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ABSTRACT 
Wireless ad-hoc sensor networks have emerged as an interesting 
and important research area in the last few years. The 
applications envisioned for such networks require collaborative 
execution of a distributed task amongst a large set of sensor 
nodes. This is realized by exchanging messages that are time-
stamped using the local clocks on the nodes. Therefore, time 
synchronization becomes an indispensable piece of 
infrastructure in such systems. For years, protocols such as NTP 
have kept the clocks of networked systems in perfect synchrony. 
However, this new class of networks has a large density of 
nodes and very limited energy resource at every node; this leads 
to scalability requirements while limiting the resources that can 
be used to achieve them. A new approach to time 
synchronization is needed for sensor networks. 

In this paper, we present Timing-sync Protocol for Sensor 
Networks (TPSN) that aims at providing network-wide time 
synchronization in a sensor network. The algorithm works in 
two steps. In the first step, a hierarchical structure is established 
in the network and then a pair wise synchronization is 
performed along the edges of this structure to establish a global 
timescale throughout the network. Eventually all nodes in the 
network synchronize their clocks to a reference node. We 
implement our algorithm on Berkeley motes and show that it can 
synchronize a pair of neighboring motes to an average accuracy 
of less than 20µs. We argue that TPSN roughly gives a 2x better 
performance as compared to Reference Broadcast 
Synchronization (RBS) and verify this by implementing RBS on 
motes. We also show the performance of TPSN over small 
multihop networks of motes and use simulations to verify its 
accuracy over large-scale networks.  We show that the 
synchronization accuracy does not degrade significantly with the 
increase in number of nodes being deployed, making TPSN 
completely scalable.  

Categories and Subject Descriptors 
C.2.2 [Computer Systems Organization]: Computer 
Communication Networks – Network Protocols. 

General Terms 
Algorithms, Experimentation, Performance, Verification. 

Keywords 
Sensor Networks, Time Synchronization, Packet Delay, Clock 
Drift, Medium Access Control. 

1. INTRODUCTION 
Advances in microelectronics fabrication have allowed the 

integration of sensing, processing and wireless communication 
capabilities into low-cost and small form-factor embedded 
systems called sensor nodes [1], [2]. The need for unobtrusive 
and remote monitoring is the main motivation for deploying a 
sensing and communication network (sensor network) 
consisting of a large number of these battery-powered nodes.  

The applications envisioned for sensor networks vary from 
monitoring inhospitable habitats and disaster areas to operating 
indoors for intrusion detection and equipment monitoring. Most 
of these applications require sensor nodes to maintain local 
clocks in order to determine the timing of the events. In general, 
sensor nodes gather sensor readings, and use several signal 
processing techniques to get meaningful results from this raw 
data. For example, the target tracking applications use Kalman 
filter to estimate the target position [3]. Such signal-processing 
techniques require relative synchronization among sensor node 
clocks, so that a right chronology of events can be detected. On 
the other hand, for sensor network applications such as detecting 
brushfires, gas leaks etc.; the time of occurrence of an event is 
itself a critical parameter. For such class of applications, the 
synchronization of the complete network with every node 
maintaining a unique global time scale becomes paramount. 
Time synchronization is also indispensable in the 
implementation of the commonly used medium access control 
(MAC) protocols such as TDMA [4].  

Time synchronization problem has been investigated 
thoroughly in Internet and LANs. Several technologies such as 
GPS, radio ranging etc have been used to provide global 
synchronization in networks. Complex protocols such as NTP 
[5] have been developed that have kept the Internet’s clocks 
ticking in phase. However, the time synchronization 
requirements differ drastically in the context of sensor networks. 
In general such networks are dense, consisting of a large number 
of sensor nodes. To operate in such large network densities, we 
need the time synchronization algorithm to be scalable with the 
number of nodes being deployed. Also, energy efficiency is a 
major concern in these networks due to the limited battery 
capacity of the sensor nodes. This eliminates the use of external 
energy-hungry equipments, such as GPS. Moreover, time 
synchronization requirements are much more stringent, often 
requiring synchronization of the order of microseconds among 
nodes involved in a task such as tracking a target. 
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1.1 Contributions 
We present a Timing-sync Protocol for Sensor Networks 

(TPSN) that works on the conventional approach of sender-
receiver synchronization. We argue that for sensor networks, the 
classical approach of doing a handshake between a pair of nodes 
is a better approach than synchronizing a set of receivers [6]. 
This observation comes as result of time stamping the packets at 
the moment when they are sent i.e., at MAC layer, which is 
indeed feasible for these networks. To prove our claim, we 
compare the performance of TPSN with Reference Broadcast 
Synchronization (RBS) [7], a timing synchronization algorithm 
for sensor networks based on receiver-receiver synchronization. 
We will show that TPSN gives roughly a 2x better performance 
than RBS via implementation on motes. We will show that 
TPSN can synchronize a pair of motes to an average accuracy of 
less than 20µs and a worst-case accuracy of around 50µs.  

In sensor networks, clock synchronization might not be 
needed all the times. For such scenarios, TPSN can be combined 
with the approach of post-facto synchronization proposed in [8] 
to provide time synchronization among a subset of nodes. Post-
facto synchronization is used to synchronize two nodes by 
extrapolating backwards to estimate the phase shift at a previous 
time. We provide an implementation on motes that integrates 
TPSN with post-facto synchronization and gauge its 
performance on a multihop network of motes. On the other 
hand, to facilitate deployment of MAC protocols such as 
TDMA, there might be a need of maintaining a unique and 
global timescale throughout the network. In this case, we create 
a self-configuring system, suitable for sensor networks, where a 
hierarchical structure is established in the network. In our 
algorithm, NTP-like daemons self-organize to act as servers to 
some nodes while acting as client to another server.  In this 
paper, we specially consider such scenarios and provide an 
integrated algorithm that first establishes the hierarchical 
structure and then aims at providing a unique global timescale 
throughout the network.  

We will show that TPSN provides a simple, scalable and 
efficient solution to the problem of timing synchronization in 
sensor networks. Moreover, TPSN is completely flexible and 
can be easily tuned to meet the desired levels of accuracy as well 
as algorithmic overhead. TPSN also comes with an auxiliary 
benefit of improving the accuracy of other basic services in 
sensor networks such as localization, target tracking, 
aggregation. 

