Image Mosaicing for Tele-Reality Applications

Richard Szeliski
Digital Equipment Corporation,
Cambridge Research Lab,
One Kendall Square, Bldg. 700,
Cambridge, MA 02139

Abstract

This paper presents some techniques for automatically deriv-
ing realistic 2-D scenes and 3-D geometric models from video
sequences. These techniques can be used to build environ-
ments and 3-D models for virtual reality application based on
recreating a true scene, i.e., tele-reality applications. The fun-
damental technique used in this paper is image mosaicing,i.e.,
the automatic alignment of multiple images into larger aggre-
gates which are then used to represent portions of a 3-D scene.
The paper first examines the easiest problems, those of flat
scene and panoramic scene mosaicing. It then progresses to
more complicated scenes with depth, and concludes with full
3-D models. The paper also discusses a number of novel ap-
plications based on tele-reality technology.

1 Introduction

Virtual reality is currently creating a lot of excitement and
interest in the computer graphics community. Typical vir-
tual reality systems use immersive technologies such as head-
mounted or stereo displays and data gloves. The intent is to
convince users that they are interacting with an alternate phys-
ical world, and also often to give insight into computer simu-
lations, e.g., for fluid flow analysis or molecular modeling.

Rather than being based on simulations, a different class
of virtual reality applications attempts to recreate true reality
as convincingly as possible. Examples of such applications
include flight simulators, interactive multi-player games, and
medical simulators. Since the reality being recreated is usu-
ally distant, we use the term zele-reality in this paper to refer
to such virtual reality scenarios based on real imagery.! Tele-
reality applications which could be built using the techniques
described in this paper include scanning a whiteboard in your
office to obtain a high-resolution image, walkthroughs of ex-
isting buildings for re-modeling or selling, participating in a
virtual classroom, and browsing through your local supermar-
ket aisles from home.

While most focus in virtual reality today is on input/output
devices and the quality and speed of rendering, perhaps the
biggest bottleneck standing in the way of widespread tele-

1The term telepresence is also often used, especially for applications such
as tele-medicine where two-way interactivity.
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reality applications is the slow and tedious model-building
process. This problem also affects many other areas of
computer graphics, such as computer animation, special ef-
fects, and CAD. For small objects, say 0.2-2m, laser-based
rangefinders, which provide registered depth and colored tex-
ture maps, are a good solution Wohlers94. Such rangefinders
been used extensively in the entertainment industry for special
effects and computer animation. Unfortunately, laser-based
rangefinders are fairly expensive, limited in resolution, and
most importantly, limited in range (e.g., they cannot be used
to scan in a building).

The image-based ranging techniques we develop in this pa-
per have the potential to overcome these limitations. Imag-
ine walking through an environment such as a building inte-
rior and filming a video sequence of what you see. By regis-
tering and compositing the images in the video together into
large mosaics of the scene, image-based ranging can achieve
an essentially unlimited resolution.? Since the images can
be acquired using any optical technology (from microscopy,
through hand-held videocams, to satellite photography), the
range or scale of the scene being reconstructed is not an is-
sue. As desktop video becomes ubiquitous in our comput-
ing environments—initially for videoconferencing, and later
as an advanced user interface tool—image-based scene and
model acquisition will become accessible to all users.

In this paper, we develop novel techniques for extracting
large 2-D textures and 3-D models from image sequences and
also present some potential applications. After a review of
related work (Section 2) and of the basic image formation
equations (Section 3), we present our technique for register-
ing pieces of a planar scene (Section 4). We then show how
the same technique can be used to mosaic panoramic scenes
obtained by rotating the camera around its center of projec-
tion (Section 5). Section 6 discusses how to recover depth
in scenes. Section 7 discusses the most general and difficult
problem, that of building full 3-D models from multiple im-
ages. Section 8 presents some novel applications of the tele-
reality technology developed in this paper.

2The traditional use of the term image compositing 1) is for blending im-
ages which are already registered. We use the term image mosaicing in this
paper to avoid confusion with this previous work.



2 Related work

The extraction of geometric information from multiple images

has long been one of the central problems in computer vision
and photogrammetry. However, many of the techniques used
are based on feature extraction, produce sparse descriptions
of shape, and often require manual assistance. Certain tech-
niques, such as stereo, produce depth or elevation maps which
are inadequate to model true 3-D objects. In computer vi-
sion, the recovered geometry is normally used either for object
recognition or for grasping and navigation (robotics). Rela-
tively little attention has been paid to building 3-D models reg-
istered with intensity (texture maps), which are necessary for
computer graphics and virtual reality applications. However,
some recent papers have looked at compositing multiple 2-D
images to obtain higher resolution images [2, 3].

In computer graphics, compositing multiple image streams
together to create larger format (Omnimax) images is dis-
cussed in [4]. However, in this application, the relative po-
sition of the cameras was known in advance. Compositing
video into salient still based on affine transformations is dis-
cussed in [5, 6]. The registration techniques developed in
this paper are related to image warping [7] since once the im-
ages are registered, they can be warped into a common refer-
ence frame before being composited. Recently, image warp-
ing based on z-buffer depths and camera motion has been ap-
plied to view interpolation as a quick alternative to full 3-D
rendering [8]. The techniques we develop in Section 6 can be
used to compute the depth maps necessary for this approach
directly from real-world image sequences.

3 Basic imaging equations
Many of the ideas in this paper have their simplest expres-
sion using projective geometry. However, rather than relying
on these results, we use standard methods and notations from
computer graphics, and prove whatever simple results we re-
quire in {9]. Throughout, we use homogeneous coordinates
to represent points, i.e., we denote 2-D points in the image
plane as (=, y, w), with (z/w, y/w) being the corresponding
Cartesian coordinates [1]. Similarly, 3-D points with homo-
geneous coordinates (z, y, z, w) have Cartesian coordinates
(z/w,y/w, z/w).

