

Timing-sync Protocol for Sensor Networks
Saurabh Ganeriwal Ram Kumar Mani B. Srivastava

Networked and Embedded Systems Lab (NESL), University of California Los Angeles
56-125B Eng. IV, UCLA EE Dept., Los Angeles, CA 90095

{saurabh, ram, mbs}@ee.ucla.edu

ABSTRACT
Wireless ad-hoc sensor networks have emerged as an interesting
and important research area in the last few years. The
applications envisioned for such networks require collaborative
execution of a distributed task amongst a large set of sensor
nodes. This is realized by exchanging messages that are time-
stamped using the local clocks on the nodes. Therefore, time
synchronization becomes an indispensable piece of
infrastructure in such systems. For years, protocols such as NTP
have kept the clocks of networked systems in perfect synchrony.
However, this new class of networks has a large density of
nodes and very limited energy resource at every node; this leads
to scalability requirements while limiting the resources that can
be used to achieve them. A new approach to time
synchronization is needed for sensor networks.

In this paper, we present Timing-sync Protocol for Sensor
Networks (TPSN) that aims at providing network-wide time
synchronization in a sensor network. The algorithm works in
two steps. In the first step, a hierarchical structure is established
in the network and then a pair wise synchronization is
performed along the edges of this structure to establish a global
timescale throughout the network. Eventually all nodes in the
network synchronize their clocks to a reference node. We
implement our algorithm on Berkeley motes and show that it can
synchronize a pair of neighboring motes to an average accuracy
of less than 20µs. We argue that TPSN roughly gives a 2x better
performance as compared to Reference Broadcast
Synchronization (RBS) and verify this by implementing RBS on
motes. We also show the performance of TPSN over small
multihop networks of motes and use simulations to verify its
accuracy over large-scale networks. We show that the
synchronization accuracy does not degrade significantly with the
increase in number of nodes being deployed, making TPSN
completely scalable.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer
Communication Networks – Network Protocols.

General Terms
Algorithms, Experimentation, Performance, Verification.

Keywords
Sensor Networks, Time Synchronization, Packet Delay, Clock
Drift, Medium Access Control.

1. INTRODUCTION
Advances in microelectronics fabrication have allowed the

integration of sensing, processing and wireless communication
capabilities into low-cost and small form-factor embedded
systems called sensor nodes [1], [2]. The need for unobtrusive
and remote monitoring is the main motivation for deploying a
sensing and communication network (sensor network)
consisting of a large number of these battery-powered nodes.

The applications envisioned for sensor networks vary from
monitoring inhospitable habitats and disaster areas to operating
indoors for intrusion detection and equipment monitoring. Most
of these applications require sensor nodes to maintain local
clocks in order to determine the timing of the events. In general,
sensor nodes gather sensor readings, and use several signal
processing techniques to get meaningful results from this raw
data. For example, the target tracking applications use Kalman
filter to estimate the target position [3]. Such signal-processing
techniques require relative synchronization among sensor node
clocks, so that a right chronology of events can be detected. On
the other hand, for sensor network applications such as detecting
brushfires, gas leaks etc.; the time of occurrence of an event is
itself a critical parameter. For such class of applications, the
synchronization of the complete network with every node
maintaining a unique global time scale becomes paramount.
Time synchronization is also indispensable in the
implementation of the commonly used medium access control
(MAC) protocols such as TDMA [4].

Time synchronization problem has been investigated
thoroughly in Internet and LANs. Several technologies such as
GPS, radio ranging etc have been used to provide global
synchronization in networks. Complex protocols such as NTP
[5] have been developed that have kept the Internet’s clocks
ticking in phase. However, the time synchronization
requirements differ drastically in the context of sensor networks.
In general such networks are dense, consisting of a large number
of sensor nodes. To operate in such large network densities, we
need the time synchronization algorithm to be scalable with the
number of nodes being deployed. Also, energy efficiency is a
major concern in these networks due to the limited battery
capacity of the sensor nodes. This eliminates the use of external
energy-hungry equipments, such as GPS. Moreover, time
synchronization requirements are much more stringent, often
requiring synchronization of the order of microseconds among
nodes involved in a task such as tracking a target.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SenSys’03, November 5-7, 2003, Los Angeles, California, USA.
Copyright 2003 ACM 1-58113-707-9/03/0011…$5.00.

138

1.1 Contributions
We present a Timing-sync Protocol for Sensor Networks

(TPSN) that works on the conventional approach of sender-
receiver synchronization. We argue that for sensor networks, the
classical approach of doing a handshake between a pair of nodes
is a better approach than synchronizing a set of receivers [6].
This observation comes as result of time stamping the packets at
the moment when they are sent i.e., at MAC layer, which is
indeed feasible for these networks. To prove our claim, we
compare the performance of TPSN with Reference Broadcast
Synchronization (RBS) [7], a timing synchronization algorithm
for sensor networks based on receiver-receiver synchronization.
We will show that TPSN gives roughly a 2x better performance
than RBS via implementation on motes. We will show that
TPSN can synchronize a pair of motes to an average accuracy of
less than 20µs and a worst-case accuracy of around 50µs.

In sensor networks, clock synchronization might not be
needed all the times. For such scenarios, TPSN can be combined
with the approach of post-facto synchronization proposed in [8]
to provide time synchronization among a subset of nodes. Post-
facto synchronization is used to synchronize two nodes by
extrapolating backwards to estimate the phase shift at a previous
time. We provide an implementation on motes that integrates
TPSN with post-facto synchronization and gauge its
performance on a multihop network of motes. On the other
hand, to facilitate deployment of MAC protocols such as
TDMA, there might be a need of maintaining a unique and
global timescale throughout the network. In this case, we create
a self-configuring system, suitable for sensor networks, where a
hierarchical structure is established in the network. In our
algorithm, NTP-like daemons self-organize to act as servers to
some nodes while acting as client to another server. In this
paper, we specially consider such scenarios and provide an
integrated algorithm that first establishes the hierarchical
structure and then aims at providing a unique global timescale
throughout the network.

We will show that TPSN provides a simple, scalable and
efficient solution to the problem of timing synchronization in
sensor networks. Moreover, TPSN is completely flexible and
can be easily tuned to meet the desired levels of accuracy as well
as algorithmic overhead. TPSN also comes with an auxiliary
benefit of improving the accuracy of other basic services in
sensor networks such as localization, target tracking,
aggregation.

2. RELATED WORK
Although time synchronization has been the topic of

research for the past many years in a wide spectrum of
applications [5], [6], [9], with regard to sensor networks, a final
solution is yet to be found. In this section we will discuss some
of the algorithms that deal with timing issues in sensor
networks.

In [8], [10], researchers emphasize on a completely
different regime for time synchronization in sensor networks.
They have pointed out notable differences between timing
synchronization requirements in sensor networks as compared to
traditional networks. In general, the problem of time
synchronization can be studied in context of three different
models.