2. RELATED WORK 
Although time synchronization has been the topic of 

research for the past many years in a wide spectrum of 
applications [5], [6], [9], with regard to sensor networks, a final 
solution is yet to be found. In this section we will discuss some 
of the algorithms that deal with timing issues in sensor 
networks.  

In [8], [10], researchers emphasize on a completely 
different regime for time synchronization in sensor networks. 
They have pointed out notable differences between timing 
synchronization requirements in sensor networks as compared to 
traditional networks. In general, the problem of time 
synchronization can be studied in context of three different 
models. 

The first and perhaps the simplest type of model 
concentrate on just maintaining the relative notion of time 

between nodes. Thus the aim here is not synchronize the sensor 
node clocks but to generate a right chronology of events. A 
scheme for sensor networks based on this model was proposed 
in [11]. The algorithm proposed in [11] is only initiated when 
events take place in the network. Therefore, such a scheme is 
not extendible to scenarios where a notion of sensor node clock 
is required. For example, a scenario where the actual time of 
occurrence of an event is important or where sensor node clock 
is used to successfully run MAC protocols.  

A more complex model is of maintaining relative clocks. In 
this model, though every node maintains an individual clock, 
these clocks are not synchronized with respect to each other. 
Instead, every node stores information about the relative drift 
between its clock and the clock of any other node in the network 
(or with only those nodes with which it desires to maintain a 
relative clock). A scheme based on this model is Reference-
Broadcast Synchronization (RBS) [7]. In RBS, sensor nodes 
periodically send beacon messages to their neighbors using the 
network’s physical layer broadcast. Recipients use the message’s 
arrival time as point of reference for comparing their clocks. The 
offset between any pair of nodes, receiving the beacon, is 
calculated by exchanging the local timestamps. This scheme 
successfully removes all possible sources of error except the 
variability in processing delay at the receiver. 

Perhaps the most complex model (“always-on” model) is 
the one where every node maintains a clock that is synchronized 
with respect to a reference node in the network. The aim here is 
to maintain a global and a unique timescale throughout the 
network. Although this model consumes maximum energy, it is 
a superset of all the models. Therefore, if the clocks are 
absolutely synchronized, they are relatively synchronized too 
and a right chronology of events can also be detected. In this 
paper, we provide an integrated algorithm where TPSN aims to 
provide synchronization following this model. To the best of our 
knowledge, this is the first work that tries to provide timing 
synchronization in sensor networks on the basis of “always-on” 
model. In this model, TPSN will be provided as an API, running 
continuously on the backend of a sensor node transparent to the 
application writer.  

However, we would like to emphasize that TPSN is not an 
algorithm restricted to the “always-on” model. To show the 
flexibility of TPSN, we provide an example implementation on 
motes that integrates TPSN with post-facto synchronization to 
synchronize node clocks, lying on a multihop network, relatively 
to each other. RBS also uses post-facto synchronization to 
provide multihop clock synchronization. In this scenario, the 
difference between RBS and TPSN is the way in which they 
carry out the handshake to synchronize a pair of motes. TPSN 
uses the classical approach of sender-receiver synchronization 
whereas RBS uses the approach of receiver-receiver 
synchronization. As mentioned earlier, we shall prove that for 
sensor networks doing sender-receiver synchronization gives 
better results than receiver-receiver synchronization. 

 We take the motivation from NTP that has been largely 
successful in Internet. However, NTP is computationally 
intensive. It is completely infeasible to implement NTP on the 
energy constrained sensor nodes. Moreover, NTP is a fixed 
algorithm that can operate only in the “always-on” model. 
Contrary to this, TPSN is flexible to the model used for timing 
synchronization and can also be easily tuned to meet the desired 
operating point in energy versus accuracy subspace. NTP has 
been successfully able to synchronize the clocks in Internet to an 
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accuracy of the order of milliseconds but the time 
synchronization requirements for sensor networks can be much 
more stringent than that, ranging into the order of a few 
microseconds. Our scheme can be viewed as a practical, more 
accurate and a flexible extension of NTP to sensor networks. 

3. SYSTEM MODEL 
We have N sensor nodes scattered in an area A. Every node 

maintains a 16-bit register as a clock that is triggered by a 
crystal oscillator. This is the only notion of time that a node has. 
In this paper, we provide an integrated algorithm that aims at 
providing time synchronization following the always-on model. 
Thus, the goal is to establish a common timescale for every node 
in the sensor network and therefore, synchronize the 16-bit 
clock for every sensor node. We begin by describing the basic 
concept of TPSN and proceed to outline the assumptions about 
the system.  

3.1 Basic Concept 
The first step of the algorithm is to create a hierarchical 

topology in the network. Every node is assigned a level in this 
hierarchical structure. We ensure that a node belonging to level i 
can communicate with at least one node belonging to level i-1. 
Only one node is assigned to level 0, which we call the “root 
node”. We call this stage of our algorithm as the “level 
discovery phase”. Once the hierarchical structure has been 
established, the root node initiates the second stage of the 
algorithm, which is called the “synchronization phase”. In this 
phase, a node belonging to level i synchronize to a node 
belonging to level i-1. Eventually every node is synchronized to 
the root node and we achieve network-wide time 
synchronization.  

In general, a user node that acts as the gateway between the 
sensor network and the external world can act as the root node. 
The user node can be equipped with a GPS receiver, in which 
case the sensor nodes would be synchronized to the physical 
world. In more hostile environments, where it is impossible to 
have an external entity, sensor nodes can periodically take over 
the functionality of being the root node, using some leader 
election algorithm [12]. Also, neither TPSN nor the “always-on” 
model restricts the possibility of having multiple root nodes in 
the network. In this case, islands of time-synchronized nodes 
will be formed in the network. Further, a scheme such as RBS 
[7] could be used to maintain a relative clock between the 
adjacent nodes that lie on the boundary, providing 
synchronization in the whole network. In this paper, we consider 
the network to have just one root node.   

