the server. As a result, we obtained almost the
same results as those in this paper. The results will be presented
in another paper.

(Case 2): Two clients have an identical average additional
delay, and the remaining two clients have different av-
erage additional delays from the delay.

(Case 3): Only one client has a different average additional
delay from the other clients.

(Case 4): All the clients have an identical average addi-
tional delay.

Case 1 has three (=4C2/2) types of measurements (measure-
ments A, B, and C) since we do not need to take account of
the difference between the two clients in each group or the
difference between groups α and β. In case 2, for simplicity,
the remaining two clients are also assumed to have an iden-
tical additional delay; measurement D has different values in
each group, and measurement E has the same value in each
group. In measurement F of case 3, the additional delay
of a client is larger than those of the other three clients. In
measurement G, a client has a smaller average additional de-
lay than the other clients. Measurement H has an identical
average additional delay at all the clients.

4.2 Performance Measures
As performance measures, we employ the average total num-
ber of eliminated targets and the elimination rate of the tar-
get [2]. The average total number of eliminated targets is
closely related to the efficiency of the work. The elimination
rate of the target is defined as the ratio of the number of
targets eliminated by a group to the total number of elimi-
nated targets. This measure denotes the fairness. If the four
players have the same skill, we get the elimination rate of 0.5
when there is no difference in the average additional delay
among the clients. Before the experiment, the four players
practiced many times to eliminate the difference in the skill
among them (actually, we will see in Section 5 that the elim-
ination rate is approximately 0.5 when there is no difference
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Table 1: Averages of additional delays 1 through 4 in milliseconds.
Additional delay 1 Additional delay 2 Additional delay 3 Additional delay 4

Measurement A 0 20 10 30
Case 1 Measurement B 0 10 20 30

Measurement C 0 30 10 20
Case 2 Measurement D 10 20 10 20

Measurement E 10 10 20 20
Case 3 Measurement F 10 30 10 10

Measurement G 20 10 20 20
Case 4 Measurement H 10 10 10 10

in the average additional delay among the clients). There-
fore, the elimination rate of 0.5 implies that the fairness
is perfectly maintained between the two groups. A client
which each player used was always the same in the experi-
ment. The measurement of the performance was carried out
for 30 seconds after the beginning of each experimental run.

5. EXPERIMENTAL RESULTS
We show only the experimental results of measurements A,
D, F, and H in this paper. Since measurements B, C, E,
and G had almost the same experimental results as mea-
surements A, D, F, and H, respectively, we do not show
the results of measurements B, C, E, and G. We show the
elimination rate of the target and the average total num-
ber of eliminated targets of group α in measurement A in
Figs. 4 and 5, respectively. We also show the two perfor-
mance measures in measurements D, F, and H in Figs. 6
through 11. The four players conducted the experiment 20
times in each measurement in each of Skipping, VTR, and
methods 1 through 6. In Figs. 4 through 11, we plot the
95 % confidence intervals.

In Fig. 4, we see that the elimination rates of methods 1,
5, and 6 are approximately 0.5. To clarify the reason, we
measured the average MU output delay , which is defined as
the average time from the moment an MU is generated at
the server until the instant the MU is output. As a result,
the average MU output delays of group α (i.e, clients 1 and
2) were almost the same as those of group β (clients 3 and
4) in methods 1, 5, and 6. That is, the average MU output
delay of client 1 was almost the same as that of the client 3
or 4, and the remaining two clients had almost the same
average MU output delay. For example, the average MU
output delays of clients 1 through 4 were 10.4 ms, 30.4 ms,
10.3 ms, and 30.4 ms, respectively, in method 5. Thus, in
methods 1, 5, and 6, since group α has almost the same
output timings as group β, the elimination rates are ap-
proximately 0.5. However, the 95 % confidence interval of
method 1 is very large. Therefore, methods 5 and 6 can keep
the fairness in better condition than the other schemes.

From Fig. 5, we notice that the average total numbers of
eliminated targets of Skipping, VTR, and methods 2, 3,
and 5 are larger than 15. However, those of methods 1,
4, and 6 are smaller than 15. The average MU output de-
lays of Skipping, VTR, and methods 2, 3, and 5 at clients 1
through 4 were smaller than or almost equal to those of
methods 1, 4, and 6. For example, the average MU out-
put delays of clients 1 through 4 were 30.4 ms, 30.3 ms,
30.4 ms, and 30.4 ms, respectively, in method 1, but those
in method 2 were 0.4 ms, 20.3 ms, 10.4 ms, and 30.4 ms, re-

spectively. Although methods 5 and 6 can keep the fairness
in good condition, the efficiency of the work of method 6
is not high. Therefore, method 5 is superior to the other
schemes in terms of the fairness and the efficiency of the
work in measurement A.

In Fig. 5, we find that the average total number of eliminated
targets of VTR is smaller than that of Skipping. This is be-
cause the buffering time of MUs at each client is lengthened
and shortened independently of the other clients in VTR.
Actually, the average MU output delays of clients 1 through
4 were 0.3 ms, 23.1 ms, 13.0 ms, and 30.1 ms, respectively,
in VTR; however, those in Skipping were 0.3 ms, 20.3 ms,
10.4 ms, and 30.4 ms; thus, the average MU output delays
of clients 2 and 3 in VTR are somewhat larger than those
in Skipping.

