

Exercise Computer graphics - (till March 17, 2009)

Ultra-fast line drawing

Exercise 6: In the lecture we have seen the mid-point algorithm for ellipses, however, only the part of the ellipse between 45° and 90° was drawn. Finish the arc between 0° and 45° and include it into the application.

Solution:

Exercise Computer graphics

Ultra-fast line drawing

Solution:

Circle equation: $x^2 + y^2 = \tau^2$ M ME $\Rightarrow F(x,y) = x^2 + y^2 - \tau^2$ britichization: Po=(0, r) Pixel (0, 1) must lie on the circle Thus $F(0, r) = 0^2 + r^2 - r^2 = 0$ For the Eist M it holds true that M = (1, r - 1/2) (+x,y) (X,y) $F(A_{1,T} - \frac{1}{2}) = q^{2} + (T - \frac{1}{2})^{2} - T^{2} =$ (Y,X) 1+1-++05-1 (-7, -x)(y, -x) = 1,25 - r = to d-ald 1. Fall: d_old < 0 = M below circle so choose E => x = x + 1 $M_{E} = (x_{0} + 2, y_{0} = 0, 5)$ $d_{inv} = F(x_0 + 2, y_0 + 0, 5) = (x_0 + 2)^2 + (y_0 + 0, 5)^2 - \tau^2$ $F(x_{0} + A_{1}, y_{0} + 0, 5) = x_{0}^{2} + (4x_{0} + 4 + y_{0}^{2} + y_{0} + 0, 25) (\tau^{2})$ $= (x_{0} + A_{1}, y_{0} + 0, 5)^{2} - \tau^{2}$ $= (x_{0} + A_{1}, y_{0} + 0, 5) + 2x_{0} + 3$ $= (x_{0} + A_{1}, y_{0} + 0, 5) + 2x_{0} + 3$ d_{-old}

Exercise 7: Reduce the ellipse-version of the mid-point algorithms to circles. Why is this version faster?

rechnernetze & multimediatechnik

Exercise Computer graphics

Ultra-fast line drawing

Solution: (continued)

2.
$$cox$$
 : $d_{-}old > 0 \Rightarrow Mabore circle so
choose SE $\Rightarrow x = x + 1$; $y = y - 1$
 $M_{SE} = (x_0 + 2, y_0 + 1, 5) = (x_0 + 2)^2 + (y_0 + 1, 5)^2 - \tau^2$
 $= (x_0 + 2, y_0 + 1, 5) = (x_0 + 2)^2 + (y_0 + 1, 5)^2 - \tau^2$
 $= (x_0 + 4, y_0 + 4 + y_0^2 + 3y_0 + 2, 25 - \tau^2)$
 $= F(x_0 + 1, y_0 + 0, 5) + 2x_0 + 5 + 2y_0$
 $= F(x_0 + 1, y_0 - 0, 5) + 2(x_0 - y_0) + 5$
What's mixing? The initialization contains a floating-paint
mimber.
Citler multiply everything by 4
or initialize d with $1 - \tau$. Why that?
if $d + 1, 25 - \tau > 0 \Rightarrow d + 1 - \tau > 0$ for integer values
if $d + 1, 25 - \tau < 0 \Rightarrow d + 1 - \tau < 0$ for integer values$