3.2 Assumptions 
We assume that the sensor nodes have unique identifiers. A 

link level protocol ensures that each node is aware of the set of 
nodes with which it can directly communicate, also termed as 
the “neighbor set” of the node. Though there can be uni-
directional links in the network, TPSN uses only bi-directional 
links to do pair wise synchronization between a set of nodes. We 
also assume that it is possible to create a spanning tree in the 
network using just these bi-directional links.    

In this paper, we have attributed the creation and 
maintenance of the hierarchical structure as the responsibilities 
of TPSN. However, many of the sensor network applications 
rely on in-network processing and require a similar structure for 
their functionality for example the aggregation tree required for 

TinyDB [13]. Therefore, creating and maintaining a hierarchical 
structure should not be considered as an overhead exclusive to 
TPSN.  

4. TIMING-SYNC PROTOCOL FOR 
SENSOR NETWORKS (TPSN) 

4.1 Level Discovery Phase 
This phase of the algorithm occurs at the onset, when the 

network is deployed. The root node is assigned a level 0 and it 
initiates this phase by broadcasting a level_discovery packet. 
The level_discovery packet contains the identity and the level of 
the sender. The immediate neighbors of the root node receive 
this packet and assign themselves a level, one greater than the 
level they have received i.e., level 1. After establishing their 
own level, they broadcast a new level_discovery packet 
containing their own level. This process is continued and 
eventually every node in the network is assigned a level. On 
being assigned a level, a node neglects any such future packets. 
This makes sure that no flooding congestion takes place in this 
phase. Thus a hierarchical structure is created with only one 
node, root node, at level 0. A node might not receive any 
level_discovery packets owing to MAC layer collisions. We 
explain how to handle such special cases in Section 4.3. In this 
paper, we use a simple flooding mechanism to create the 
hierarchical structure. Instead, we could have used more 
accurate minimum spanning tree algorithms. We will show that 
the choice between the two results in an accuracy versus 
complexity tradeoff. 

4.2 Synchronization Phase  
In this phase, pair wise synchronization is performed along 

the edges of the hierarchical structure established in the earlier 
phase. We use the classical approach of sender-receiver 
synchronization [5] for doing this handshake between a pair of 
nodes. We shall show the merits of this approach to the 
approach of receiver-receiver synchronization in later sections.   

Let us first analyze, how a two-way message exchange 
between a pair of nodes can synchronize them. Figure 1 shows 
this message-exchange between nodes ‘A’ and ‘B’. Here, T1, T4 
represent the time measured by local clock of ‘A’. Similarly T2, 
T3 represent the time measured by local clock of ‘B’. At time 
T1, ‘A’ sends a synchronization_pulse packet to ‘B’. The 
synchronization_pulse packet contains the level number of ‘A’ 
and the value of T1. Node B receives this packet at T2, where T2 
is equal to T1 + ∆ + d.  Here  ∆ and d represents the clock drift 
between the two nodes and propagation delay respectively. At 
time T3, ‘B’ sends back an acknowledgement packet to ‘A’. The 
acknowledgement packet contains the level number of ‘B’ and 
the values of T1, T2 and T3. Node A receives the packet at T4. 
Assuming that the clock drift and the propagation delay do not 
change in this small span of time, ‘A’ can calculate the clock 
drift and propagation delay as: 

 

)1(
2

)34()12(;
2

)34()12(
K

TTTTdTTTT −+−=−−−=∆  

 Knowing the drift, node A can correct its clock 
accordingly, so that it synchronizes to node B. This is a sender-
initiated approach, where the sender synchronizes its clock to 
that of the receiver. 
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Figure 1: Two-way message exchange be
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a large number will increase the time taken for synchronization 
whereas a small number will cause unnecessary flooding in the 
network, decreasing the synchronization accuracy. 

We started with the premise that a node has been 
designated as the root node. If an elected root node dies, the 
nodes in level 1 would not receive any acknowledgement 
packets and hence, they will timeout following the scheme 
described above. Instead of broadcasting a level_request packet, 
they run a leader election algorithm and the elected leader takes 
over the functionality of the root node. This new root node starts 
from the beginning and reruns the level discovery phase. Note 
that these special provisions are essentially heuristics to take 
care of ambiguities in the network. Though we do not claim that 
these are indeed the optimal solutions, we have verified their 
efficacy via extensive simulations.  

5. ERROR ANALYSIS OF TPSN 
In this section, we characterize the possible sources of error 

and present a detailed mathematically analysis for TPSN. We 
concentrate on pair wise synchronization between two nodes. 
We compare the performance of our scheme to RBS [7], an 
algorithm that synchronizes a set of receivers in sensor 
networks. However, as will be clear from our analysis, the 
results can be in general extended to make a comparison 
between the classical approach of sender-receiver 
synchronization and receiver-receiver synchronization.  

5.1 Decomposition of Packet Delay 
Figure 2 shows the decomposition of packet delay when it 

traverses over a wireless link between two sensor nodes. We 
designate the node that initiates the packet exchange as the 
sender and the node that responds to this message as the 
receiver. Although a similar decomposition has also been 
presented in [7], we detail the various delay components from a 
systems perspective. In this discussion, we will borrow terms 
from a typical layered architecture used in traditional computer 
networks. We analyze each component shown in Figure 2. 

• Send time: When a node decides to transmit a packet, 
it is scheduled as a task in a typical sensor node. There 
is time spent in actually constructing the packet at the 
application layer, after which it is passed to the lower 
layers for transmission. This time includes the delay 
incurred by the packet to reach the MAC layer from 
the application layer. This delay is highly variable due 
to the software delays introduced by the underlying 
operating system. 

• Access time: After reaching the MAC layer, the 
packet waits until it can access the channel. This delay 
is specific to wireless networks resulting from the 
property of common medium for packet transmission. 
This is perhaps the most critical factor contributing to 
packet delay. Moreover, it’s highly variable in nature 
and is specific to the MAC protocol employed by the 
sensor node. 
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• Transmission time: This refers to the time when a 
packet is transmitted bit by bit at the physical layer 
over the wireless link. This delay is mainly 
deterministic in nature and can be estimated using the 
packet size and the radio speed. The software 
implementation of the transmitter will have a few 
minor variations due to the response time for 
interrupts. In [14], a novel hardware based RF 
transceiver has been proposed where the variations 
would be completely negligible. 

