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ABSTRACT

Visual-haptic compliance perception demands processing of haptic
position and force information as well as visual position informa-
tion. In this study it was analyzed how different compliances
are perceived and how single modality estimates are combined to
a visual-haptic percept of compliance. Participants estimated the
compliance of a virtual cube displayed by a human system inter-
face. Thereby, psychometric functions were recorded and statis-
tically evaluated. Results indicated that human’s ability to dis-
criminate differences relative to a standard compliance decreased as
the standard compliance increased. Furthermore, in the conflicting
case participants’ bimodal percept was close to the modality that
captured the less compliant information.

Index Terms: Perception, Compliance, Human System Interface,
Sensory Fusion, Maximum-Likelihood Estimation

1 INTRODUCTION

Mechanical environments are mainly perceived by processing
position-based information (position, velocity, acceleration) and
force information. However, humans do not have distinct modal-
ities for each of these kinds of information. Considering visual-
haptic perception, position-based information can be detected by
both modalities while force information can only be detected by the
haptic (kinesthetic) modality. Furthermore, the obtained informa-
tion has to be computationally processed to obtain an estimate of the
explored mechanical environment. An analysis of the underlying
fusion process will contribute not only to psychophysical knowl-
edge but also to the design and control of human system interfaces
used to access artificial environments. A sound analysis requires
a visual-haptic HSI with high accuracy in displaying mechanical
environments and extensive experiments using psychophysical pro-
cedures.

Information from different senses is integrated to form a coher-
ent perception of our environment. Several models of integrating
multisensory information have been developed and can be sub-
divided into the following three model types (e.g. [10, 19]): A)
Sensory penetration (one modality influences the other during uni-
modal stimulus processing), B) feedforward convergence and C)
feedforward convergence with feedback-loop. Model B of inte-
gration is the most popular one (e.g. [10, 19, 24]): Information
from different senses is separately processed and converges to a
coherent percept at higher processing levels (e.g. [25]). However,
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Figure 1: Visual-haptic perception of compliance information: Re-
dundant position information and haptically perceived force informa-
tion are combined to generate the final estimate.

modalities do not necessarily contribute equally to the bimodal per-
cept: Visual dominance has often been reported, such that the vi-
sual modality captures e.g. the haptic modality (see [21]; for a
review see [7, 28]). Different approaches argue that the relative
contribution of each sense depends on modality appropriateness
(e.g. [28]), effectiveness (e.g. [6]) or on the direction of attention
(e.g. [15]). Another approach states that information from differ-
ent senses are fused in such a way that the percept is the best pos-
sible estimate (e.g. [12]). Ernst & Banks point out that under a
maximum-likelihood model this estimation depends on the relia-
bility of each modality: The modality with the highest reliability
contributes most to the bimodal percept. On the other hand, if the
reliability of one modality is reduced, its relative contribution to
the bimodal percept decreases (e.g. [11]). Considerable research on
integration based on the maximum-likelihood theory (see for fur-
ther detail 2) has already been done [1, 4, 11, 16]. Most research
on bimodal integration has concentrated on one sensory signal, e.g.
position [11]. Additional studies have addressed the question of
integrating information within a modality (e.g. [9, 17, 18]) and
have also shown differences between integration within and be-
tween senses (e.g. [16]). However, investigating the integration of
more complex variables that induce observers to integrate bimodal
signals of different dimensions has not been undertaken yet. Hap-
tic perception of compliance has already been shown to require the
combination of force and position cues. This results in a loss of
sensitivity (see e.g. [8, 20, 26, 27, 31]).
The contribution of this article is an analysis of visual-haptic com-
pliance integration. According to Hooke’s law, compliance is the
combination of position and force information. Since position in-
formation is redundant (measured by visual and haptic modalities)
the perception of compliance must include the fusion of redundant
information. As a basis of our investigation it was assumed that
humans independently identify the presented compliance visually
and haptically. In a second step they integrate the visual and the
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haptic compliance identification result to a single percept. Since
humans do not have visual force sensors we assumed that people
inferred force cues from the cube itself or from a force prior. We
used 2AFC-tasks to record the psychometric functions of visual,
haptic, and visual-haptic compliance perception. A test of whether
integration of visually and haptically estimated compliance obeyed
the maximum-likelihood model [11] was conducted. The results
showed that participants had difficulties in identifying compliance
from pure visual cues. The reliability of compliance perception
decreased with increasing compliance. In our study we could not
confirm the maximum-likelihood model.
The article is organized as follows: In Section II the mathematical
background of multimodal perception is presented. The Human
System Interface used for the experiments is introduced in Sec-
tion III. In the following sections method (Section IV) and results
(Section V) are described. Section IV provides a discussion of the
research conducted, and conclusions are drawn in Section VII.