The first and perhaps the simplest type of model
concentrate on just maintaining the relative notion of time

between nodes. Thus the aim here is not synchronize the sensor
node clocks but to generate a right chronology of events. A
scheme for sensor networks based on this model was proposed
in [11]. The algorithm proposed in [11] is only initiated when
events take place in the network. Therefore, such a scheme is
not extendible to scenarios where a notion of sensor node clock
is required. For example, a scenario where the actual time of
occurrence of an event is important or where sensor node clock
is used to successfully run MAC protocols.

A more complex model is of maintaining relative clocks. In
this model, though every node maintains an individual clock,
these clocks are not synchronized with respect to each other.
Instead, every node stores information about the relative drift
between its clock and the clock of any other node in the network
(or with only those nodes with which it desires to maintain a
relative clock). A scheme based on this model is Reference-
Broadcast Synchronization (RBS) [7]. In RBS, sensor nodes
periodically send beacon messages to their neighbors using the
network’s physical layer broadcast. Recipients use the message’s
arrival time as point of reference for comparing their clocks. The
offset between any pair of nodes, receiving the beacon, is
calculated by exchanging the local timestamps. This scheme
successfully removes all possible sources of error except the
variability in processing delay at the receiver.

Perhaps the most complex model (“always-on” model) is
the one where every node maintains a clock that is synchronized
with respect to a reference node in the network. The aim here is
to maintain a global and a unique timescale throughout the
network. Although this model consumes maximum energy, it is
a superset of all the models. Therefore, if the clocks are
absolutely synchronized, they are relatively synchronized too
and a right chronology of events can also be detected. In this
paper, we provide an integrated algorithm where TPSN aims to
provide synchronization following this model. To the best of our
knowledge, this is the first work that tries to provide timing
synchronization in sensor networks on the basis of “always-on”
model. In this model, TPSN will be provided as an API, running
continuously on the backend of a sensor node transparent to the
application writer.

However, we would like to emphasize that TPSN is not an
algorithm restricted to the “always-on” model. To show the
flexibility of TPSN, we provide an example implementation on
motes that integrates TPSN with post-facto synchronization to
synchronize node clocks, lying on a multihop network, relatively
to each other. RBS also uses post-facto synchronization to
provide multihop clock synchronization. In this scenario, the
difference between RBS and TPSN is the way in which they
carry out the handshake to synchronize a pair of motes. TPSN
uses the classical approach of sender-receiver synchronization
whereas RBS uses the approach of receiver-receiver
synchronization. As mentioned earlier, we shall prove that for
sensor networks doing sender-receiver synchronization gives
better results than receiver-receiver synchronization.

 We take the motivation from NTP that has been largely
successful in Internet. However, NTP is computationally
intensive. It is completely infeasible to implement NTP on the
energy constrained sensor nodes. Moreover, NTP is a fixed
algorithm that can operate only in the “always-on” model.
Contrary to this, TPSN is flexible to the model used for timing
synchronization and can also be easily tuned to meet the desired
operating point in energy versus accuracy subspace. NTP has
been successfully able to synchronize the clocks in Internet to an

139

accuracy of the order of milliseconds but the time
synchronization requirements for sensor networks can be much
more stringent than that, ranging into the order of a few
microseconds. Our scheme can be viewed as a practical, more
accurate and a flexible extension of NTP to sensor networks.

3. SYSTEM MODEL
We have N sensor nodes scattered in an area A. Every node

maintains a 16-bit register as a clock that is triggered by a
crystal oscillator. This is the only notion of time that a node has.
In this paper, we provide an integrated algorithm that aims at
providing time synchronization following the always-on model.
Thus, the goal is to establish a common timescale for every node
in the sensor network and therefore, synchronize the 16-bit
clock for every sensor node. We begin by describing the basic
concept of TPSN and proceed to outline the assumptions about
the system.

3.1 Basic Concept
The first step of the algorithm is to create a hierarchical

topology in the network. Every node is assigned a level in this
hierarchical structure. We ensure that a node belonging to level i
can communicate with at least one node belonging to level i-1.
Only one node is assigned to level 0, which we call the “root
node”. We call this stage of our algorithm as the “level
discovery phase”. Once the hierarchical structure has been
established, the root node initiates the second stage of the
algorithm, which is called the “synchronization phase”. In this
phase, a node belonging to level i synchronize to a node
belonging to level i-1. Eventually every node is synchronized to
the root node and we achieve network-wide time
synchronization.

In general, a user node that acts as the gateway between the
sensor network and the external world can act as the root node.
The user node can be equipped with a GPS receiver, in which
case the sensor nodes would be synchronized to the physical
world. In more hostile environments, where it is impossible to
have an external entity, sensor nodes can periodically take over
the functionality of being the root node, using some leader
election algorithm [12]. Also, neither TPSN nor the “always-on”
model restricts the possibility of having multiple root nodes in
the network. In this case, islands of time-synchronized nodes
will be formed in the network. Further, a scheme such as RBS
[7] could be used to maintain a relative clock between the
adjacent nodes that lie on the boundary, providing
synchronization in the whole network. In this paper, we consider
the network to have just one root node.

3.2 Assumptions
We assume that the sensor nodes have unique identifiers. A

link level protocol ensures that each node is aware of the set of
nodes with which it can directly communicate, also termed as
the “neighbor set” of the node. Though there can be uni-
directional links in the network, TPSN uses only bi-directional
links to do pair wise synchronization between a set of nodes. We
also assume that it is possible to create a spanning tree in the
network using just these bi-directional links.

In this paper, we have attributed the creation and
maintenance of the hierarchical structure as the responsibilities
of TPSN. However, many of the sensor network applications
rely on in-network processing and require a similar structure for
their functionality for example the aggregation tree required for

TinyDB [13]. Therefore, creating and maintaining a hierarchical
structure should not be considered as an overhead exclusive to
TPSN.

4. TIMING-SYNC PROTOCOL FOR
SENSOR NETWORKS (TPSN)

4.1 Level Discovery Phase
This phase of the algorithm occurs at the onset, when the

network is deployed. The root node is assigned a level 0 and it
initiates this phase by broadcasting a level_discovery packet.
The level_discovery packet contains the identity and the level of
the sender. The immediate neighbors of the root node receive
this packet and assign themselves a level, one greater than the
level they have received i.e., level 1. After establishing their
own level, they broadcast a new level_discovery packet
containing their own level. This process is continued and
eventually every node in the network is assigned a level. On
being assigned a level, a node neglects any such future packets.
This makes sure that no flooding congestion takes place in this
phase. Thus a hierarchical structure is created with only one
node, root node, at level 0. A node might not receive any
level_discovery packets owing to MAC layer collisions. We
explain how to handle such special cases in Section 4.3. In this
paper, we use a simple flooding mechanism to create the
hierarchical structure. Instead, we could have used more
accurate minimum spanning tree algorithms. We will show that
the choice between the two results in an accuracy versus
complexity tradeoff.

4.2 Synchronization Phase
In this phase, pair wise synchronization is performed along

the edges of the hierarchical structure established in the earlier
phase. We use the classical approach of sender-receiver
synchronization [5] for doing this handshake between a pair of
nodes. We shall show the merits of this approach to the
approach of receiver-receiver synchronization in later sections.

