Seminar

Seminar

Haptics as a Multimedia Datastream

Introduction to Haptics and Haptics for Human Computer Interaction

Seminar Inhalt

1. Introduction to Haptics

- Übersicht
- Historische Entwicklung
- Geräteklassen
- Datenübertragung
- Anwendungen

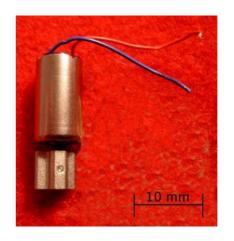
2. Haptics for Human Computer Interaction

- Menschliche Wahrnehmung
- Eingabe
- Ausgabe
- Interaktion
- Integration

1. Übersicht

1. Übersicht

- Bisher begrenzte Nutzung der Sinne
- Ziele haptischer Geräte
 - Realistische Simulationen
 - Flüssige Interaktion
- Interaktionsfluss
 - Heute: technisch orientiert
 - Ziel: anwendungsorientiert

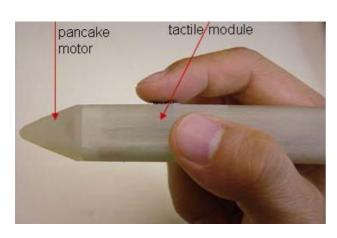

2. Historische Entwicklung

2. Historische Entwicklung

Elementare Geräte seit langer Zeit verwendet

Nintendo Rumble Pak (1997)

Motor für Vibrationsalarm en.wikipedia.org


2. Historische Entwicklung

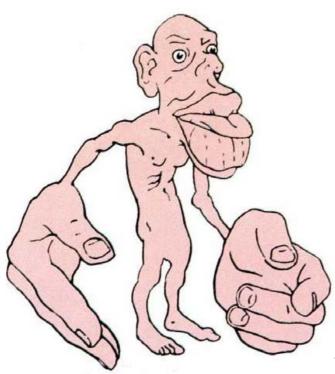
- Stufe 1
 - Homogene Kraft, einfache Konstruktion
 - Low cost
- Stufe 2
 - Haptische Erweiterung bekannter Schnittstellen
 - Visuelle und haptische Interaktion nicht r\u00e4umlich integriert
- Stufe 3
 - Vollständig interaktiv
 - Großzahl von Stimulatoren

3. Geräteklassen

3. Geräteklassen

- Große Teile des Körpers besitzen Tastsinn
- Große Gerätevielfalt
- Erdung
 - Geerdet: realistischere Effekte
 - Nicht geerdet: handlich, geringer Energieverbrauch

nicht geerdet


Sea Alia.
Tennania

geerdet

[6]

3. Geräteklassen

- Wirkungsbereich
 - Meistens Hände
 - Hände: praktische Handhabung

Rezeptordichte

Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Gießen

3. Geräteklassen

- Haptische Sinne
 - Tastsinn
 - Temperatur
 - Schmerz
- Symbolischer vs. realistischer Effekt
- Informationsfluss
 - Eingabe: Mensch → Computer
 - Ausgabe: Computer → Mensch
 - Interaktiv: Eingabe + Ausgabe
- Standalone vs. Peripheriegerät
 - Gerät über Netzwerk sharen
- Gelegentliche Korrelation der Eigenschaften

4. Datenübertragung

4. Datenübertragung

Sinn	Zeitauflösung	Daten pro sample	Bandbreite
Audio	44 kHz	16 bit	0.67 MBit/sec
Video	30 Hz	40 kByte (1)	9.375 MBit/sec
Haptik	1 kHz	1 kByte (2)	7.8 MBit/sec

- Kompression haptischer Daten: up to 90%
 - Statistische Ansätze
 - Wahrnehmungsbasierte Ansätze
- Protokoll
 - Integration heterogener Umgebung
 - Flexibilität
 - Erweiterbarkeit (vg. IPv6)
 - Übertragungsfehler
 - Synchronisation

