Exercise Computer graphics

Ultra-fast line drawing

Exercise 4: In the lecture we got to know the mid-point line-drawing algorithm which can generate line pixels with a single comparison and two or three integer additions per pixel, only. Alter the algorithm such that points are plotted more sparsely. Therefore, the algorithm's loop should advance by two pixels in the X-direction rather than one as done in the lecture. The sketch on the right shows the cases which can evolve.
Hints: \quad Start with the initialization of the distance-value at ($x 0+2, y 0+0,5$) and ($x 0+2, y 0+1,5$) and find out the increments in the inner loop, exactly as done in the normal mid-point algorithm. Note that now you have to take more than one distance into account.

Solution:

Exercise Computer graphics

Ultra-fast line drawing

Exercise 4: Solution continued:

$$
\begin{aligned}
& \text { Case } 1 \text { : Line abow } M_{1} \text { and } M_{2} \Leftrightarrow d_{1}>0 ; d_{2}>0 \\
& \text { Case } 2 \text { : Lire between } \mu_{1} \text { and } \mu_{2} \Leftrightarrow d_{1}>0 ; d_{2}<0 \\
& \text { Case 3: Lins below } \mu_{1} \text { and } \mu_{2} \Leftrightarrow d_{1}<0 ; d_{2}<0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Distance linis to } M_{y} \text { : } \\
& d_{1}=f\left(x_{0}+4, y_{0}+1,5\right)=f\left(x_{0}+2, y_{0}+0,5\right)+2 \Delta y-\Delta x \\
& \text { Distance line to } M_{5} \text { : } \\
& d_{2}=f\left(x_{0}+4, y_{0}+2,5\right)=f\left(x_{0}+2, y_{0}+1,5\right)+2 \Delta y-\Delta x \\
& \text { Case 3: } x=x+2 \text {; } \\
& \text { Distance tirie to } \mathrm{M}_{3} \text { : } \\
& d_{1}=f\left(x_{0}+4, y_{0}+0,5\right)=f\left(x_{0}+2, y_{0}+0,5\right)+2 \Delta y \\
& \text { Distance line to } \mathrm{M}_{4} \text { : } \\
& d_{2}=f\left(x_{0}+4, y_{0}+1,5\right)=f\left(x_{0}+2, y_{0}+1,5\right)+2 \Delta y
\end{aligned}
$$

PRAKTISCUE WNEORMAATM MV

Exercise Computer graphics

Ultra-fast line drawing

Exercise 5: The mid-point algorithm uses integer additions only. Usually, 16 bits are sufficient for representing either x - or y components. However, modern processors are operating at 32 or even 64 bits at a time. Assuming that an integer has at least 32 bits, we exploit the lower 16 bits only because resolutions of more than 65535×65535 pixels are unlikely.

Change the midpoint implementation such that the most significant 16 bits are used as well. Which improvements can you achieve?

Solution: Here, the y-component and the distance is processed by a single variable "value".

```
value = y0 << 16 | dist;
SetPixel(screen, x0, y0);
for(int x = x0; x <= x1; x++) {
    if((value & OxFFFF) < 0) value += incE;
    else value += incNE | (1 << 16);
    SetPixel(screen, x, value >> 16);
} // while
```

An alternative solution would be to draw two lines within a single loop until the shorter line is finished. The rest of the longer line should then be drawn in a subsequent loop (see tared-code for details).

Exercise Computer graphics

Ultra-fast line drawing
Solution: An alternative solution would be to draw two lines within a single loop until the shorter line is finished. The rest of the longer line should then be drawn in a subsequent loop (see tared-code for details).

```
x = xA | ((long) xB << 16);
y = yA | ((long)yB << 16);
for(int i = 0; i < min(lengthA,lengthB); i++) {
    if(distA < 0) distA += incEA;
    else {
        distA += incNEA;
        y++;
    } // else
    if(distB < 0) distB += incEB;
    else {
        distB += incNEB;
        y += 1L << 16;
    } // else
    x += (1 | (1L << 16));
    SetPixel(screen, x & OxFFFF, y & OxFFFF);
    SetPixel(screen, x >> 16, y >> 16);
} // for
```

