Exercise Computer graphics – (till Mai 19, 2009)

Rotations

- Exercise 18: a) It is possible to decompose rotations into a number of succeeding shears. What is the least number of shears a rotation in 2D can be decomposed into? Explicitly state which shears you need.
 - b) In which way does an image manipulation program benefit from the decomposition you suggested above?

Exercise Computer graphics

Rotations

- Exercise 18: a) It is possible to decompose rotations into a number of succeeding shears. What is the least number of shears a rotation in 2D can be decomposed into? Explicitly state which shears you need.
 - b) In which way does an image manipulation program benefit from the decomposition you suggested above?
- Solution b): The image can be rotated by shifting data within memory only.

	Express a 2D Rotation as 3 shears
	$(\cos \alpha - \sin \alpha)$ $(1 \ s)(1 \ o)(1 \ u)$
	$ \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 7 & 0 \\ t & 1 \end{pmatrix} \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} $
	$= \begin{pmatrix} 1+st & s \\ t & 1 \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$
	$= \begin{pmatrix} 1+st & u+stu+s \\ t & ut+n \end{pmatrix}$
	$1+st = cos \ll$
T	$\mu + s(t_{U+1}) = -sin\alpha$
<u>m</u>	$t = sin \alpha \Rightarrow t = sin \alpha$
ĪV	$ut+A = \cos \alpha$
	TIL with T: 1 + Sising = cosa
	$S = \frac{\cos \alpha - 1}{\sin \alpha}$
	IT into IV : Misind +1 = 005 a
	$h = \cos x - 4$
	Check II :
	cos x -1 + cos x -1 (Sinx cos x + 1) = - Sin x / sin x
	sind sind (sind ()) - sind / sind
	ARCH ARCHING ARTHON AND AND AND AND AND AND AND AND AND AN
	$\cos \int dx - 1 + \cos dx - \cos dx = -\sin dx$
	$\cos^2 x + 1 = -\sin^2 x$
	$\cos^2 \approx + \sin^2 \approx - 7 \sqrt{2}$