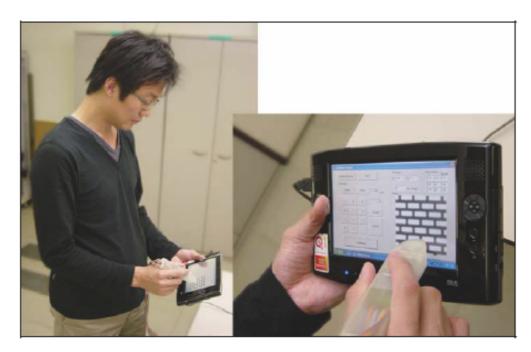
5. Anwendungen

5. Anwendungen

- HCI
- VR
 - Breite Zielgruppe
 - Telekonferenz, Gaming
 - Schwerpunkt auf Interaktivität
- Decision support, e-learning
 - Andere Sinne zusätzlich betonen

5. Anwendungen

- Medizintechnik
 - Für Patienten: Unterstützung der Muskeln während Rehabilitation
 - Für Ärzte: präzise Operationen, intuitive Operationen an unzugänglichen Stellen
- Authentifizierung
 - Reflexartig automatisierte Vorgänge
 - Einzigartiges Muster für jeden Menschen



Authentifizierung über Druckmessung

Folien Vorbesprechung

Haptics for Human Computer Interaction

- Flüssigere Interaktion
- Bisher meist Spezialanwendungen

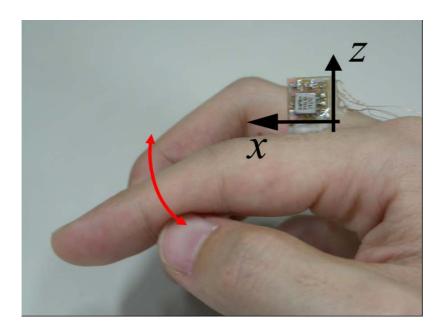
Ubi-Pen: Anzeige der Oberflächenstruktur (Tastsinn)

[13]

1. Menschliche Wahrnehmung

1. Menschliche Wahrnehmung

- Psychophysik: Wie nehmen Menschen Umwelteinflüsse wahr?
- Oberflächenwahrnehmung
 - Oft synonym f
 ür Wahrnehmung insgesamt
- Tiefenwahrnehmung
 - Information durch / über benachbarte Körperteile
- Schwerkraft von Objekten simulieren
 - Scherkraft und Normalkraft an Fingerkuppen
 - Tiefenwahrnehmung bis ca. 400g nicht notwendig!

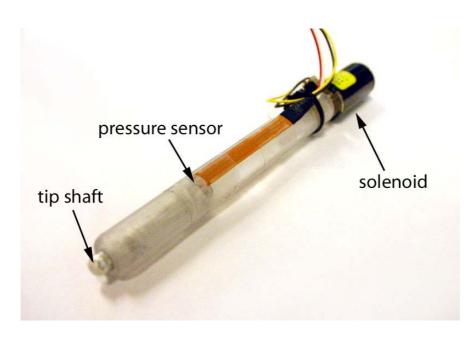

1. Menschliche Wahrnehmung

- Weitere Erkenntnisse
 - Schnelle Hand → wenig Wahrnehmung
 - Im Schnitt 2.8 verschiedene Grade von Oberflächensteifheit, 2.9 von Kraft unterscheidbar.
- JND (just noticeable difference)
 - JND für Kräfte auf Hand in Bewegung (0.16-0.2 m/s) zwischen 30% und 50%
 - Höhere Formbarkeit eines Objekts verringert JND der Formbarkeit

2. Eingabe

2. Eingabe

- Aktivität mit Körperteilen (meist Hände) als Eingabe
- Farbe der Fingernägel observieren
- Messung von Vibrationen entlang des Fingers
 - Eigenschaften der Vibrationsquelle abschätzen
 - Fingerkuppe nicht gestört