Let us first analyze, how a two-way message exchange
between a pair of nodes can synchronize them. Figure 1 shows
this message-exchange between nodes ‘A’ and ‘B’. Here, T1, T4
represent the time measured by local clock of ‘A’. Similarly T2,
T3 represent the time measured by local clock of ‘B’. At time
T1, ‘A’ sends a synchronization_pulse packet to ‘B’. The
synchronization_pulse packet contains the level number of ‘A’
and the value of T1. Node B receives this packet at T2, where T2
is equal to T1 + ∆ + d. Here ∆ and d represents the clock drift
between the two nodes and propagation delay respectively. At
time T3, ‘B’ sends back an acknowledgement packet to ‘A’. The
acknowledgement packet contains the level number of ‘B’ and
the values of T1, T2 and T3. Node A receives the packet at T4.
Assuming that the clock drift and the propagation delay do not
change in this small span of time, ‘A’ can calculate the clock
drift and propagation delay as:

)1(
2

)34()12(;
2

)34()12(
K

TTTTdTTTT −+−=−−−=∆

 Knowing the drift, node A can correct its clock
accordingly, so that it synchronizes to node B. This is a sender-
initiated approach, where the sender synchronizes its clock to
that of the receiver.

140

Figure 1: Two-way message exchange be

This message exchange at the network

root node initiating the phase by broad
packet. On receiving this packet, nodes belo
for some random time before they initiate t
exchange with the root node. This randomi
contention in medium access. On r
acknowledgment, these nodes adjust their cl
The nodes belonging to level 2 will ov
exchange. This is based on the fact that ever
at least one node of level 1 in its neighbor
message, nodes in level 2 back off for som
which they initiate the message exchange w
This randomization is to ensure that node
synchronization phase after nodes in
synchronized. Note that a node sends back
to a synchronization_pulse, provided that
itself. This ensures that no multiple levels o
formed in the network.

This process is carried out througho
eventually every node is synchronized to
sensor network packet collisions can take p
handle such scenario a node waiting for a
timeouts after some random time an
synchronization_pulse. This process is
successful two-way message exchange has b

4.3 Special Provisions
In a sensor network, the nodes are u

random fashion. So scenarios might exist
joins an already established network i.e., the
network when the level discovery phase is
the node is present at the onset of the n
receive any level_discovery packets ow
collisions. In either case it will not be assig
hierarchy. However, every node needs
hierarchical topology so that it can be sy
root node. Thus, when a node is deploye
time to be assigned a level. If it is not ass
that period, it timeouts and broadcasts a le
The neighbors reply to this request by send
The new node assigns itself a level, one gre
level it has received and hence, joins the h
be seen as a local level discovery phase.

 Sensor nodes may also die random
arise, when a level i node does not have an
1. In such scenarios, the node would
acknowledgement to its synchronization_pu
at level i would not be able to synchronize
has already been explained that in order to
node would retransmit the synchronizatio
random amount of time. After
synchronization_pulse a fixed number of ti

that it has lost all its neighbors on the upper level and broadcasts
a level_ request message. On getting back a reply, the node is
assigned a new level. Assuming the network is still connected,
the node will have at least one node in its neighbor set and thus
it will surely be assigned a new level in the hierarchy. We
consider four retransmissions to be a heuristic for deciding non-
availability of a neighbor in the upper level. The validity of this
heuristic has been verified via simulations. In general, choosing

T2 T3

T1 T4

T2, T3 are
measured in
Node B clock.

T1, T4 are
measured in
Node A clock.
 B
A

tween pair of nodes

level begins with the
casting a time_sync
nging to level 1 wait
he two-way message
zation is to avoid the
eceiving back an
ock to the root node.
erhear this message
y node in level 2 has
 set. On hearing this
e random time, after
ith nodes in level 1.

s in level 2 start the
level 1 have been
an acknowledgement
it has synchronized

f synchronization are

ut the network and
the root node. In a
lace quite often. To

n acknowledgement,
d retransmits the
continued until a

een done.

sually deployed in a
where a sensor node
 node might join the

already over. Even if
etwork, it might not
ing to MAC layer
ned any level in the

to be a part of the
nchronized with the
d, it waits for some
igned a level within

vel_request message.
ing their own level.

ater then the smallest
ierarchy. This could

ly. A situation may
y neighbor at level i-
 not get back an
lse. Thus, this node
 to the root node. It
 handle collisions, a
n_pulse after some
retransmitting the

mes, a node assumes

a large number will increase the time taken for synchronization
whereas a small number will cause unnecessary flooding in the
network, decreasing the synchronization accuracy.

We started with the premise that a node has been
designated as the root node. If an elected root node dies, the
nodes in level 1 would not receive any acknowledgement
packets and hence, they will timeout following the scheme
described above. Instead of broadcasting a level_request packet,
they run a leader election algorithm and the elected leader takes
over the functionality of the root node. This new root node starts
from the beginning and reruns the level discovery phase. Note
that these special provisions are essentially heuristics to take
care of ambiguities in the network. Though we do not claim that
these are indeed the optimal solutions, we have verified their
efficacy via extensive simulations.

5. ERROR ANALYSIS OF TPSN
In this section, we characterize the possible sources of error

and present a detailed mathematically analysis for TPSN. We
concentrate on pair wise synchronization between two nodes.
We compare the performance of our scheme to RBS [7], an
algorithm that synchronizes a set of receivers in sensor
networks. However, as will be clear from our analysis, the
results can be in general extended to make a comparison
between the classical approach of sender-receiver
synchronization and receiver-receiver synchronization.

5.1 Decomposition of Packet Delay
Figure 2 shows the decomposition of packet delay when it

traverses over a wireless link between two sensor nodes. We
designate the node that initiates the packet exchange as the
sender and the node that responds to this message as the
receiver. Although a similar decomposition has also been
presented in [7], we detail the various delay components from a
systems perspective. In this discussion, we will borrow terms
from a typical layered architecture used in traditional computer
networks. We analyze each component shown in Figure 2.

• Send time: When a node decides to transmit a packet,
it is scheduled as a task in a typical sensor node. There
is time spent in actually constructing the packet at the
application layer, after which it is passed to the lower
layers for transmission. This time includes the delay
incurred by the packet to reach the MAC layer from
the application layer. This delay is highly variable due
to the software delays introduced by the underlying
operating system.

• Access time: After reaching the MAC layer, the
packet waits until it can access the channel. This delay
is specific to wireless networks resulting from the
property of common medium for packet transmission.
This is perhaps the most critical factor contributing to
packet delay. Moreover, it’s highly variable in nature
and is specific to the MAC protocol employed by the
sensor node.

141

• Transmission time: This refers to the time when a
packet is transmitted bit by bit at the physical layer
over the wireless link. This delay is mainly
deterministic in nature and can be estimated using the
packet size and the radio speed. The software
implementation of the transmitter will have a few
minor variations due to the response time for
interrupts. In [14], a novel hardware based RF
transceiver has been proposed where the variations
would be completely negligible.