2 PERCEPTION OF BIMODAL INFORMATION

Systems that extract information about an environment are often
equipped with multiple sensors. The mapping from the real world
to an internal modal based on sensed information is called the per-
ceptual process. During this process multi-sensory information is
fused and extended by a priori information about the environment
(See [12] for psychophysical evidence). Information sensed can be
complemental (e.g. color and size of a certain object) or redundant
(e.g. position of a certain object sensed by visual and propriocep-
tive sensors). Perception of redundant information should reduce
the uncertainty of the final estimate (See [11] for psychophysical
evidence). Thereby, single modality estimates

ŝi = fi(s), (1)

are combined to an integrated percept

ŝ = g(ŝ1, ŝ2, ...). (2)

The variable s represents the stimulus generated by the environmen-
tal property. The index i indicates the modality and the function g
defines the perceptual fusion mechanism.
Maximal exploitation of the sensed redundant information can be

computed using concepts of mathematical optimization. Thereby,
a cost function is minimized with respect to the estimation error of
the final percept ŝ. It is assumed that the fusion mechanism linearly
combines the sensed information

g(ŝ1, ŝ2, ...) = k1ŝ1 + k2ŝ2 + .... (3)

In the case of visual-haptic, i.e. bimodal, information the optimal
integrated estimate ŝopt is distributed normally having a mean

s̄opt =
σ2

h
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and a standard deviation

σopt =

√
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v σ2

h

σ2
v +σ2

h

. (5)

As depicted in the upper diagram of Figure 2 the combined percept
yields a more reliable estimate represented by the highly peaked
distribution. Furthermore, the mean value of the combined percept
is a weighted average of the means of the single modality estimate.
For complete derivation of the optimal solution refer to [5].
Human perception is a probabilistic process. Assuming a Gaussian

Figure 2: Perception of bimodal information: Minimizing expectation
of the quadratic estimation error yields a combined percept with op-
timal variance (upper diagram). Characteristics of estimates can be
obtained by differentiating the psychometric function that represent
observer performance in stimulus discrimination (lower diagram).

characteristic, distributions of single and bimodal estimates can be
recorded using e.g. a two-alternative-forced-choice task (2AFC)
(e.g. [14]). The result, the psychometric function, expresses the
observer’s performance with respect to a categorical judgment (see
lower diagram in Figure 2). In this type of task, the observer has
to compare a stimulus s to a standard stimulus ss. If she/he has
decide for one of two alternatives (e.g. ”Was the second stimulus
more compliant than the first stimulus?”) the task is called two-
alternative-forced-choice task (’2AFC’). The upper bound of this
psychometric function (normally 1.0) represents the observer’s per-
formance with a comparison stimulus arbitrarily greater than the
standard value, i.e. the observer answers that the comparison is
greater on 100% of the trials. The lower bound of this function
(usually 0.0) represents the probability of answering that the com-
parison stimulus is less than the standard stimulus for an arbitarily
lesser value. The psychometric function normally has the shape of a
sigmoid and can be modeled by a cumulative Gaussian distribution.
Hence, the characteristics of the perceptual estimate, i.e. the mean
(s̄stimulus) and the standard deviation (σstimulus), can be empirically
estimated by taking the stimulus value and the slope at proportion

0.5. The sloppe at proportion 0.5 corresponds to 1/(σstimulus

√
2π).

