Exercise Computer graphics

Anti-Aliasing of primitives using the mid-point algorithm	
Exercise 8:	Finish your test application for drawing anti-aliased lines.
Solution:	See code on homepage.
Exercise 9:	a) Find a solution for drawing anti-aliased circles based on the midpoint version of the circle routine from the last exercise.

Solution:

Exercise Computer graphics

Anti-Aliasing of primitives using the mid-point algorithm
Solution:
(continued)

$$
\begin{aligned}
& \text { Another simplification con be dore by calculationg the new subst } \\
& \text { from the prenious one: } \\
& \text { Case ine chose E } \\
& \text { subst new }=\left(x_{p}+1\right)^{2}+y_{p}^{2}=x^{2}+2 x_{p}+1+y_{p}^{2}=\text { subst_dd }+2 x_{p}+1 \\
& \text { Case: We chose SE: } \\
& \text { subst_new }=\left(x_{p}+1\right)^{2}+\left(y_{p}-1\right)^{2}=x^{2}+2 x_{p}+1+y_{p}^{2}-2 y_{p}+1=\text { subst_odd }+2\left(x_{p}-y_{p}\right)+1 \\
& \text { also note that } 2 x_{p} \text { and } 2\left(x_{p}-y_{p}\right) \text { howe } \\
& \text { abready been calculated in your midpoint } \\
& \text { implementation of the cricls. } \\
&
\end{aligned}
$$