Figure 6 reveals that the elimination rates of all the schemes
are approximately 0.5 in measurement D. This is because the
average additional delays of group α are the same as those of
group β; that is, the averages of additional delays 1 and 3 are
10 ms, and those of additional delays 2 and 4 are 20 ms. In
fact, the average MU output delays of group α were almost
the same as those of group β even without carrying out the
group synchronization control.

However, there are differences in the average total number of
eliminated targets among the schemes in Fig. 7. The average
total numbers of eliminated targets of Skipping, VTR, and
methods 2, 3, and 5 are larger than those of methods 1, 4,
and 6. The reason can be explained by the difference in the
average MU output delay as in the case of measurement A.
That is, the average MU output delays at clients 1 through
4 were 10.3 ms to 13.0 ms, 20.3 ms to 23.1 ms, 10.3 ms to
13.1 ms, and 20.3 ms to 23.1 ms, respectively, in Skipping,
VTR, and methods 2, 3, and 5, but those in methods 1,
4, and 6 were 20.3 ms or 20.4ms. Thus, we can say that
Skipping, VTR, and methods 2, 3, and 5 are effective in
measurement D.

In Fig. 8, we observe that the elimination rates of methods 1,
5, and 6 are approximately 0.5 in measurement F. However,
method 1 has a large confidence interval. From Fig. 9, we
see that the average total numbers of eliminated targets of
all the schemes excluding method 1 are larger than 15. The
reason is that all the clients had the average MU output
delays of around 30.3 ms in method 1; however, some clients
had the average MU output delays smaller than 30 ms in the
other schemes. Therefore, method 5 and 6 are effective in
measurement F.
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Figure 5: Average total number of eliminated targets in measurement A.

In Fig. 10, the elimination rates of all the schemes are ap-
proximately 0.5 in measurement H. Also, the average total
numbers of eliminated targets of all the schemes are larger
than 15 in Fig. 11. We further notice that the average total
number of eliminated targets of VTR is slightly smaller than
those of the other schemes. The reason is the same as that
in Fig. 5. Therefore, the difference among all the schemes is
small in measurement H.

From the above observations, we can say that method 5 is
superior to the other schemes in terms of the fairness and
the efficiency of the work.

6. CONCLUSIONS
This paper investigated the effects of group synchronization
control over haptic media in a networked real-time game
with collaborative work by experiment. We enhanced the
synchronization maestro scheme for the control so as to han-

dle two reference output timings. As a result, we saw that
method 5 can achieve high efficiency of the work while keep-
ing the fairness in good condition; in method 5, we choose
the later output timing as a reference one between the out-
put timing of a client with the smaller latency in a group
and that in the other group, and we also choose the later
one as the other reference one between the remaining two.

As the next step of our research, we plan to carry out subjec-
tive assessment of the fairness and the efficiency of the work.
We also need to investigate other determination methods of
the reference output timing and handle the case of more
than four clients. Furthermore, we will deal with networked
real-time games different from that handled in this paper.
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Figure 10: Elimination rate of the target of the group � in measurement H.
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Figure 11: Average total number of eliminated targets in measurement H.

APPENDIX

A. SYNCHRONIZATION MAESTRO SCHEME
In order to explain the synchronization maestro scheme, let
us focus on a client. Let xn denote the ideal target output
time (see Subsection 3.1) of the n-th MU (n = 1,2, ···). Also,
let Tn, An, and Dn denote the generation time, arrival time,
and output time, respectively, of the n-th MU. It should be
noted that the values of these variables are integers repre-
sented in milliseconds.

The ideal target output time xn is calculated as follows:

x1 = T1 + δ, (1)

xn = x1 + (Tn − T1) (n ≥ 2), (2)

where δ denotes the target delay time (see Subsection 3.1).

We cannot always output each MU at its ideal target output
time since there exists network delay jitter. Therefore, we

further employ the target output time (see Subsection 3.1)
tn of the n-th MU, which is calculated by adding some
amount of time (called the total slide time [12]) to the ideal
target output time.

Let us define the slide time [12] of the n-th MU, which is
denoted by ∆Sn, as the difference between the modified tar-
get output time [12] t∗n and the original target output time
tn. We also define the total slide time Sn as follows:

S0 = 0, (3)

Sn = Sn−1 + ∆Sn (n ≥ 1), (4)

where ∆S1 = 0. Then, tn and t∗n are expressed by

t1 = x1, (5)

tn = xn + Sn−1 (n ≥ 2), (6)

t∗n = tn + ∆Sn (n ≥ 1). (7)
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When the client receives the first MU, it determines the
output time D1 of the MU as follows: D1 = max(t1, A1).
Then, it inquires of the synchronization maestro whether the
target output time should be modified or not, by sending the
information about the output timing to the maestro. The
purpose is to adjust the output timing of the succeeding
MUs among all the clients. In this paper, we represent the
output timing in terms of the total slide time. Therefore,
the client sends a recommended value of the total slide time,
which is referred to as the recommended total slide time [9],
to the maestro.