The inverse value of the quadrat of this standard deviation is also
called ’reliability’ of the perceptual estimate.
The mean value s̄stimulus of the distribution fit to the data is called
”point of subjective equality” (PSE) as it defines the value where
50% of the participants decide for the first response alternative and
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50% for the second:

PSE := s̄ (6)

The constant error (CE) is defined as the difference between the
PSE and standard stimulus:

CE := PSE− sstandard (7)

A CE is only possible to compute when perceiving information
from a single modality or when bimodal information is congruent,
i.e. has no conflict.
The bimodal conflict is defined by the difference between the means
of the single modality estimates

c := |s̄v − s̄h| . (8)

If the conflict induced by the sensory estimates of the two modal-
ities is too large the perceptual system might not be able to fuse
incoming information. In this case the conflict is perceived because
the final estimate will not result in a single coherent percept [11].
The relative difference between optimal PSE and empirically esti-
mated PSE is defined by:

ePSE :=

∣
∣
∣
∣

PSEopt −PSEVH

PSEopt

∣
∣
∣
∣
. (9)

Respectively, the difference of the slopes is defined by

eσ :=

∣
∣
∣
∣

σopt −σVH

σopt

∣
∣
∣
∣
. (10)

In both equations the subscript VH refers to an perceptual estimate
from a bimodal (visual-haptic) stimulus condition.

3 HUMAN SYSTEM INTERFACE

The rendering of mechanical impedances, like compliance, by a
haptic display is a difficult task. Therefore, the details of the hard-
ware and the control are described in the this section.

3.1 Hardware and Software

The human system interface (HSI) provides visual and propriocep-
tive (haptic) feedback. Furthermore, it measures finger positions
and forces. See Figure 3 for a photo of the device and Figure 4 for
a sketch of the haptic subsystem.
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Figure 3: Human system interface and real-time processing unit: Vi-
sual and proprioceptive (haptic) information is fed back and positions
are sensed.

Proprioceptive information is exchanged via a haptic interface com-
prised of two SCARA robots providing a single degree of freedom
each. The system interacts with index finger and thumb to allow
gripping movements. High fidelity components like Maxon motors
and Harmonic Drive Gears enable best possible control. Workspace

is about 80 mm and maximum force is about 35 N. Position infor-
mation is measured by angle encoders and force is sensed by strain
gauges attached on both robot links. Visual information is provided
over a TFT screen. Thereby, the compliant environment is repre-
sented by a grey cube squeezed by two orange spheres (on opposed
cube sides) representing finger positions (see Figure 5). The TFT
screen is slanted by 40◦ and mounted in the line of sight to the hand
enabling participants to look at the display as if there were looking
at their hand 1. The system is connected to a PC running RTAI-
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Figure 4: Kinematical structure of the haptic display: Two SCARA
robots present compliance information for gripping movements.

RealTime Application Interface for Linux. SCARA sensor signals
are recorded by a ”Sensoray 626” DAQ-Card providing 16 bit sens-
ing resolution. Signal processing algorithms are implemented as
Matlab/Simulink models with real-time code generated automati-
cally. The system operates at 1 kHz sampling frequency. Measured
positions are transferred to a second PC running the visual virtual
reality programmed in Open Inventor.

Figure 5: Haptic and visual feedback: The haptic feedback renders
a compliant cube to be explored by thumb and index finger. In the
visual feedback fingers are replaced by orange spheres.

3.2 Dynamics and Control

The identical robots of the HSI are controlled independently using
the same admittance control scheme (see Figure 4 for kinematical
configuration). In the following, the concept is explained using a
single robot system without loss of generality. Furthermore, the ex-
planation is restricted to translational movements only (kinematical
transformation are ignored) since robot links are only moved little
when performing the gripping tasks.

1The tool transformation has no influence on the dynamics of the grip-

ping movement, if participants are given a learning phase (e.g. see [3])
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For dynamics consider a mechanical robot with a single transla-
tional degree-of-freedom. The dynamical equation is given by

Mhv̇h +nh = gh − f e
o (11)

Where Mh ∈ R and nh ∈ R denote mass and nonlinearities of the
robot. Robot force gh ∈ R depends on motor torque T and on link
length l, respectively (Figure 4). The velocity of the tool tip is de-
noted by vh. Input-output linearization [23] is achieved by com-
manding

gh = f m
h +nh. (12)

The resulting linear dynamics are

Mhv̇h = f m
h − f e

o . (13)

Where f m
h is the new motor force of the linearized HSI.