• Propagation time: This is the actual time taken by the 
packet to traverse the wireless link from the sender to 
the receiver. The absolute value of this delay is 
negligible as compared to other sources of packet 
latency. 

• Reception time: This refers to the time taken in 
receiving the bits and passing them to the MAC layer. 
This is going to be mainly deterministic in nature. The 
variations in reception delay would even be smaller if 
the sensor node employs a hardware based RF 
transceiver [14].  

• Receive time: The bits are then constructed into a 
packet and then this packet is passed on to the 
application layer where it’s decoded. The time taken 
in this whole activity refers to receive time. The value 
of receive time changes due to the variable delays 
introduced by the operating system.   

In Figure2, the size used for different boxes is just to give 
an intuition about the absolute value of each component. It 
doesn’t correspond to their actual ratio. For example, we expect 
that the access time (MAC delay) would completely overshadow 
other delays in practice. Secondly, communication takes place in 
bits and a node optimizes by performing events in parallel. 
Thus, when a bit is being coded for transmission, another bit 
could be in air or being received at the other end 
simultaneously. Thus, this decomposition is just an 
approximation when done at the packet level instead of the bit 
level. 

5.2 Error Analysis 
In this section, we will contrast TPSN to RBS by analyzing 

the sources of error for both the schemes. In [7], the efficiency 
of RBS over NTP has already been shown and therefore one can 
use the two comparisons to gauge the performance of TPSN to 
NTP. For this analysis, we introduce the notion of real time i.e. 
the time measured by an ideal clock as shown in Figure 3. We 
represent the times measured by local  node  clocks  in  Figure 1, 

such as T1, in real time by using lowercase letters. Thus t1 
stands for the real time (measured by ideal clock) equivalent of 
T1 (measured by node A clock). We consider the same scenario 
as shown in Figure 1. Node A sends a packet at T1 and node B 
receives it at T2. Note that T1 and T2 are times measured by 
node clocks of A and B respectively. The following set of 
equations can be easily derived: 

BBAA RPStt +++= >−12 …(2) 
BA

tBBAA DRPSTT >−
>− ++++= 112 …(3) 

Here SA, PA->B, RB  refer to the time taken to send packet 
(send time + access time + transmission time) at node A, 
propagation time between node A, B and time taken to receive 
packet (reception time + receive time) at node B respectively. 
All these times are with respect to an ideal clock. Here, 

BA
tD >− refers to the drift between the nodes A and B at time t. 

Node B then sends a reply at T3, which is received by node A at 
T4. Using similar analysis following equation can be derived: 

)4(34 4 KBA
tAABB DRPSTT >−

>− −+++=  

Note .443
BA

t
AB

t
AB

t DDD >−>−>− −=≈  Further, BA
tD >−
1 can be 

broken into two components as follows: 
)5(4141 KBA

tt
BA

t
BA

t RDDD >−
>−

>−>− +=  
Here BA

ttRD >−
>− 41 refers to the relative drift between the nodes 

A and B from time t1 to t4. Figure 3 pictorially presents the 
definition of drift and relative drift between the node clocks. In 
equation 5, BA

ttRD >−
>− 41 can be positive or negative depending on 

which node clock leads the other. Subtracting equation 4 from 3 
and using equations 1 and 5, we obtain: 

)6()*2()*2( 441 KBA
t

BA
tt

UCUCUC DRDRPS >−>−
>− ++++=∆

 

Here SUC, RUC and PUC stand for the uncertainty at sender, 
at receiver and in propagation time respectively. They are given 
by the following equations: 

)7(KBA
UC SSS −=  

)8(KAB
UC RRR −=  

)9(KABBA
UC PPP >−>− −=  

The aim is to calculate BA
tD >−
4 , as we correct the clock at 

T4 (equal to real time t4) at node A. Rearranging the terms of 
equation 6, we obtain 
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Figure 2: Decomposition of packet delay over a wireless link 
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Figure 3: Drift among the local node clocks 

 
TPSN is a sender-receiver synchronization algorithm, 

whereas RBS is a receiver-receiver synchronization algorithm. 
In RBS, two receiver nodes exchange timing information about 
the message that they have received from a common sender. 
Suppose the two nodes A and B receive the common packet at 
T2, T3 respectively generated by C at time T1.  Thus, by similar 
break up of packet latency we can obtain the following 
equations: 

)11(12 1 KAC
tAACC DRPSTT >−

>− ++++=  

)12(13 1 KBC
tBBCC DRPSTT >−

>− ++++=   

Node B sends this timestamp information (T3) in a separate 
packet, which is received by A at time T4. As mentioned earlier, 
the aim is to calculate BA

tD >−
4 . RBS calculates it by subtracting 

equations 11 from 12. Finally, the expression for error can be 
developed as: 

)13()()()( 11 KAC
t
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   Here UC
DP  represents the uncertainty in propagation time 

between two distinct node pairs and is given by: 
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As can be seen from equations 10 and 15, the two 
contributing factors towards the synchronization error for both 
TPSN and RBS are the variation in packet delays and the drift 
among the local clock of motes. Let us analyze each factor 
individually. 

 
5.2.1 Variation in packet delays 
• Uncertainty at the sender (SUC): As can be observed from 

equation 15, RBS completely eliminates the uncertainty at 
the sender side. In fact, this is the main reason why many 
researchers believe that receiver-receiver synchronization 
performs better than classical sender-receiver 

synchronization. This is potentially of advantage when the 
radio and its driver is a closed black box such as in the case 
of wireless LANS. However in the case of sensor networks 
there exist a strong coupling between the radio and the 
application layer. In fact sensor nodes such as motes [15] 
do most of the radio processing at the application layer. 
This provides a huge amount of flexibility in sensor 
networks. We use this to drive our motivation for doing 
sender-receiver synchronization. We propose to reduce this 
source of error by time stamping the packet at the MAC 
layer (i.e. when the packet is about to be transmitted) 
instead of time stamping the packet at the application layer. 
Thus, SA in equation 7 becomes equal to transmission time, 
instead of the total time taken to send the packet at the 
sender node (send + access + transmission time). This 
means the only erroneous factor that remains is the 
uncertainty in transmission time. As we have mentioned 
before, we claim that this delay is mainly deterministic in 
nature. Therefore we expect the resulting contribution of 
this factor to the net error to be small.  