After the beginning of the output, when the client receives a
constant number of consecutive MUs each of which has ar-
rived earlier (or later) than its target output time, it notifies
the maestro of the recommended total slide time if it has not
transmitted any information to the maestro for those MUs at
all. The recommended total slide time is different from the
total slide time in that the latter is the accumulation of the
slide times, while the former is employed for inquiry about
the modification of the target output time in advance. The
amount by which the target output time should be modified
is called the recommended slide time [9]. Let us denote the
recommended total slide time and recommended slide time
for the n-th MU by sn and ∆sn, respectively. These times
are given by

s1 = ∆s1 = D1 − x1, (8)

sn = Sn−1 + ∆sn (n ≥ 2). (9)

We will explain how to obtain the value of ∆sn (n ≥ 2)
later.

In addition, the client notifies the synchronization maestro
of the total slide time Sn whenever the target output time
is modified [12] at the n-th (n ≥ 2) MU (that is, in the case
of the virtual-time expansion ).

When the synchronization maestro receives the total slide
time or the recommended total slide time from each client,
it determines the reference value S of the total slide time as
the reference output timing. Then, the maestro transmits
the information about S to all the clients at regular intervals
(every 5 seconds in the experiment in Section 4) [9].

The client gradually adjusts its own total slide time to the
reference one S when it receives the information about S.
Until the client receives the information about S for the
first time, it sets the initial value of S to S1(= 0). For the
adjustment, it compares Sn−1 with S at the n-th (n ≥ 2)
MU.

First, let us describe the control in the case of S = Sn−1.
Next, we explain the control when S > Sn−1 and then that
when S < Sn−1.

(a) Case of S = Sn−1

In this case, if tn ≥ An (n ≥ 2), the client sets the sched-
uled output time [12] dn of the n-th MU as follows: dn = tn

(in this paper, we do not need to perform inter-stream syn-
chronization control as described earlier. Thus, the output
time of the n-th MU is set to Dn = dn). Otherwise, it sets
dn = An. If the MU arrives more than Th2 milliseconds later
than its target output time (that is, if An − tn > Th2), we
set the slide time as follows: ∆Sn = min(r1, Tn + ∆al − tn);

this means that the virtual-time expansion occurs; note that
Th2 is a threshold value which we use so as to judge whether
the target output time should be delayed or not [12]. In this
equation, r1 (r1 ≥ 1 ms) is the maximum value of the slide
time in the case where the total slide time is increased under
the intra-stream synchronization control, and the smaller
value between the two is chosen so that the modified target
output time does not exceed the generation time Tn of the
MU plus ∆al.

Also, let us assume that when the client receives the n-th
MU, it observes that Nc (Nc ≥ 1) consecutive MUs each
have arrived later than their target output times. We fur-
ther assume that for all the Nc MUs the client has sent
information about neither the total slide time nor the rec-
ommended total slide time to the maestro. Then, the client
sets ∆sn = min(r2, Tn +∆al−tn) and notifies the maestro of
the recommended total slide time sn, where r2 (r2 ≥ 1 ms)
is the maximum value of the recommended slide time for in-
crement of the recommended total slide time. On the other
hand, when the client observes that Nd (Nd ≥ 1) succes-
sive MUs each have arrived earlier than their target output
times, it sets ∆sn = −min(r3, Sn−1) so that the modified
target output time does not become less than the ideal target
output time, where r3 (r3 ≥ 1 ms) is the maximum absolute
value of the recommended slide time for decrement of the
recommended total slide time. The client also transmits the
information about the value of sn to the maestro.

(b) Case of S > Sn−1

When S > Sn−1, the client sets ∆Sn = min(r4, S−Sn−1) so
as to adjust its total slide time to the reference one (i.e., the
virtual-time expansion), where r4 (r4 ≥ 1 ms) is the maxi-
mum value of the slide time by which the total slide time is
increased under the group synchronization control [9]. How-
ever, as described earlier, if we change the total slide time to
be adjusted to the reference one whenever the client receives
an MU, the output quality of haptic media may deteriorate
seriously; it should be noted that the virtual-time expansion
brings pausing MUs [12]. Therefore, we adjust the total slide
time every Ne MUs for each of which the total slide time is
larger than the reference one. In this case, if t∗n ≥ An, the
client sets dn = t∗n; otherwise, it sets dn = An.

(c) Case of S < Sn−1

When S < Sn−1, the client sets ∆Sn = −min(r5, Sn−1 − S)
every Nf MUs for each of which the total slide time is
smaller than the reference one as in case (b), where r5

(r5 ≥ 1 ms) is the maximum absolute value of the slide
time by which the total slide time is decreased for group
synchronization [9]; that is, the virtual-time contraction oc-
curs; note that the virtual-time contraction brings skipping
MUs [12]. The client determines dn in the same way as in
case (b).

We have a possibility that dn ≤ Dm (m < n) in the case
of the virtual-time contraction, where m is the sequence
number of the last output MU. In this case, we skip the
n-th MU.
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