Vibrationssensor

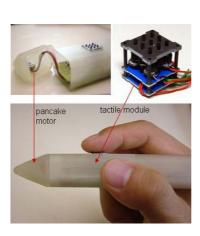
[4]

3. Ausgabe

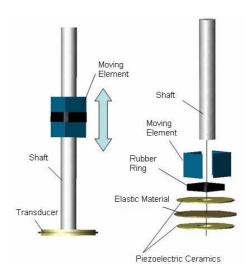
3. Ausgabe

- Annäherung an reale Welt vs. virtuelle Kreation
- Haptic Pen
 - Anwendung auf Touchscreen
 - Widerstand von Knöpfen

Haptic Pen


4. Interaktion

4. Interaktion


- Ubi-Pen
 - Taktiles Anzeigemodul
 - Vibrierender Motor an Stiftspitze

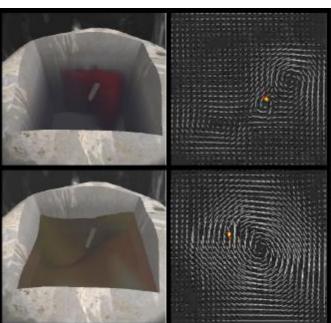
Taktiles Anzeigemodul

Ubi-Pen

Stimulator [13]

[13]

4. Interaktion


- Mora / Lee:
 - Sensable Phantom Omni Haptic device
 - Simulation: Rühren einer Flüssigkeit in Kugel mit Stab

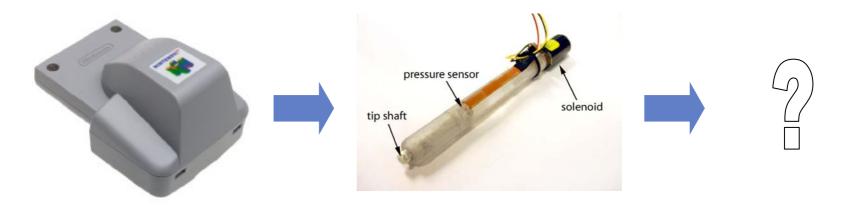
Deformierbare Oberfläche der Flüssigkeit, Dichte, Geschwindigkeit und Trägheit

Links: Kugel mit Flüssigkeit, rechts: Geschwindigkeit der Partikel

[12]

- Handschuh-Geräte
 - + realistischere Effekte
 - behindern eigentliche Nutzung der Hand

5. Integration


5. Integration

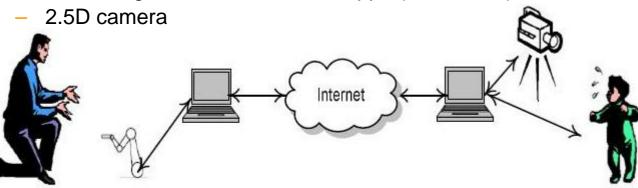
- Zeitsynchronisation
 - Bisher: eventbasierte Architektur
 - Ziel: 3D Kollisionserkennung
- Räumliche Integration
 - Ein- / Ausgabe bisher nicht integriert
 - Visuelle / haptische Interaktion nicht integriert
- Beispiel räumlicher Integration
 - Haptic Pen / Ubi-Pen
 - Motion Tracking: Objekte haptisch dreidimensional darstellen
 - Visuelles 3D → realistische Wahrnehmung

6. Ausblick

6. Ausblick

- Bisher kaum Geräte verfügbar
- Haptik: viel ungenutzes Potential
- Schleppende Verkaufszahlen neuer Videotechnik
- > neue Interessen der Industrie?

Feedback


Vielen Dank für die Aufmerksamkeit!