A velocity controller, Cv : U → M, realizes the command signal f m
h

according to
f m
h = Gh(Cv(vv − vh)). (14)

Where Gh represents the dynamics of the actuator, which can be
reduced to the dynamics of the current control.
The HSI is serially connected to the human operator, whose fingers
are described by the dynamics Zo : U → M. The velocity of the HSI
and the velocity of the operator’s fingers are opposite

vh = −vo. (15)

The dynamics of the robot interacting actively with the human op-
erator are described by

fo = Zo(vo)+ f m
o . (16)

Where f m
o is the force actively intended by the human operator im-

peded by the force fo that mediates the virtual reality (VR).
The dynamics of the VR is described by the admittance Yv : U → M,
which represents pure stiffness yielding

vv = Yv(k, f e
m) = k−1 d f e

m

dt
. (17)

Where k [N/mm] is the stiffness coefficient (compliance k−1) whose
perception is addressed in this publication. The control concept em-
ploying inner velocity control driven by a virtual reality with force
reference is called admittance control. It is best suitable for render-
ing non-rigid environments like compliant environments (see [2]
for detailed information). Minimum compliance (= maximum stiff-
ness) that can be rendered is k−1 = 0.2 mm/N.
A block diagram of the human operator interacting with the haptic
human system interface is depicted in Figure 6. Hollow arrows de-
pict physical interactions, filled arrows are used for signal interac-
tions. All subsystems are considered to be linear and time-invariant.
The fidelity of the VR depends on dynamics and control of the HSI.
The robot is light weighted, dynamics of the motor current control
are negligible, and velocities are small (i.e. friction effects negligi-
ble). Consequently, the transparency of the system can be assumed
as nearly ideal and the displayed dynamics Yd can be considered
equal to the dynamics of the VR

Yd = Yv. (18)

4 METHOD

4.1 Participants

Fifty-eight students of the Technische Universität München and the
Ludwigs-Maximilian-Universität, München took part in this study
and were paid for participation. Participants were randomly as-
signed to one of the experimental groups according to modality in
which stimuli were explored, see Section 4.2. Thirteen participants

Human
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∫
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Figure 6: Admittance control: The haptic virtual reality is induced
using different stiffnesses. High performance is achieved through
light weighted robot.

had to be excluded from further analysis, because no psychometric
function could be fitted to the data; most of theses participants had
been assigned to group V (n=8). Eleven persons (6 men, 5 women)
with an average age of 24 years explored the stimuli without vision
(group H), and 11 participants (5 men, 6 women) with an average
age of 26 years explored without haptic feedback (group V). The
other two groups tested the cube bimodally: 12 persons (6 men, 6
women) with an average age of 24 years tested congruent stimuli
(group HV), whereas 11 participants (4 men, 7 woman) with an av-
erage age of 25 years explored incongruent stimuli (group HVS).
All participants were right-handed and had normal or corrected to
normal vision.

4.2 Stimuli

All stimuli were virtual rendered compliant cubes of 80 mm edge
length having a certain compliance s. They were either unimodally,
i.e. visually or haptically, or bimodally, i.e. visual-haptically, dis-
played by the HSI (see Section 3). The bimodal stimuli were pre-
sented congruently, i.e. haptic and visual information were equal
or as conflicting stimuli, i.e. haptic and visual information differed
according to equation (8). No visual feedback was given during the
unimodal haptic presentation nor was haptic feedback given in uni-
modal visual presentation (except the possibility to move the grasp
device in order to move the visual fingertips).
Five standard stimuli were selected. The values were 0.2, 0.4, 0.9,
1.4, and 2.1 [mm/N]. Seven comparison stimuli were selected to
be linearly distributed above the standard stimuli. The comparison
stimulus with the lowest compliance was the same as the standard
stimulus. Since the detection threshold is known to be around 30%
(see [13] for detailed information), the most compliant comparison
stimulus was twice the standard value to assure that nearly all par-
ticipants would detect the difference. The reason why the standard
stimuli were not centered in the middle of the comparison stimuli
is due to the fact that it is difficult to haptically display relatively
compliant environments accuratly by a human system interface, es-
pecially when the standard stimuli are less compliant themselves,
which was the case here.
Additionally, bimodal conflicting stimuli were generated using a
reference modality, which defined the standard stimulus. With the
haptic modality as reference the (haptic, visual) combinations were
(0.2, 0.4), (0.9, 1.6), (1.4, 2.1) in [mm/N]. With the visual modality
as reference the (haptic, visual) combinations were (0.4, 0.2), (1.3,
0.9), (2.1, 1.4) in [mm/N].