• Uncertainty in propagation time (PUC): As can be 
observed from equation 10 and 15, both TPSN and RBS 
suffer from the variation in propagation time. TPSN uses 
only symmetric links and on such links, the variation in 
delay is going to be negligible. As can be observed from 
equation 15, in case of RBS, the error is between two 
distinct node pairs and hence can be large depending on the 
distances between them. Let us assume the best-case 
scenario for RBS, when the variation in propagation time is 
the same as in TPSN, equal to η time units. Using 
equations 10 and 15, this will result in an error of η/2 and 
η time units for TPSN and RBS respectively. Thus even for 
the same variation in propagation time, TPSN is better off 
by a factor of 2 than RBS.    

• Uncertainty at the receiver (RUC): By time stamping the 
packet at the MAC layer, TPSN removes the receive time 
completely. Thus, RA in equation 8 becomes equal to only 
the reception time, instead of the total time taken in 
receiving the packet at the receiver (reception + receive 
time). In its proposed form, RBS timestamps the packet at 
the application layer and thus suffers from variation in both 
reception as well as receive time. However, in order to 
make a fair comparison let us assume that RBS is also 
implemented with capability of time stamping the packets 
at the MAC layer. With such a system even in RBS the 
only source of error will be the variation in reception time. 
However for the same variation in reception time of α time 
units, RBS gives synchronization error of α time units 
whereas TPSN gives a synchronization error of α/2 time 
units. This can be observed from equations 10 and 15. 
Thus, even for a similar system, TPSN provides a 2x better 
performance as compared to RBS. 
 

5.2.2 Drift among the local clocks ( BA
ttRD >−

>− 41 ) 
The clocks in sensor nodes are envisioned to be crystal 

based, mainly because of their low cost. Such crystals are 
susceptible to huge drifts from the ideal clock, as shown in 
Figure 3. However, as can be observed from the last terms on 
RHS of equation 10 and 15, all we care about is just the relative 
drift between the two nodes. 

Ideal clock 

Real Time 

Node B clock Node A clock 

t1 t2 

BA
ttRD >−

>− 21
BA
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Besides depending on the rate of relative drift between the 
two nodes, the error performance also depends on the time taken 
for the completion of the algorithms i.e., the difference of t1 and 
t4. To make an approximate comparison, let us assume that the 
two algorithms observe the same variation in drift of β time 
units. This is quite reasonable as both TPSN and RBS involves 
two packet transfers between nodes. Using equation 10 and 15, 
this shall result in a synchronization error of β time units for 
RBS whereas an error of β/2 time units for TPSN. Therefore 
again with the same variation in drift, TPSN provides a 2x better 
performance as compared to RBS. 

5.2.3 Conclusion 
As can be seen from the above analysis, TPSN would give 

roughly a 2x better performance for all the sources of error as 
compared to RBS. However, TPSN has an added contribution 
from the uncertainty at the sender whereas RBS completely 
removes this as a source of error. This analysis can be extended to 
comparison between sender-receiver and receiver-receiver 
synchronization based algorithms in general. In case of traditional 
wireless networks the uncertainty in MAC delay is so large that it 
completely overshadows the effect of other factors, resulting in 
giving an edge to algorithms based on receiver-receiver 
synchronization. However in case of sensor networks, by having 
the flexibility of time stamping the packets at the MAC layer, we 
remove this critical source of error. As a result, we believe that the 
classical approach of doing sender-receiver synchronization is a 
better approach of doing time synchronization than receiver-
receiver synchronization in sensor networks. 

We have shown this via a detailed analysis and we verify our 
claim by implementing TPSN and RBS on motes.  

 

6. IMPLEMENTATION ON BERKELEY 
MOTES 
In this section we describe a prototype system that we built 

around Berkeley Motes [15] to implement TPSN.  In [7], 
authors verify the efficacy of RBS by implementing it on an 
IPAQ-motenic testbed. The mote is used as a nic (network 
interface card) to the IPAQ. Rest of the protocol stack, the time 
synchronization algorithm as well as the clock maintenance runs 
on an IPAQ. We present here a more practical implementation 
of RBS on stand-alone sensor nodes (Motes) without using any 
external components.  

In [7], authors have reported numbers on synchronization 
error that has an absolute magnitude much less than in this paper 
(6.5µs). This is just an artifact of using a superior operating 
system (Linux) and much more stable crystals available in 
IPAQs. The only system requirement that TPSN wants is the 
capability of time stamping the packet at the MAC layer. We 
don’t see any other system effects that will degrade/improve the 
performance of RBS more than that of TPSN. Therefore, the 
relative performance of TPSN with RBS would continue to be 
the same, if instead an IPAQ-motenic test-bed is used.  

6.1 Overview of Berkeley Motes 
MICA motes [15] are second-generation wireless modules 

used for research of low power wireless sensor networks. The 
devices have application in research, new security applications, 
environmental monitoring, and large-scale distributed networks. 
MICA Motes run UC Berkeley's open source Tiny OS Operating 
System [16]. In general sensor node architecture consists of five 

major modules: processing, RF communication, power 
management, I/O expansion, and secondary storage. In mica 
motes, the main controller is an ATMEGA103L running at 
4Mhz. There is an AT90LS2343 included to handle wireless 
reprogramming. An Atmel AT45DB041B serial flash chip 
provides persistent data storage. The RF module consists of an 
RF Monolithics RFM TR100 transceiver and can operate at 
communication rates up to 115Kbps. The system is designed to 
operate off an inexpensive battery that produces between 3.2V 
and 2.0V (e.g., pair of AA batteries). More details on the system 
architecture of motes can be found in [15]. Although several 
advancements in communication stacks have been proposed, we 
are using the Berkeley communication stack proposed in the 
original paper [15].  