Geräteklassen

- Füller / Stift
 - Heute beliebteste Geräteklasse
 - Klein, handlich, schon bekannt
 - Übergangsgerät: Weicher Übergang nach Haptik von bekannten Interfaces
- Fingergeräte
 - Einfach, komfortabel
 - Beliebte Geräteklasse
- Beispielanwendung von Fingergeräten
 - Schwerkraftillusion
 - Hand fühlt Objekte, die über Kamera identifiziert werden
 - Eigenschaften des Kontakts der Finger mit Objekten messen

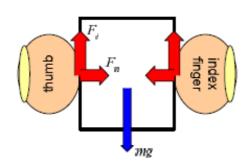
Geräteklassen

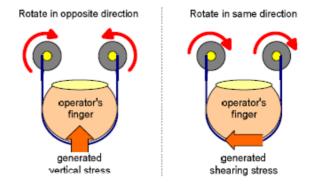
- Shirt / tragbare Geräte
 - Ziel: so realistischer Effekt wie möglich
 - Anwendungen: VR, Telekonferenz, Gaming
- Telekonferenz
 - Berührungssensible Jacke an Puppe (Elternseite)

Parent

Telekonferenz-Kommunikation

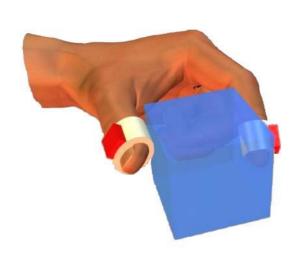
Kid


Stimulatoren

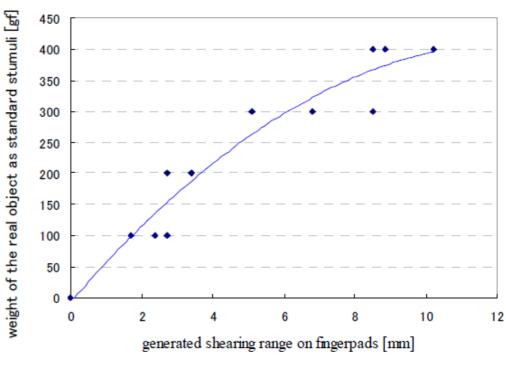

Sichtmarkierungen

Menschliche Wahrnehmung

- Demonstration der Rollen von Oberflächen- und Tiefenwahrnehmung
 - Tragbares, nicht geerdetes Gerät
 - Gravity sensation
 - Vertical stress and shearing stress on fingerpads



Forces when grasping an object



Simulation of gravity

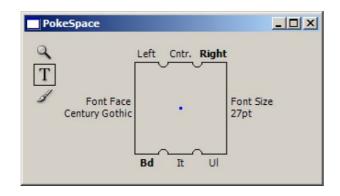
Human Factors

Ring-like device

Correlation [2]

Human Factors

- Psychophysical experiments: (1) correlation between shearing / vertical stress and perceived gravity
 - Concave increase
 - Upper limit of presentable weight (proprioception becoming more important)
- (2) grip force exerted to real and virtual objects
 - Abrupt removal of weight counterbalance
 - Almost identical for real and virtual objects (40g for 300g weight)
- (3) limitations of the device
 - Reliable gravity sensation for small weights without proprioception
 - Confirmation of hypothesis: symbolic effect triggers psychological association

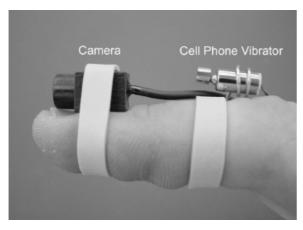

Haptic Input

- observe color of fingernails [18]
 - determine forces applying to fingers
 - No covering of finger pad
 - emit light into the fingernail
 - detect reflection with photo diode
 - Complex histoid mechanics → mathematical black box model

Parameter	Root mean square error	
Finger pad shearing force	0.5N	
Finger pad normal force	1N	
Posture angle	10°	

Haptic Input

"Pokespace" Tool Palette [1]


Pokespace graphical display

Phantom haptic device

Integration with Existing UI

- Stetten et al. [5]: "Fingersight"
 - Extend human hand's inherent reach
 - Image analysis
 - Feedback to finger via cell phone vibrator
 - Remote control objects

Fingersight

Control virtual objects on monitor

[5]