4.3 Design and Experimental Paradigm

Design. The psychometric function for discriminating compliance
was assessed within the following modality conditions: Unimodal
haptic (H), unimodal visual (V), bimodal congruent and bimodal
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Figure 7: Unimodal and bimodal compliance estimates (referenced to the standard compliance 0.2 N/mm): Haptic estimates and visual-haptic
estimates show nearly identical slopes and variabilities. Visual estimates show higher variabilities and a lower slopes. (Due to the experimental
design values smaller than the standard compliance were extrapolated by using the symmetric characteristic of the sigmoid.)

incongruent stimulus presentation with one modality being the ref-
erence modality (VH). Because testing time is relatively long using
this method, modality was chosen to be a between-participants
variable. Each of the above described five standard stimuli was
recorded using the 2AFC-tasks (e.g. [14]; also used by [11]);
standard compliance was a within-participants variable.
Experimental Paradigm. One trial consists of the sequential pre-
sentation of two stimuli: the standard and the comparison stimulus;
the sequencing of standard stimulus and comparison stimulus
differed randomly. Duration of each stimulus presentation was 2 s
with an inter-stimulus interval of 2 s and an inter-trial interval of
4 s. Discrimination performance of each standard stimulus was
assessed during one block, within which, each combination of this
standard and the seven comparison stimuli was randomly presented
8 times.
The task was a 2AFC-task. That is, subjects had to compare both
sequentially presented stimuli and to decide whether the second
stimulus was more compliant than the first one. Because only stim-
uli that were more compliant than the standard stimulus had been
chosen for this experiment (see Section 4.2) and position of the
standard stimulus was randomly varied the resulting psychometric
function represents the proportion of correctly detected differences
(further referred to as ’proportion correct’). In our design, this
is equivalent to the proportion of stimuli rated greater than the
standard.

4.4 Experimental Procedure

Participants were seated in front of the HSI with their dominant
hand grasping the device and with direction of gaze essentially
perpendicular to the screen. They were carefully instructed
according to the group to which they were randomly assigned. A
short training had to be completed, before the test session started.
At the end of the experiment, participants were asked to fill in
questionnaires assessing their demographical data. Additionally,
because the ability to be drawn into a book, film or VE, better
known as immersive tendency (see [30]), has been assumed
to contribute to performance within virtual environments. An
additional 12-item questionnaire was included to control for that
variable ( [30], translated by [22]): Immersive tendency was
assessed by answering 12 items building the two factors, tendency
to get emotionally involved and degree of involvement (see [22]).

4.5 Data Analysis

Questionnaire data were first analyzed (see Section 5.1).
For each participant and each standard stimulus a psychometric
function was fitted using ”psignifit” software, version 2.5.6, de-
scribed in [29] and Matlab/Simulink (see Section 4.3). The follow-
ing parameters were computed by fitting the psychometric func-
tion to the experimental data: Means (PSEH, PSEV, PSEVH) and
standard deviations (σH, σV, σVH) of the perceptual estimate were
computed for each standard stimulus by taking stimulus level and
slope at proportion 0.5 (see also Section 2). Additionally, the CE
was computed.
Whether standard compliance affected discrimination performance
(see Results: Subsection 5.2) and whether visual-haptic integration
occurs (see Results: Subsection 5.3) were tested separately. The
first question was tested with the CE and standard deviation of the
PSE (which will further be referred to as η) and additionally with
the slope of the psychometric function, σ .
The second question was tested by first estimating the optimal
mean (PSEopt) as well its standard deviation (σopt) according to
equation (4) and equation (5). Results were descriptively analyzed
and compared to the experimentally derived bimodal parameters
(PSEVH (congruent ans incongruent), σVH (congruent and incon-
gruent)).