• Propagation time: This is the actual time taken by the
packet to traverse the wireless link from the sender to
the receiver. The absolute value of this delay is
negligible as compared to other sources of packet
latency.

• Reception time: This refers to the time taken in
receiving the bits and passing them to the MAC layer.
This is going to be mainly deterministic in nature. The
variations in reception delay would even be smaller if
the sensor node employs a hardware based RF
transceiver [14].

• Receive time: The bits are then constructed into a
packet and then this packet is passed on to the
application layer where it’s decoded. The time taken
in this whole activity refers to receive time. The value
of receive time changes due to the variable delays
introduced by the operating system.

In Figure2, the size used for different boxes is just to give
an intuition about the absolute value of each component. It
doesn’t correspond to their actual ratio. For example, we expect
that the access time (MAC delay) would completely overshadow
other delays in practice. Secondly, communication takes place in
bits and a node optimizes by performing events in parallel.
Thus, when a bit is being coded for transmission, another bit
could be in air or being received at the other end
simultaneously. Thus, this decomposition is just an
approximation when done at the packet level instead of the bit
level.

5.2 Error Analysis
In this section, we will contrast TPSN to RBS by analyzing

the sources of error for both the schemes. In [7], the efficiency
of RBS over NTP has already been shown and therefore one can
use the two comparisons to gauge the performance of TPSN to
NTP. For this analysis, we introduce the notion of real time i.e.
the time measured by an ideal clock as shown in Figure 3. We
represent the times measured by local node clocks in Figure 1,

such as T1, in real time by using lowercase letters. Thus t1
stands for the real time (measured by ideal clock) equivalent of
T1 (measured by node A clock). We consider the same scenario
as shown in Figure 1. Node A sends a packet at T1 and node B
receives it at T2. Note that T1 and T2 are times measured by
node clocks of A and B respectively. The following set of
equations can be easily derived:

BBAA RPStt +++= >−12 …(2)
BA

tBBAA DRPSTT >−
>− ++++= 112 …(3)

Here SA, PA->B, RB refer to the time taken to send packet
(send time + access time + transmission time) at node A,
propagation time between node A, B and time taken to receive
packet (reception time + receive time) at node B respectively.
All these times are with respect to an ideal clock. Here,

BA
tD >− refers to the drift between the nodes A and B at time t.

Node B then sends a reply at T3, which is received by node A at
T4. Using similar analysis following equation can be derived:

)4(34 4 KBA
tAABB DRPSTT >−

>− −+++=

Note .443
BA

t
AB

t
AB

t DDD >−>−>− −=≈ Further, BA
tD >−
1 can be

broken into two components as follows:
)5(4141 KBA

tt
BA

t
BA

t RDDD >−
>−

>−>− +=
Here BA

ttRD >−
>− 41 refers to the relative drift between the nodes

A and B from time t1 to t4. Figure 3 pictorially presents the
definition of drift and relative drift between the node clocks. In
equation 5, BA

ttRD >−
>− 41 can be positive or negative depending on

which node clock leads the other. Subtracting equation 4 from 3
and using equations 1 and 5, we obtain:

)6()*2()*2(441 KBA
t

BA
tt

UCUCUC DRDRPS >−>−
>− ++++=∆

Here SUC, RUC and PUC stand for the uncertainty at sender,
at receiver and in propagation time respectively. They are given
by the following equations:

)7(KBA
UC SSS −=

)8(KAB
UC RRR −=

)9(KABBA
UC PPP >−>− −=

The aim is to calculate BA
tD >−
4 , as we correct the clock at

T4 (equal to real time t4) at node A. Rearranging the terms of
equation 6, we obtain

)10(
2222

41
4 K

BA
tt

UCUCUC
BA

t
RDRPSDError

>−
>−>− +++=−∆=

Figure 2: Decomposition of packet delay over a wireless link

Sender Propagation Receiver

Send

Access

Transmission Reception Receive

142

Figure 3: Drift among the local node clocks

TPSN is a sender-receiver synchronization algorithm,

whereas RBS is a receiver-receiver synchronization algorithm.
In RBS, two receiver nodes exchange timing information about
the message that they have received from a common sender.
Suppose the two nodes A and B receive the common packet at
T2, T3 respectively generated by C at time T1. Thus, by similar
break up of packet latency we can obtain the following
equations:

)11(12 1 KAC
tAACC DRPSTT >−

>− ++++=

)12(13 1 KBC
tBBCC DRPSTT >−

>− ++++=

Node B sends this timestamp information (T3) in a separate
packet, which is received by A at time T4. As mentioned earlier,
the aim is to calculate BA

tD >−
4 . RBS calculates it by subtracting

equations 11 from 12. Finally, the expression for error can be
developed as:

)13()()()(11 KAC
t

BC
tABACBC DDRRPP >−>−

>−>− −+−+−=∆
)14(414111 KBA

tt
BA

t
BA

t
AC

t
BC

t RDDDDD >−
>−

>−>−>−>− +==−

)15(414 KBA
tt

UCUC
D

BA
t RDRPDError >−

>−
>− ++=−∆=

 Here UC
DP represents the uncertainty in propagation time

between two distinct node pairs and is given by:

)16(KACBC
UC
D PPP >−>− −=

As can be seen from equations 10 and 15, the two
contributing factors towards the synchronization error for both
TPSN and RBS are the variation in packet delays and the drift
among the local clock of motes. Let us analyze each factor
individually.

5.2.1 Variation in packet delays
• Uncertainty at the sender (SUC): As can be observed from

equation 15, RBS completely eliminates the uncertainty at
the sender side. In fact, this is the main reason why many
researchers believe that receiver-receiver synchronization
performs better than classical sender-receiver

synchronization. This is potentially of advantage when the
radio and its driver is a closed black box such as in the case
of wireless LANS. However in the case of sensor networks
there exist a strong coupling between the radio and the
application layer. In fact sensor nodes such as motes [15]
do most of the radio processing at the application layer.
This provides a huge amount of flexibility in sensor
networks. We use this to drive our motivation for doing
sender-receiver synchronization. We propose to reduce this
source of error by time stamping the packet at the MAC
layer (i.e. when the packet is about to be transmitted)
instead of time stamping the packet at the application layer.
Thus, SA in equation 7 becomes equal to transmission time,
instead of the total time taken to send the packet at the
sender node (send + access + transmission time). This
means the only erroneous factor that remains is the
uncertainty in transmission time. As we have mentioned
before, we claim that this delay is mainly deterministic in
nature. Therefore we expect the resulting contribution of
this factor to the net error to be small.

• Uncertainty in propagation time (PUC): As can be
observed from equation 10 and 15, both TPSN and RBS
suffer from the variation in propagation time. TPSN uses
only symmetric links and on such links, the variation in
delay is going to be negligible. As can be observed from
equation 15, in case of RBS, the error is between two
distinct node pairs and hence can be large depending on the
distances between them. Let us assume the best-case
scenario for RBS, when the variation in propagation time is
the same as in TPSN, equal to η time units. Using
equations 10 and 15, this will result in an error of η/2 and
η time units for TPSN and RBS respectively. Thus even for
the same variation in propagation time, TPSN is better off
by a factor of 2 than RBS.