6.2 Modifying TinyOS 
The first task was to generate a lower granularity clock in 

motes. As mentioned earlier, a crystal oscillator triggers the 
clock in motes. The maximum frequency of the crystal used in 
motes is 4Mhz implying that we can achieve a minimum 
granularity of 0.25µs. In its current form, Tiny OS uses timer 0 
(8 bit timer) for providing clock [16]. This made it impossible to 
generate such a low granularity clock, as the register overflows 
very quickly generating frequent interrupts. There is only one 
16-bit timer in Atmel 103 mode, which is used for sampling the 
radio. After few modifications, we were able to utilize the same 
timer in parallel to generate the clock. We maintain a 16-bit 
register as the clock, which gets triggered by the overflow of 
timer 1. We run timer 1 at the maximum frequency of 4Mhz. 

The second major modification needed was to incorporate 
the ability of time stamping the packets at the RFM layer (MAC 
layer). We were able to achieve this by creating an interface 
between the application layer and the RFM layer. We exclude 
the details here for space constraints but the readers can find all 
the details from the source codes [17]. 

6.3 Synchronizing a Pair of Motes 
We first wanted to test the contribution of uncertainty at the 

sender towards the synchronization error. Recall that this was the 
only factor, which provided degradation in the performance of 
TPSN as compared to RBS. Our claim was that this factor 
contributes negligibly to the net error, as a result of which TPSN 
shall give roughly a 2x better performance than RBS. 

The set up consisted of two motes. Each mote maintains a 16-
bit clock based on its crystal oscillator. The two motes were started 
randomly, so that they have completely unsynchronized clocks at 
the beginning. One of the motes was designated as the sender and 
was responsible for initiating the message exchange after it has 
measured 10s in its clock.  We measure the transmission time (as 
defined in the earlier section) at both the motes. Figure 4 plots the 
uncertainty at the sender (SUC), calculated as the difference of 
transmission times between the two motes, for 100 different 
simulation runs. We have shown here only the magnitude of the 
SUC. Using equation 10, it can be observed that a difference in 
transmission time (SUC) of δ time units contributes a 
synchronization error of δ/2 time units.  

The average magnitude of SUC was around 1.15µs. This 
implies that on an average, the uncertainty at sender contributes a 
synchronization error of around 0.62µs. As will be seen from 
results in the next section, this number is very small as compared 
to the absolute value of the total synchronization error. This 
verifies our claim and provides a strong edge to sender-receiver 
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synchronization as compared to receiver-receiver synchronization 
in general.  

 

Figure 4: Uncertainty at sender (only magnitude) 
 
The next step was to calculate the absolute synchronization 

error between the two motes. A similar set up was used so that 
the two motes (A and B) start randomly with completely 
unsynchronized clocks. We programmed the two motes so that 
they continuously toggle a particular output pin after every 8ms. 
After completing the message exchange, the synchronization 
error is calculated by observing the phase shift between the two 
waveforms (corresponding to A and B) on a Digital Analyzer. 
We have also implemented RBS under the same set up (i.e. time 
stamping is done at the MAC layer). In case of RBS, a third 
mote is used and is designated to act as the common sender. We 
calculate the synchronization error between the same pair of 
motes. After overhearing the message from the common sender, 
one of the receivers (node B) transmits this information to the 
other receiver (node A). Node A corrects its clock by calculating 

the drift as mentioned in equation 15. We again calculate the 
synchronization error by observing the phase shift between the 
two waveforms (corresponding to A and B). 

Figure 5 plots the histogram of the synchronization error and 
the results are summarized in table 1. The results are obtained after 
averaging over 200 independent runs for both TPSN and RBS. 
Note that to calculate the statistics we use only the magnitude of 
the synchronization error and neglect the sign (which clock is 
ahead among the two nodes). As can be observed from Table 1, 
we were able to synchronize a pair of motes to an average 
accuracy of less than 20µs. The best case was the two motes 
getting perfectly synchronized and the worst-case synchronization 
error was around 50 µs. Approximately 65% of the times, the error 
was either equal or smaller than the average synchronization error. 
As expected, under similar scenario TPSN roughly gives a 2x 
better performance than RBS. In [7], it was shown that the 
synchronization error between two motes could be modeled as a 
normal distribution. This is consistent with the shape of the 
histogram in Figure 5. The mean of the distribution for RBS will 
be twice the mean of the distribution for TPSN. In general, 
synchronization error for TPSN and RBS will be sample points on 
their respective distributions and hence, it is not necessary that for 
every simulation run TPSN will give exactly a 2x better 
performance than RBS. 

 
Table 1: Statistics of Synchronization error (only magnitude) 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Histogram of Synchronization error (only magnitude) 
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6.4 Multihop Results 
Till now we have presented TPSN in form of an integrated 

algorithm that aims at providing synchronization following the 
“always-on” model. However, their exist sensor network 
applications where time synchronization will be needed over a 
subset of nodes and that too for a small period of time. To model 
this scenario, the approach of post-facto synchronization was 
proposed in [8]. Post-facto synchronization is used to 
synchronize two nodes by extrapolating backwards to estimate 
the phase shift at a previous time. Thus the nodes synchronize 
only when they need to i.e., after an event has been detected. 
Consider an example scenario where the objective is to send a 
packet from source A to sink F via path A->B->C->D->E->F 
and to simultaneously synchronize them. Thus at every hop, 
after receiving the packet, the receiver synchronizes its clock 
using TPSN to the sender, before sending it to the next hop. For 
example at first hop, B synchronizes its clock to A and after that 
forwards the packet to C. Thus eventually every node in the path 
would have the its clock synchronized with respect to node A. 
At every hop we deliberately introduce a delay of 2 seconds to 
model the packet processing time as well as the large MAC 
delay that a node can potentially suffer in a large-scale network. 
Every mote runs CSMA and the 2 seconds doesnot include the 
random back off time for detecting the channel to be idle. We 
implement this integration of TPSN with post-facto 
synchronization approach on Berkeley motes. 