5 RESULTS

5.1 Questionnaire Data

Immersive tendency. Both factors, emotional involvement and de-
gree of involvement, were computed for each participant. Rating
of emotional involvement ranged between 26.4 and 29.9, and de-
gree of involvement between 17.5 and 21.0 within all 4 groups.
These values did not statistically significantly differ from those re-
ported by Scheuchenpflug [22], indicating that the participants are
a good sample of the general population. No correlation between
emotional involvement and individual thresholds and their standard
deviation could be observed. This indicates that no immersive ten-
dency influenced participants.
Additional rating of group VH and VHS. Participants of both bi-
modal groups rated which modality they attended to: Most attended
to the haptic (group VH: n=9, group VHS: n=7), the visual (group
VH: n=2, group VHS: n=1) or both modalities (group VH: n=1,
group VHS: n=3).
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Figure 8: Unimodal and bimodal compliance estimates: PSEs (av-
eraged across subjects, solid line) show low constant error indepen-
dent of displayed compliance and modality. Standard deviation of
PSEs (dashed line) across subjects increases with higher compli-
ance. The visual standard deviation, in particular, is highly variable
indicating the difficulty when estimating compliance visually.

5.2 Perception of Different Compliances

The first result reveals that participants had difficulty in discrimi-
nating compliance which was only presented visually: As can be
seen from Figure 7 the variability of the CE, is small in group H
and group VH, but larger in group V. This can also be seen from
Figure 8 which shows the PSE and the standard deviation of the
PSE, η , plotted against the standard compliance: Although the CE
(difference between PSE and unity line) is small for nearly all stan-
dard stimuli, η from the visual estimate is higher for nearly all
standard stimuli. Consequently, the mean CE across all standard
compliances in group H amounted to 0.2 N/mm (standard deviation
η = 0.1 N/mm), 0.17 N/mm (η = 0.08 N/mm) in group VH, and in
group V 0.24 N/mm (η = 0.4 N/mm).
Additionally, as has been reported in Section 4.1, several partici-
pants had difficulty in performing the task and had to be excluded
form further analysis.
The second result shows that participants’ ability to generally es-
timate compliances decreases with increasing compliance. It was
tested whether the CE changed depending on the standard compli-
ance (separately for all groups). With increasing standard compli-
ance, there was an increase in CE in group H (Greenhouse Geisser
corrected: F(2.7,26.8) = 26.64, p < 0.05; partial η2 = 0.727) as
well as in group VH (Greenhouse Geisser corrected: F(3.0,32.6) =
20.18, p < 0.05; partial η2 = 0.647), but not in group V (Green-
house Geisser corrected: F(1.8,18.4) = 0.98, p = 0.389). Descrip-
tively, this can be seen in the second part of Figure 8 relating the
standard deviation of the PSEs, η , to the displayed compliance. It
can be seen that all curves show a positive trend. Especially, η of
the visual estimates showed a strong increase with higher standard
compliances.
The consistently positive value of the CE is due to the fact that
comparison compliance was always greater than the standard com-
pliance.

The third result confirms the second result showing that partici-
pants’ estimate of compliance became less reliable with decreasing
compliance. As depicted in Figure 9, the slope of the psychome-
tric function decreases with increasing standard compliance. That
means the standard deviation σ of the perceptual estimate increases
with larger compliances. Whether this influence is statistically sig-

Figure 9: Psychometric functions of different compliance estimates
(standard compliances indicated by dotted-lines): Haptic estimation
of compliance became less reliable with increasing standard compli-
ance. The same results were discovered for the bimodal groups. A
comparable increase in standard deviation was not observed in the
visual groups, where performance was low for all compliance val-
ues. The consistently positive value of the CE was due to the fact
that participants were only presented comparison stimuli that were
higher than the standard.

Standard Estimates Calculated
sh sv PSEH PSEV PSEVH PSEopt ePSE

A) congruent standard stimulus [mm/N]

0.2 0.2 0.2 0.2 0.2 0.2 2.4%
0.9 0.9 1.0 1.0 0.9 1.0 5.7%
1.4 1.4 1.6 1.7 1.5 1.6 7.2%

B) conflicting standard stimulus - haptic reference [mm/N]

0.2 0.4 0.2 0.3 0.2 0.2 4.6%
0.9 1.6 1.0 1.8 1.0 1.1 11.9%
1.4 2.1 1.6 2.5 1.6 1.9 17.4%

C) conflicting standard stimulus - visual reference [mm/N]

0.4 0.2 0.5 0.2 0.2 0.3 32.1%
1.3 0.9 1.6 1.0 1.1 1.1 3.7%
2.1 1.4 2.5 1.7 1.7 2.1 23.0%