• Uncertainty at the receiver (RUC): By time stamping the
packet at the MAC layer, TPSN removes the receive time
completely. Thus, RA in equation 8 becomes equal to only
the reception time, instead of the total time taken in
receiving the packet at the receiver (reception + receive
time). In its proposed form, RBS timestamps the packet at
the application layer and thus suffers from variation in both
reception as well as receive time. However, in order to
make a fair comparison let us assume that RBS is also
implemented with capability of time stamping the packets
at the MAC layer. With such a system even in RBS the
only source of error will be the variation in reception time.
However for the same variation in reception time of α time
units, RBS gives synchronization error of α time units
whereas TPSN gives a synchronization error of α/2 time
units. This can be observed from equations 10 and 15.
Thus, even for a similar system, TPSN provides a 2x better
performance as compared to RBS.

5.2.2 Drift among the local clocks (BA
ttRD >−

>− 41)
The clocks in sensor nodes are envisioned to be crystal

based, mainly because of their low cost. Such crystals are
susceptible to huge drifts from the ideal clock, as shown in
Figure 3. However, as can be observed from the last terms on
RHS of equation 10 and 15, all we care about is just the relative
drift between the two nodes.

Ideal clock

Real Time

Node B clock Node A clock

t1 t2

BA
ttRD >−

>− 21
BA

tD >−
2

BA
tD >−
1

Local node time

143

Besides depending on the rate of relative drift between the
two nodes, the error performance also depends on the time taken
for the completion of the algorithms i.e., the difference of t1 and
t4. To make an approximate comparison, let us assume that the
two algorithms observe the same variation in drift of β time
units. This is quite reasonable as both TPSN and RBS involves
two packet transfers between nodes. Using equation 10 and 15,
this shall result in a synchronization error of β time units for
RBS whereas an error of β/2 time units for TPSN. Therefore
again with the same variation in drift, TPSN provides a 2x better
performance as compared to RBS.

5.2.3 Conclusion
As can be seen from the above analysis, TPSN would give

roughly a 2x better performance for all the sources of error as
compared to RBS. However, TPSN has an added contribution
from the uncertainty at the sender whereas RBS completely
removes this as a source of error. This analysis can be extended to
comparison between sender-receiver and receiver-receiver
synchronization based algorithms in general. In case of traditional
wireless networks the uncertainty in MAC delay is so large that it
completely overshadows the effect of other factors, resulting in
giving an edge to algorithms based on receiver-receiver
synchronization. However in case of sensor networks, by having
the flexibility of time stamping the packets at the MAC layer, we
remove this critical source of error. As a result, we believe that the
classical approach of doing sender-receiver synchronization is a
better approach of doing time synchronization than receiver-
receiver synchronization in sensor networks.

We have shown this via a detailed analysis and we verify our
claim by implementing TPSN and RBS on motes.

6. IMPLEMENTATION ON BERKELEY
MOTES
In this section we describe a prototype system that we built

around Berkeley Motes [15] to implement TPSN. In [7],
authors verify the efficacy of RBS by implementing it on an
IPAQ-motenic testbed. The mote is used as a nic (network
interface card) to the IPAQ. Rest of the protocol stack, the time
synchronization algorithm as well as the clock maintenance runs
on an IPAQ. We present here a more practical implementation
of RBS on stand-alone sensor nodes (Motes) without using any
external components.

In [7], authors have reported numbers on synchronization
error that has an absolute magnitude much less than in this paper
(6.5µs). This is just an artifact of using a superior operating
system (Linux) and much more stable crystals available in
IPAQs. The only system requirement that TPSN wants is the
capability of time stamping the packet at the MAC layer. We
don’t see any other system effects that will degrade/improve the
performance of RBS more than that of TPSN. Therefore, the
relative performance of TPSN with RBS would continue to be
the same, if instead an IPAQ-motenic test-bed is used.

6.1 Overview of Berkeley Motes
MICA motes [15] are second-generation wireless modules

used for research of low power wireless sensor networks. The
devices have application in research, new security applications,
environmental monitoring, and large-scale distributed networks.
MICA Motes run UC Berkeley's open source Tiny OS Operating
System [16]. In general sensor node architecture consists of five

major modules: processing, RF communication, power
management, I/O expansion, and secondary storage. In mica
motes, the main controller is an ATMEGA103L running at
4Mhz. There is an AT90LS2343 included to handle wireless
reprogramming. An Atmel AT45DB041B serial flash chip
provides persistent data storage. The RF module consists of an
RF Monolithics RFM TR100 transceiver and can operate at
communication rates up to 115Kbps. The system is designed to
operate off an inexpensive battery that produces between 3.2V
and 2.0V (e.g., pair of AA batteries). More details on the system
architecture of motes can be found in [15]. Although several
advancements in communication stacks have been proposed, we
are using the Berkeley communication stack proposed in the
original paper [15].

6.2 Modifying TinyOS
The first task was to generate a lower granularity clock in

motes. As mentioned earlier, a crystal oscillator triggers the
clock in motes. The maximum frequency of the crystal used in
motes is 4Mhz implying that we can achieve a minimum
granularity of 0.25µs. In its current form, Tiny OS uses timer 0
(8 bit timer) for providing clock [16]. This made it impossible to
generate such a low granularity clock, as the register overflows
very quickly generating frequent interrupts. There is only one
16-bit timer in Atmel 103 mode, which is used for sampling the
radio. After few modifications, we were able to utilize the same
timer in parallel to generate the clock. We maintain a 16-bit
register as the clock, which gets triggered by the overflow of
timer 1. We run timer 1 at the maximum frequency of 4Mhz.

The second major modification needed was to incorporate
the ability of time stamping the packets at the RFM layer (MAC
layer). We were able to achieve this by creating an interface
between the application layer and the RFM layer. We exclude
the details here for space constraints but the readers can find all
the details from the source codes [17].

6.3 Synchronizing a Pair of Motes
We first wanted to test the contribution of uncertainty at the

sender towards the synchronization error. Recall that this was the
only factor, which provided degradation in the performance of
TPSN as compared to RBS. Our claim was that this factor
contributes negligibly to the net error, as a result of which TPSN
shall give roughly a 2x better performance than RBS.

The set up consisted of two motes. Each mote maintains a 16-
bit clock based on its crystal oscillator. The two motes were started
randomly, so that they have completely unsynchronized clocks at
the beginning. One of the motes was designated as the sender and
was responsible for initiating the message exchange after it has
measured 10s in its clock. We measure the transmission time (as
defined in the earlier section) at both the motes. Figure 4 plots the
uncertainty at the sender (SUC), calculated as the difference of
transmission times between the two motes, for 100 different
simulation runs. We have shown here only the magnitude of the
SUC. Using equation 10, it can be observed that a difference in
transmission time (SUC) of δ time units contributes a
synchronization error of δ/2 time units.