Figure 6 plots the average synchronization error versus the 
hop distance. We also plot the histogram, showing the 
synchronization error observed for every individual pair. The 
results were averaged over every possible pair. For example in 
order to calculate the error for 2 hop distance, the average was 
taken over 4 possible mote pairs {(A, C), (B, D), (C, E), (D, F)}. 
For every possible pair, we have taken 100 independent 
measurements and while calculating the average, we only 
consider the magnitude of the error. The synchronization error 
was measured in a similar way, by measuring the phase shift on 
the Digital Analyzer between the pair of motes being 
considered. We only consider those runs where the packet was 
finally delivered to the sink. As can be seen from Figure 6, the 
error does not blows up with hop distance. In fact for this 
scenario it seems that error almost becomes a constant beyond 3-

hop distance. This is because synchronization error between any 
pair of motes will probabilistically take different values from the 
normal distribution obtained in the earlier section. The 
randomness in the sign as well as the magnitude of the 
synchronization error and drift prevents the error from blowing 
up. If all the motes have been drifting in the same direction and 
the error was a deterministic quantity, the error would have 
blown up with the number of hops. Note that we are not 
claiming that the error cannot blow up. In the worst case, it can 
increase linearly with the hop distance. However the probability 
of that event is very low. In fact, we have observed instances 
where the error value was large. To present a clear picture we 
detail the obtained statistics in Table 2. We are currently in the 
process of developing an analytical model for multihop error.  

In a similar scenario, RBS would have also used the 
approach of post-facto synchronization to synchronize the nodes 
along the multihop path. However, unlike TPSN, RBS will do 
the handshake between a pair of nodes using receiver-receiver 
synchronization. As shown earlier, the two neighboring nodes 
will be synchronized to an error that is on an average 2 times 
more than TPSN. The errors over multihop can be assumed to 
be independent and thus, we can conclude that the worst-case 
mean error for an n-hop network will be 2*n times more in RBS 
as compared to TPSN. Similarly, the best case mean error for an 
n-hop network will be 2 times more in RBS as compared to 
TPSN.  Though this gives a range to look for the expected 
performance, the probability for both worst and best case will be 
negligibly small. It is hard to conclude anything about the 
average error, as we do not have a model to characterize the 
multihop error for either TPSN or RBS. In general we expect 
that the performance of TPSN will be better than RBS by a 
factor that lies in the range of 2-2n for an n-hop network. Note 
that we have made these speculations using the independence 
model for synchronization error over multihop. The basic design 
of RBS makes it easy to exploit the concept of multi path 
diversity among nodes to improve the accuracy performance. In 
its proposed form, TPSN operates on a fixed infrastructure 
(hierarchical structure) and is unable to exploit this diversity. 
We are currently working towards a more sophisticated model to 
exploit this multipath diversity for TPSN. 

 

   
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

Figure 6: Synchronization error over multihop (only magnitude) 
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Table 2: Statistics of synchronization error over multihop (only magnitude) 

 
6.5 Need for Resynchronization 

Though the skew and the drift among the crystal based 
clocks of sensor nodes can be bounded in general, the range of 
their deviation can be large. For Berkeley motes, the upper 
bound given in the datasheets [16] is 40ppm i.e. a clock in mote 
can loose up to 40µs in a second. A more detailed description of 
the functionality of mote’s clock can be found in [15]. Hence, 
even if we synchronize the whole network once, nodes will go 
out of sync in a few minutes. Thus to establish acceptable levels 
of accuracy in sensor networks at every instant of time, there is a 
need of doing periodic synchronization. Although sensor node 
clocks are susceptible to huge drift with respect to the ideal 
clock, the synchronization error is just a function of relative drift 
between the nodes and not of the actual drift with the real time 
clock.  

To put this into perspective, we calculate the value of the 
relative drift between mote (A) and 5 other motes  (B, C, D, E 
and F respectively). In order to calculate the drift between a pair 
of motes, we run TPSN and measure the synchronization error 
between the motes at periodic intervals of 1 minute. Figure 7 
plots the obtained results that have been averaged over 10 
independent runs for every pair of motes. Unlike previous cases, 
while taking the average we do take into account the sign of the 
synchronization error. The time 0 on x-axis represents the time 
when the motes get synchronized for the first time.  Note that 
value of synchronization error at time 0 is not 0. It’s just an 
artifact of the scale chosen for the plot. As can be observed from 
Figure 7, the relative drift between every pair of mote increases 
linearly with time. However it is difficult to conclude any 
consistent mathematical model for the drift among the motes. In 
this case, the worst-case relative drift between any pair comes 
out to be around 4.75µs/s. We have carried out a number of 
experiments but we have still not came across a pair of motes 
that have relative drift worse than this number.  

The period of TPSN can be calculated with the knowledge 
of this relative drift and the desired accuracy bound. Consider a 
hypothetical example where the desired worst-case accuracy 
bound between a pair of neighboring motes in the network is 
10ms. As can be observed from Table 1, using TPSN the worst-
case synchronization error between a pair of motes is around 
50µs. If the worst-case drift between the motes is 4.75µs/s, the 
period of TPSN (x) can be calculated as: 

.min34);*10*75.4(10*5010*10 663 ≈+= −−− xx  

6.6 Asymptotic Analysis of Synchronization 
Error 

When TPSN is run periodically, much tighter bounds on 
accuracy can be obtained by keeping into account the past 
history. Suppose at the nth cycle the node averages the drift over 
the past n cycles, than the error will be given by:   
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The subscript represents the cycle number. Since it is a 
periodic activity, we can assume that the two nodes would 
approximately drift apart by the same value between the two 
cycles. Thus, at every cycle the value to be estimated, BA

tD >−
4 , 

remains the same, except perhaps the first cycle. Thus equation 
16 can be rewritten as:  
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Here, E[.] stands for the expected value. There seems no 

reason to believe that uncertainty in transmission time; 
propagation time and reception time would be a non-zero mean 
process. Therefore we expect the error to converge 
asymptotically to ][ 41

BA
ttRDE >−

>−  / 2.  Packet exchanges over 
motes take time of the order of milliseconds and therefore we 
expect this value to be really small. 