Table 1: Experimentally-estimated and theoretically-calculated PSEs
(PSEopt and ePSE calculated according to equations (4),(9) ; values
rounded): PSEs of the combined percept (PSEVH) were similar to the
PSEs of the single-modality percepts (PSEH, PSEV) that relayed the
more compliant information (connection emphasized by bold values).
Optimal PSEs according to the maximum-likelihood model differed
up to 32.2% from the empirically estimated PSEs of the combined
percept (PSEVH).

nificant was tested separately for all modalities. A statistically sig-
nificant influence of standard compliance was found in group H
(Greenhouse Geisser corrected: F(1.4,14.3) = 8.11, p < 0.05; par-

tial η2 = 0.448), in the bimodal congruent presentation group VH
(Greenhouse Geisser corrected: F(2.4,26.4) = 41.80, p < 0.05;

partial η2 = 0.792), and in the bimodal conflict group VHS (Green-
house Geisser corrected: F(1.2,11.6) = 10.43, p < 0.05; partial

η2 = 0.510). In each case there was an increase in σ with increas-
ing compliance. No influence of compliance was found to affect
the σ in group V (Greenhouse Geisser corrected: F(1.4,14.3) =
8.11, p = 0.309).

5.3 Fusion of Compliance Information

Evidence of perceptual fusion is obtained if the PSE of the com-
bined percept (PSEVH) is situated between the single modality
PSEs. Furthermore, the reliability of the combined percept should
be higher resulting in a smaller standard deviation σVH compared to
the single modality parameters σH, σV. Maximum likelihood esti-
mates were calculated according to the formulas given in Section 2.
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The fourth result is that the data of this experiment did not confirm
that the PSE of the combined bimodal percept was an average of
single-modality percepts. In particular, there seemed to be no opti-
mally weighted fusion of uniformly distributed information as pre-
dicted by the maximum-likelihood theory described in Section 2. It
can be seen in Table 1 that the PSEs of the combined percepts were
close to the modality that presented the less compliant information.
(Optimal PSEs (PSEopt) and relative error between optimal and esti-
mated PSEs (ePSE) were calculated according to equations (4),(9).)
As indicated by the bold values in Table 1 participants seemed to
be limited by the modality that presented the less compliant infor-
mation when perceiving bimodal information. The other modality
does not seem to add information since the combined percept can-
not be denoted as being ’between’ the PSEs of the two modalities.
Consequently, the PSEs of the incongruent estimates were smaller
than the optimal values. Differences were between 4.6% and 32.1%
(mean 15.5%). The PSEs of the congruent estimates did not differ
notably from the optimal values, but this does not indicate fusion
since optimal PSE and single-modality PSEs are the same in the
congruent case.
The fifth result confirms the results above based upon the stan-
dard deviation of the perceptual estimates. The standard devia-
tions σ that describe the inverse reliability of the estimates are
listed in Table 2. (Optimal σ ’s (σopt) and relative error between
optimal and estimated σ ’s (eσ ) were calculated according to equa-
tions (5),(10).) In the congruent case, participants’ reliabilities of
the bimodal percept seemed to be closely tied to the reliabilities
of the haptic modality (which was reported in the first result to be
more reliable than the visual modality when presenting compliance
information). In the incongruent case participants’ reliabilities of
the bimodal percept seemed to be tied to the reliabilities of the
modality that presented the less compliant information: In all cases
where the reliabilities of the single modality percept differ more
than 0.1 mm/N participants’ combined estimate was close or equal
to the reliabilities of the smaller single-modal percept. Addition-
ally, combined estimates for congruent and incongruent standard
stimuli (σVH) were larger than the values σopt based on the maxi-
mum likelihood theory. According to maximum-likelihood model
the slope σ of the combined percept has to be smaller than the
smallest slope of the two single-modality percepts indicating that
information is added by both modalities and reliability increases.
However, in this study, the slopes of the combined estimates σVH

are not smaller than the smallest slope of single modality estimates
(only in one case). This indicates that there seemed to be no fusion
of the bimodal information.