The average magnitude of SUC was around 1.15µs. This
implies that on an average, the uncertainty at sender contributes a
synchronization error of around 0.62µs. As will be seen from
results in the next section, this number is very small as compared
to the absolute value of the total synchronization error. This
verifies our claim and provides a strong edge to sender-receiver

144

synchronization as compared to receiver-receiver synchronization
in general.

Figure 4: Uncertainty at sender (only magnitude)

The next step was to calculate the absolute synchronization

error between the two motes. A similar set up was used so that
the two motes (A and B) start randomly with completely
unsynchronized clocks. We programmed the two motes so that
they continuously toggle a particular output pin after every 8ms.
After completing the message exchange, the synchronization
error is calculated by observing the phase shift between the two
waveforms (corresponding to A and B) on a Digital Analyzer.
We have also implemented RBS under the same set up (i.e. time
stamping is done at the MAC layer). In case of RBS, a third
mote is used and is designated to act as the common sender. We
calculate the synchronization error between the same pair of
motes. After overhearing the message from the common sender,
one of the receivers (node B) transmits this information to the
other receiver (node A). Node A corrects its clock by calculating

the drift as mentioned in equation 15. We again calculate the
synchronization error by observing the phase shift between the
two waveforms (corresponding to A and B).

Figure 5 plots the histogram of the synchronization error and
the results are summarized in table 1. The results are obtained after
averaging over 200 independent runs for both TPSN and RBS.
Note that to calculate the statistics we use only the magnitude of
the synchronization error and neglect the sign (which clock is
ahead among the two nodes). As can be observed from Table 1,
we were able to synchronize a pair of motes to an average
accuracy of less than 20µs. The best case was the two motes
getting perfectly synchronized and the worst-case synchronization
error was around 50 µs. Approximately 65% of the times, the error
was either equal or smaller than the average synchronization error.
As expected, under similar scenario TPSN roughly gives a 2x
better performance than RBS. In [7], it was shown that the
synchronization error between two motes could be modeled as a
normal distribution. This is consistent with the shape of the
histogram in Figure 5. The mean of the distribution for RBS will
be twice the mean of the distribution for TPSN. In general,
synchronization error for TPSN and RBS will be sample points on
their respective distributions and hence, it is not necessary that for
every simulation run TPSN will give exactly a 2x better
performance than RBS.

Table 1: Statistics of Synchronization error (only magnitude)

Figure 5: Histogram of Synchronization error (only magnitude)

5364 Percentage of time error is less than or
equal to average error

0 0 Best case error (in µs)

9344 Worst case error (in µs)

29.1316.9Average error (in µs)

RBSTPSN

145

6.4 Multihop Results
Till now we have presented TPSN in form of an integrated

algorithm that aims at providing synchronization following the
“always-on” model. However, their exist sensor network
applications where time synchronization will be needed over a
subset of nodes and that too for a small period of time. To model
this scenario, the approach of post-facto synchronization was
proposed in [8]. Post-facto synchronization is used to
synchronize two nodes by extrapolating backwards to estimate
the phase shift at a previous time. Thus the nodes synchronize
only when they need to i.e., after an event has been detected.
Consider an example scenario where the objective is to send a
packet from source A to sink F via path A->B->C->D->E->F
and to simultaneously synchronize them. Thus at every hop,
after receiving the packet, the receiver synchronizes its clock
using TPSN to the sender, before sending it to the next hop. For
example at first hop, B synchronizes its clock to A and after that
forwards the packet to C. Thus eventually every node in the path
would have the its clock synchronized with respect to node A.
At every hop we deliberately introduce a delay of 2 seconds to
model the packet processing time as well as the large MAC
delay that a node can potentially suffer in a large-scale network.
Every mote runs CSMA and the 2 seconds doesnot include the
random back off time for detecting the channel to be idle. We
implement this integration of TPSN with post-facto
synchronization approach on Berkeley motes.

Figure 6 plots the average synchronization error versus the
hop distance. We also plot the histogram, showing the
synchronization error observed for every individual pair. The
results were averaged over every possible pair. For example in
order to calculate the error for 2 hop distance, the average was
taken over 4 possible mote pairs {(A, C), (B, D), (C, E), (D, F)}.
For every possible pair, we have taken 100 independent
measurements and while calculating the average, we only
consider the magnitude of the error. The synchronization error
was measured in a similar way, by measuring the phase shift on
the Digital Analyzer between the pair of motes being
considered. We only consider those runs where the packet was
finally delivered to the sink. As can be seen from Figure 6, the
error does not blows up with hop distance. In fact for this
scenario it seems that error almost becomes a constant beyond 3-

hop distance. This is because synchronization error between any
pair of motes will probabilistically take different values from the
normal distribution obtained in the earlier section. The
randomness in the sign as well as the magnitude of the
synchronization error and drift prevents the error from blowing
up. If all the motes have been drifting in the same direction and
the error was a deterministic quantity, the error would have
blown up with the number of hops. Note that we are not
claiming that the error cannot blow up. In the worst case, it can
increase linearly with the hop distance. However the probability
of that event is very low. In fact, we have observed instances
where the error value was large. To present a clear picture we
detail the obtained statistics in Table 2. We are currently in the
process of developing an analytical model for multihop error.

In a similar scenario, RBS would have also used the
approach of post-facto synchronization to synchronize the nodes
along the multihop path. However, unlike TPSN, RBS will do
the handshake between a pair of nodes using receiver-receiver
synchronization. As shown earlier, the two neighboring nodes
will be synchronized to an error that is on an average 2 times
more than TPSN. The errors over multihop can be assumed to
be independent and thus, we can conclude that the worst-case
mean error for an n-hop network will be 2*n times more in RBS
as compared to TPSN. Similarly, the best case mean error for an
n-hop network will be 2 times more in RBS as compared to
TPSN. Though this gives a range to look for the expected
performance, the probability for both worst and best case will be
negligibly small. It is hard to conclude anything about the
average error, as we do not have a model to characterize the
multihop error for either TPSN or RBS. In general we expect
that the performance of TPSN will be better than RBS by a
factor that lies in the range of 2-2n for an n-hop network. Note
that we have made these speculations using the independence
model for synchronization error over multihop. The basic design
of RBS makes it easy to exploit the concept of multi path
diversity among nodes to improve the accuracy performance. In
its proposed form, TPSN operates on a fixed infrastructure
(hierarchical structure) and is unable to exploit this diversity.
We are currently working towards a more sophisticated model to
exploit this multipath diversity for TPSN.