Another way of interpreting Equation 17 is that the 
synchronization error after the nth cycle will be the error 
averaged over all the past n cycles. We claim that this error will 
be very small. A way of verifying this claim is to calculate the 
average error (with its sign) over n independent runs. However, 
unlike previous scenarios, instead of randomly starting the two 
motes, we start the sender mote exactly 2 seconds after starting 
the receiver mote. This will make sure that the value to be 
estimated, BA

tD >−
4 , remains the same, which is a key assumption 

in this analysis. We do this for five different mote pairs keeping 
the sender to be mote A. We average out the results for 10 
independent runs (n=10) for every mote pair. The error values 
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obtained are 5.12µs,  -3.96µs, -4.06µs, -0.2µs and –5.47µs 
respectively. Thus, there is almost a three-five-fold decrease in 
the value of synchronization error between two neighboring 
motes. Though the initial results look encouraging, more work 
needs to be done to concretize our claim. We plan to investigate 
this is in more detail over a large-scale network of motes. 
 

 
Figure 7: Relative drift with respect to mote A 

6.7 Results over Large Scale Networks 
We are in the process of creating a test-bed of around 50 

motes in our research lab. We envision implementing TPSN 
over the testbed and verifying its efficacy. However, to gauge 
the performance of TPSN over large-scale networks we have 
simulated it over NESLsim [18], a PARSEC based simulation 
platform for sensor networks. The simulated topologies consist 
of nodes varying from 150 to 300. Due to space constraints, we 
just briefly summarize the results in this paper. In [19], the 
results along with simulation graphs have been documented in 
form of a technical report. 

Using TPSN, each node carries out the handshake with its 
parent in the hierarchical structure independently of the presence 
of other nodes in the network. Therefore the synchronization 
error between two neighboring nodes in the network is 
independent of the total number of nodes in the network.  
However, the synchronization error of a node with respect to the 
root node depends on its hop distance from it. This is because 
error adds up over multihop. The results obtained in simulations 
were consistent with this speculation. Although the randomness 
in the sign and magnitude of the error and the drift prevents it 
from blowing up, the synchronization error is still a non-
decreasing function of the hop distance. Further, the worst-case 
scenario of linear increase with the hop distance was never 
observed. A key observation was that the synchronization error 
of a node depends only on its hop distance and is almost 
independent of the total number of nodes in the network. 
Further, the energy consumed by every node to synchronize 
itself was also measured to be a constant with the increase in 
number of nodes. This clearly proves that TPSN is scalable with 
the number of nodes in the network. In its current form, RBS 
doesnot provide a version for providing network-wide 
synchronization. However TPSN can be replaced by RBS at the 
synchronization phase to achieve network-wide time 
synchronization. Thus, now the handshake along the edges of 
the spanning tree is performed using receiver-receiver 
synchronization. Analogous to multihop error analysis, it can be 

easily observed that even for large scale-networks TPSN would 
provide a superior performance than RBS.  

The above discussion clearly highlights the fact that the 
network-wide performance of TPSN depends on the efficiency 
of the hierarchical structure. If we can establish a shortest path 
to the root node for every node, we shall obtain optimal results. 
In this paper, we have used simple flooding at the level 
discovery phase because of its simplicity and lower algorithmic 
overhead. The total energy taken for establishing this 
hierarchical structure was found to be a constant when we varied 
the total number of nodes, making it scalable with the number of 
nodes. Instead, we could have used a minimum spanning tree 
algorithm and attained a better accuracy at the cost of 
complexity and higher algorithmic overhead (O(N)).  

On the basis of these preliminary results, we claim that 
TPSN will be able to provide a stable, large-scale time 
synchronization in a multihop sensor network. Note that all the 
simulation results were obtained in the absence of any external 
traffic. We are currently investigating the performance of TPSN 
in presence of data traffic and also sudden topological failures.  

6.8 Auxiliary Benefits of TPSN 
Just like time synchronization, a critical problem in sensor 

networks is to let every node know of its location. TPSN comes 
with an auxiliary benefit of improving the performance of 
localization service in sensor networks. A common approach of 
doing localization in sensor networks is to use ultrasonic 
ranging [20]. The distance between two nodes is calculated by 
measuring the time of flight of sound. In [20], authors abstract 
the timing synchronization part by subtracting the time they 
receive the radio signal, from the time of receipt of the 
ultrasonic signal. With this approach, they are able to achieve an 
average ranging accuracy of around 2cm. If instead, the sender 
mote first synchronizes with the receiver mote using TPSN and 
then sends the ultrasonic signal, we would be able to achieve 
much tighter bounds. As we have already shown, we can 
synchronize a pair of motes to an average accuracy of less than 
20 µs. This can be directly converted into ranging accuracy as 
follows: 

Average ranging error ≅  (Speed of sound) * (Average 
timing synchronization error) 

                                      ≅  (345m/s)*(20µs) = 0.69cm    
Moreover, even the worst case ranging error-using TPSN 

(345m/s * 50µs ≅  1.725cm) is better than the average accuracy 
obtained in [20]. This clearly magnifies the applicability of 
TPSN algorithm in solving real time sensor network problems. 

 

7. CONCLUSIONS 
Time synchronization is an indispensable piece of 

infrastructure in sensor networks. In this paper, we have 
introduced an algorithm, TPSN, for network-wide time 
synchronization in sensor networks. TPSN is based on the 
simplistic approach of conventional sender-receiver time 
synchronization. We argue that unlike traditional wireless 
networks, for sensor networks classical approach of sender-
receiver synchronization is better than receiver-receiver 
synchronization. We demonstrate our claim by comparing TPSN 
with an algorithm based on receiver-receiver synchronization, 
RBS. We show that TPSN roughly gives a 2x better 
performance than RBS through analysis. We verify the efficacy 
of this analysis by implementing TPSN and RBS on Berkeley 
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motes. We show that TPSN is completely flexible to the model 
used for time synchronization. We show an integration of TPSN 
with post facto synchronization and use this to obtain results on 
multihop clock synchronization on a network of motes. The 
efficacy of TPSN for large-scale networks is verified via 
simulations in PARSEC. The results clearly show that TPSN is 
completely scalable. Thus, TPSN is a simple, efficient, scalable 
and a comprehensive solution to the problem of time 
synchronization in sensor networks. 
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