6 DISCUSSION

To summarize the results, we found that discrimination perfor-
mance increases with decreasing compliance. Furthermore, the
combined percept of visual and haptic compliances could not be
predicted by a maximum-likelihood estimation of uniformly dis-
tributed information. Rather, participants’ percept was close to the
modality that presented the less compliant stimulus. We now ex-
pand on those points.
Discrimination of compliance with our visual-haptic human sys-
tem interface was found to produce reliable psychometric functions.
The estimate of the mean and standard deviation of the percep-
tual estimate of compliance indicated that people were less able to
discriminate compliance, and perceived compliance became more
variable, as the baseline level of compliance increased. This was
true for stimuli presented haptically and bimodally; performance
with purely visual stimuli was relatively poor at all compliance lev-
els. Thus overall, these results indicate that haptic cues to com-
pliance, as simulated by our interface, are not only effective but
necessary.

Stimuli Estimates Calculated
sh sv σH σV σVH σopt eσ kh kv

A) congruent standard stimulus [mm/N]

0.2 0.2 0.1 0.2 0.1 0.1 7.4% 0.8 0.2
0.9 0.9 0.2 0.5 0.2 0.2 6.7% 0.8 0.2
1.4 1.4 0.4 0.8 0.4 0.3 28.2% 0.8 0.2

B) conflicting standard stimulus - haptic reference [mm/N]

0.2 0.4 0.1 0.4 0.1 0.1 28.2% 1.0 0.0
0.9 1.6 0.2 0.6 0.3 0.2 27.2% 0.9 0.1
1.4 2.1 0.4 0.5 0.5 0.3 82.4% 0.6 0.4

C) conflicting standard stimulus - visual reference [mm/N]

0.4 0.2 0.2 0.2 0.1 0.1 33.4% 0.5 0.5
1.3 0.9 0.7 0.5 0.5 0.4 33.4% 0.3 0.7
2.1 1.4 0.7 0.8 0.9 0.6 71.1% 0.5 0.5

Table 2: Experimentally-estimated and theoretically-calculated
slopes (σopt and eσ calculated according to equations (5),(10); val-
ues rounded ): In the congruent case, participants’ reliabilities of
the bimodal percept seemed to be closely tied to the reliabilities of
the haptic modality. In the incongruent case participants’ reliabilities
of the bimodal percept seemed to be tied to the reliabilities of the
modality that presented the less compliant information. All relations
are marked bold. Optimal σ ’s according to the maximum-likelihood
model differed up to 82.4% (mean 32.3%) from the empirically esti-
mated σ ’s of the combined percept (σVH).

The more accurate performance in detecting rigid (less compliant)
environments than detecting soft (compliant) environments might
be explained by the fact that exploration of rigid environments leads
to a smaller change in finger position than is the case for soft en-
vironments. Consequently, the position estimate in compliant envi-
ronments might be more reliable, with the result that the visual and
haptic compliance estimates are more reliable as well.
Our experiments not only tested the efficacy of the interface for
conveying compliance, but they also provided tests of the hypoth-
esis that visual and haptic cues would be fused. Contradicting this
hypothesis, the results indicated that fusion did not occur, and in
particular, the combined percept of visual and haptic compliances
could not be predicted by maximum-likelihood of uniformly dis-
tributed compliance information. Instead, participants’ percept was
close to the modality that presented the less compliant stimulus.
The PSEs of the incongruent estimates were smaller than the values
predicted from optimal (i.e., maximum-likelihood) integration, in-
stead lying close to the values of the modality presenting the more
compliant level of the stimulus. The estimated reliabilities of the
percept were greater than optimal, and particularly for haptic stim-
uli, tended to be closer to the haptic value (which was the less com-
pliant).
The results of the bimodal conditions, in short, clearly violate op-
timal fusion as described by the maximum-likelihood model. In-
stead, performance appears to be limited by the discriminability
and reliability of the less compliant component of an incongruent
bimodal stimulus. Why should this occur? One answer to this ques-
tion can be derived from our data, which clearly indicate that the
lower the compliance being perceive, the more discriminable and
reliable the perceptual estimate. If two independent stimulus esti-
mates are produced for a discrepant stimulus, with some signal of
discriminability and reliability, a higher-order processor may use
the better estimate in making the discrimination judgment. This
would lead the lower-compliance stimulus level to dominate judg-
ments, as we observe.
Further research is needed to test these hypotheses, but our results
clearly indicate a departure from optimal fusion and hence advance
our knowledge of compliance judgments using a bimodal interface.
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