Figure 6: Synchronization error over multihop (only magnitude)

0

5

10

15

20

25

30

1 hop 2 hop 3 hop 4 hop 5 hop

A

B

C

D

E

Starting
Mote

 Identifiers

146

Table 2: Statistics of synchronization error over multihop (only magnitude)

6.5 Need for Resynchronization

Though the skew and the drift among the crystal based
clocks of sensor nodes can be bounded in general, the range of
their deviation can be large. For Berkeley motes, the upper
bound given in the datasheets [16] is 40ppm i.e. a clock in mote
can loose up to 40µs in a second. A more detailed description of
the functionality of mote’s clock can be found in [15]. Hence,
even if we synchronize the whole network once, nodes will go
out of sync in a few minutes. Thus to establish acceptable levels
of accuracy in sensor networks at every instant of time, there is a
need of doing periodic synchronization. Although sensor node
clocks are susceptible to huge drift with respect to the ideal
clock, the synchronization error is just a function of relative drift
between the nodes and not of the actual drift with the real time
clock.

To put this into perspective, we calculate the value of the
relative drift between mote (A) and 5 other motes (B, C, D, E
and F respectively). In order to calculate the drift between a pair
of motes, we run TPSN and measure the synchronization error
between the motes at periodic intervals of 1 minute. Figure 7
plots the obtained results that have been averaged over 10
independent runs for every pair of motes. Unlike previous cases,
while taking the average we do take into account the sign of the
synchronization error. The time 0 on x-axis represents the time
when the motes get synchronized for the first time. Note that
value of synchronization error at time 0 is not 0. It’s just an
artifact of the scale chosen for the plot. As can be observed from
Figure 7, the relative drift between every pair of mote increases
linearly with time. However it is difficult to conclude any
consistent mathematical model for the drift among the motes. In
this case, the worst-case relative drift between any pair comes
out to be around 4.75µs/s. We have carried out a number of
experiments but we have still not came across a pair of motes
that have relative drift worse than this number.

The period of TPSN can be calculated with the knowledge
of this relative drift and the desired accuracy bound. Consider a
hypothetical example where the desired worst-case accuracy
bound between a pair of neighboring motes in the network is
10ms. As can be observed from Table 1, using TPSN the worst-
case synchronization error between a pair of motes is around
50µs. If the worst-case drift between the motes is 4.75µs/s, the
period of TPSN (x) can be calculated as:

.min34);*10*75.4(10*5010*10 663 ≈+= −−− xx

6.6 Asymptotic Analysis of Synchronization
Error

When TPSN is run periodically, much tighter bounds on
accuracy can be obtained by keeping into account the past
history. Suppose at the nth cycle the node averages the drift over
the past n cycles, than the error will be given by:

)16()(}1{ 4
1

Kn
BA

t

n

i
i D

n
Error >−

=

−∆= ∑

The subscript represents the cycle number. Since it is a
periodic activity, we can assume that the two nodes would
approximately drift apart by the same value between the two
cycles. Thus, at every cycle the value to be estimated, BA

tD >−
4 ,

remains the same, except perhaps the first cycle. Thus equation
16 can be rewritten as:

)17(})({1
4

1
Ki

BA
t

n

i
i D

n
Error >−

=
−∆= ∑

)18(}
2

)(
222

{1
1

41 K∑
=

>−
>−+++=

n

i

i
BA
tt

UC
i

UC
i

UC
i RDRPS

n
Error

Using law of large numbers, as n tends to infinity:

)19(
2

][
2

][
2

][
2

][41 K
BA
tt

UCUCUC

n

RDEREPESEErrorLim
>−
>−

∞>−
+++=

Here, E[.] stands for the expected value. There seems no

reason to believe that uncertainty in transmission time;
propagation time and reception time would be a non-zero mean
process. Therefore we expect the error to converge
asymptotically to][41

BA
ttRDE >−

>− / 2. Packet exchanges over
motes take time of the order of milliseconds and therefore we
expect this value to be really small.

Another way of interpreting Equation 17 is that the
synchronization error after the nth cycle will be the error
averaged over all the past n cycles. We claim that this error will
be very small. A way of verifying this claim is to calculate the
average error (with its sign) over n independent runs. However,
unlike previous scenarios, instead of randomly starting the two
motes, we start the sender mote exactly 2 seconds after starting
the receiver mote. This will make sure that the value to be
estimated, BA

tD >−
4 , remains the same, which is a key assumption

in this analysis. We do this for five different mote pairs keeping
the sender to be mote A. We average out the results for 10
independent runs (n=10) for every mote pair. The error values

 1 hop
distance

2 hop
distance

3 hop distance 4 hop distance 5 hop distance

Average error (in µs)

17.61

20.91

23.23

21.436

22.66

Worst case error (in µs)

45.2

51.6

66.8

64

73.6

Best case error (in µs)

0

0

2.8

0

0

Percentage of time error is less
than or equal to average error

62

57

63

54

64

147

obtained are 5.12µs, -3.96µs, -4.06µs, -0.2µs and –5.47µs
respectively. Thus, there is almost a three-five-fold decrease in
the value of synchronization error between two neighboring
motes. Though the initial results look encouraging, more work
needs to be done to concretize our claim. We plan to investigate
this is in more detail over a large-scale network of motes.

Figure 7: Relative drift with respect to mote A

6.7 Results over Large Scale Networks
We are in the process of creating a test-bed of around 50

motes in our research lab. We envision implementing TPSN
over the testbed and verifying its efficacy. However, to gauge
the performance of TPSN over large-scale networks we have
simulated it over NESLsim [18], a PARSEC based simulation
platform for sensor networks. The simulated topologies consist
of nodes varying from 150 to 300. Due to space constraints, we
just briefly summarize the results in this paper. In [19], the
results along with simulation graphs have been documented in
form of a technical report.

Using TPSN, each node carries out the handshake with its
parent in the hierarchical structure independently of the presence
of other nodes in the network. Therefore the synchronization
error between two neighboring nodes in the network is
independent of the total number of nodes in the network.
However, the synchronization error of a node with respect to the
root node depends on its hop distance from it. This is because
error adds up over multihop. The results obtained in simulations
were consistent with this speculation. Although the randomness
in the sign and magnitude of the error and the drift prevents it
from blowing up, the synchronization error is still a non-
decreasing function of the hop distance. Further, the worst-case
scenario of linear increase with the hop distance was never
observed. A key observation was that the synchronization error
of a node depends only on its hop distance and is almost
independent of the total number of nodes in the network.
Further, the energy consumed by every node to synchronize
itself was also measured to be a constant with the increase in
number of nodes. This clearly proves that TPSN is scalable with
the number of nodes in the network. In its current form, RBS
doesnot provide a version for providing network-wide
synchronization. However TPSN can be replaced by RBS at the
synchronization phase to achieve network-wide time
synchronization. Thus, now the handshake along the edges of
the spanning tree is performed using receiver-receiver
synchronization. Analogous to multihop error analysis, it can be

easily observed that even for large scale-networks TPSN would
provide a superior performance than RBS.

The above discussion clearly highlights the fact that the
network-wide performance of TPSN depends on the efficiency
of the hierarchical structure. If we can establish a shortest path
to the root node for every node, we shall obtain optimal results.
In this paper, we have used simple flooding at the level
discovery phase because of its simplicity and lower algorithmic
overhead. The total energy taken for establishing this
hierarchical structure was found to be a constant when we varied
the total number of nodes, making it scalable with the number of
nodes. Instead, we could have used a minimum spanning tree
algorithm and attained a better accuracy at the cost of
complexity and higher algorithmic overhead (O(N)).

On the basis of these preliminary results, we claim that
TPSN will be able to provide a stable, large-scale time
synchronization in a multihop sensor network. Note that all the
simulation results were obtained in the absence of any external
traffic. We are currently investigating the performance of TPSN
in presence of data traffic and also sudden topological failures.

6.8 Auxiliary Benefits of TPSN
Just like time synchronization, a critical problem in sensor

networks is to let every node know of its location. TPSN comes
with an auxiliary benefit of improving the performance of
localization service in sensor networks. A common approach of
doing localization in sensor networks is to use ultrasonic
ranging [20]. The distance between two nodes is calculated by
measuring the time of flight of sound. In [20], authors abstract
the timing synchronization part by subtracting the time they
receive the radio signal, from the time of receipt of the
ultrasonic signal. With this approach, they are able to achieve an
average ranging accuracy of around 2cm. If instead, the sender
mote first synchronizes with the receiver mote using TPSN and
then sends the ultrasonic signal, we would be able to achieve
much tighter bounds. As we have already shown, we can
synchronize a pair of motes to an average accuracy of less than
20 µs. This can be directly converted into ranging accuracy as
follows:

Average ranging error ≅ (Speed of sound) * (Average
timing synchronization error)

 ≅ (345m/s)*(20µs) = 0.69cm
Moreover, even the worst case ranging error-using TPSN

(345m/s * 50µs ≅ 1.725cm) is better than the average accuracy
obtained in [20]. This clearly magnifies the applicability of
TPSN algorithm in solving real time sensor network problems.

7. CONCLUSIONS
Time synchronization is an indispensable piece of

infrastructure in sensor networks. In this paper, we have
introduced an algorithm, TPSN, for network-wide time
synchronization in sensor networks. TPSN is based on the
simplistic approach of conventional sender-receiver time
synchronization. We argue that unlike traditional wireless
networks, for sensor networks classical approach of sender-
receiver synchronization is better than receiver-receiver
synchronization. We demonstrate our claim by comparing TPSN
with an algorithm based on receiver-receiver synchronization,
RBS. We show that TPSN roughly gives a 2x better
performance than RBS through analysis. We verify the efficacy
of this analysis by implementing TPSN and RBS on Berkeley

148

motes. We show that TPSN is completely flexible to the model
used for time synchronization. We show an integration of TPSN
with post facto synchronization and use this to obtain results on
multihop clock synchronization on a network of motes. The
efficacy of TPSN for large-scale networks is verified via
simulations in PARSEC. The results clearly show that TPSN is
completely scalable. Thus, TPSN is a simple, efficient, scalable
and a comprehensive solution to the problem of time
synchronization in sensor networks.

8. ACKNOWLEDGEMENTS
This material is based upon work supported by the National

Science Foundation (NSF) under Grant No. ANI-0085773 and
by the Office of Naval Research (ONR) under the AINS
Program. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF or
the ONR.

9. REFERENCES
[1] K. Sohrabi, J. Gao, V. Ailawadhi, G. Pottie, “Protocols for

self-organization of a wireless sensor network,” IEEE
Personal Communications Magazine, Vol.7, No.5, pp. 16-
27, Oct. 2000.

[2] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, “Next
Century Challenges: Scalable Coordination in Sensor
Networks”, ACM Mobicom Conference, Seattle, WA,
August 1999.

[3] S. I. Roumeliotis, G. A. Bekey, “An extended kalman filter
for frequent local and infrequent global sensor data fusion,”
In Proc. of the SPIE (Sensor Fusion and Decentralized
Control in Autonomous Robotic Systems, Pittsburgh, PA,
USA, Oct. 14-15, 1997, pp.11-22.

[4] V. Claesso, H. Lönn, N. Suri, “Efficient TDMA
Synchronization for Distributed Embedded Systems” 20th
symposium on Reliable Distributed Systems (SRDS), pp
198-201, October, 2001.

[5] D. L. Mills, “Internet time synchronization: The Network
Time Protocol” In Z. Yang and T.A. Marsland, editors,
Global States and Time in Distributed Systems. IEEE
Computer Society Press, 1994.

[6] P. Verissimo, L. Rodrigues, A. Casimiro, “CesiumSpray: A
Precise and Accurate Global Time Service for Large-Scale
Systems,” Journal of Real-Time Systems, 12(3): 243-294,
May 1997.

[7] Jeremy Elson, Lewis Girod and Deborah Estrin, “Fine-
Grained Network Time Synchronization using Reference
Broadcasts,” In the proceedings of the fifth symposium on
Operating System Design and Implementation (OSDI
2002), December 2002.

[8] J. Elson, D. Estrin, “Time Synchronization for Wireless
Sensor Networks,” Proceedings of the 2001 International
Parallel and Distributed Processing Symposium (IPDPS),
Workshop on Parallel and Distributed Computing Issues in
Wireless and Mobile Computing, San Francisco, California,
USA, April 2001.

[9] K. Arvind, “Probabilistic Clock Synchronization in
Distributed Systems,” IEEE Transactions on Parallel and
Distributed Systems, 5(5): 474-487, May 1994.

[10] J. Elson, K. Romer, “Wireless Sensor Networks: A New
Regime for Time Synchronization,” Proceedings of the
First Workshop on Hot Topics In Networks (HotNets-I),
Princeton, New Jersey. October 28-29 2002.

[11] Kay Romer (ETH-Zurich), “Time synchronization in ad
hoc networks,” Mobihoc, 2001.

[12] N. Malpani, J. L. Welch, N. Vaidya, “Leader election
algorithm for mobile ad-hoc networks,” In Proceedings of
4th International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communication, pp.
96-103, August 2000.

[13] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W.
Hong, “TAG: A Tiny AGgregation Service for Ad-hoc
Sensor Networks”, OSDI Conference, 2002.

[14] Chipcon CC1000 Radio Datasheet,
http://www.chipcon.com/files/CC1000_Data_Sheet_2_1.pd
f

[15] J. Hill and D. Culler, “A Wireless Embedded Sensor
Architecture for System-level Optimization.” Technical
report, U.C. Berkeley, 2001.

[16] TinyOS, http://webs.cs.berkeley.edu/tos/

[17] S. Ganeriwal, Mani B. Srivastava, “Timing-sync Protocol
for Sensor Networks (TPSN) on Berkeley Motes”, NESL
2003.

[18] S. Ganeriwal, V. Tsiatsis, C. Schurgers, M. B. Srivastava,
“NESLsim: A parsec based simulation platform for sensor
networks, ” NESL, 2002.

[19] S. Ganeriwal, R. Kumar, S. Adlakha, M. B. Srivastava,
“Network-wide time synchronization in sensor networks,”
NESL Technical Report, 2003.

[20] A. Savvides, C. C. Han, M. B. Srivastava, “Dynamic fine-
grained localization in ad-hoc networks of sensors”,
MobiCom 2001, Rome, Italy, pp.166-179, July 2001.

149