Using homogeneous coordinates, we can describe the class
of 2-D planar transformations using matrix multiplication

z Moo ™Mop1 Mo2 T
v = | Mo Mi1 Mi2 Y 0
w' Mo Mz1 M2 w

oru’ = M3pu.? The simplest transformations in this general
class are pure translations, followed by translations and rota-
tions (rigid transformations), plus scaling (similarity transfor-

3Two Mjp matrices are equivalent if they are scalar multiples of each
other. We remove this redundancy by setting maz = 1. or 2,’ mgj = 1.
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mations), affine transformations, and full projective transfor-
mations. Figure 1 shows a square and possible rigid, affine,
and projective deformations.

In 3-D, we have the same hierarchy of transformations,
with rigid, similarity, affine, and full projective transforma-
tions. The M3p matrices in this case are 4 x4. Of particular
interest are the rigid (Euclidean) transformation,

|

where R is a 3 x3 orthonormal rotation matrix and t isa 3-D
translation vector, and the 3 x4 viewing matrix
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which projects 3-D points through the origin onto a 2-D pro-
jection plane a distance f along the z axis [10]. The 3x3 v
matrix can be a general matrix in the case where the internal
camera parameters are unknown, but the last column of V is
always zero for central projection.

The combined equations projecting a 3-D world coordinate
p = (=, ¥, 2, w) onto a 2-D screen location u = (=, v/, w')
can thus be written as

10 0
v=[V 0] 0 1 o[, ©)]
00 0

u=VEp = Mmp, @
where Mcam is a 3x4 camera matrix. This equation is valid
even if the camera calibration parameters and/or the camera
orientation are unknown.

4 Planar image mosaicing

The simplest possible set of images to mosaic are pieces of a
planar scene such as a document, whiteboard, or flat desktop.
Imagine that we have a camera fixed directly over our desk.
As we slide a document under the camera, different portions
of the document are visible. Any two such pieces are related
to each other by a translation and a rotation (2-D rigid trans-
formation).

Now imagine that we are scanning a whiteboard with a
hand-held video camera. The class of transformations relat-
ing two pieces of the board is the family of 2-D projective
transformations (just imagine how a square or grid in one im-
age can appear in another). These transformations can be
computed without any knowledge of the internal camera cal-
ibration parameters such as focal length and optical center,
or knowledge of the relative camera motion between frames.
The fact that 2-D projective transformations capture all such
possible mappings is a basic result of projective geomeiry (see
[9] for a simple proof).

Given this knowledge, how do we compute the transforma-
tions relating the images? A variety of techniques are pos-
sible, some more automated than others. For example, we
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Figure 1: Rigid, affine, and projective transformations

could manually identify four or more corresponding points be-
tween the two views. We could also iteratively adjust the rel-
ative positions of input images using either a blink compara-
tor or transparency. Unfortunately, these kinds of manual ap-
proaches are too tedious to be useful for large tele-reality ap-
plications.

The approach we use in this paper is to directly minimize
the discrepancy in intensities between pairs of images after ap-
plying the transformation we are recovering. This has the ad-
vantage of not requiring any easily identifiable feature points,
and of being statistically optimal once we are in the vicinity of
the true solution [11]. Let us re-write our 2-D transformations
as

o = moZ; + miy;i +may

maz; + may; + ms
mezi +mry + 177

meZi + mqy; + 1
Our technique minimizes the sum of the squared intensity er-

rors
E =) (I}, v}) ~ Iz, )]’ = ) €

over all corresponding pairs of pixels ¢ which are inside both
images I(z,y) and I'(z’,y') (pixels which are mapped out-
side image boundaries do not contribute). Once we have
found the best transformation M,p, we can warp image I'
into the reference frame of I using M, and then blend
the two images together [7]. To reduce visible artifacts, we
weight images being blended together more heavily towards
the center, using a bilincar weighting function.

To perform the minimization, we use the Levenberg-
Marquardt iterative non-linear minimization algorithm [12].
This algorithm requires the computation of the partial deriva-
tives of e; with respect to the unknown motion parameters
{mo ...my}. Thesc are straightforward to compute, c.g.,

i i or Je; i ar ar
de ::c_m"“’ € _ Y o—+yi— 1], D
dmg D; 8z’ dme D; dz' ay’
where D is the denominator in (5), and (81'/8z', 31" /3y')
is the image intensity gradient of I' at (z},y!). From these
partials, the Levenberg-Marquardt algorithm computes an ap-

proximate Hessian matrix A and the weighted gradient vector
b with components

-y

. (5)
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and then updates the motion parameter estimate m by an
amount Am = (A + MI)~'b, where X is a time-varying sta-
bilization parameter [12]. The advantage of using Levenberg-
Marquardt over straightforward gradient descent is that it con-
verges in fewer iterations. For more details on the exact im-
plementation, see [11].

Unfortunately, both gradient descent and Levenberg-Mar-
quardt only find locally optimal solutions. If the motion be-
tween successive frames is large, we must use a different
strategy to find the best registration. We have implemented
two different techniques for dealing with this problem. The
first technique, which is commonly used in computer vision,
is hierarchical matching, which first registers smaller, sub-
sampled versions of the images where the apparent motion is
smaller [13, 14]. Motion estimates from these smaller coarser
levels are then used to initialize motion estimates at finer lev-
els, thereby avoiding the local minimum problem (see [11] for
details). While this technique is not guaranteed to find the cor-
rect registration, we have observed empirically that it works
well when the initial misregistration is only a few pixels.

For larger displacements, we use phase correlation [15].
This technique estimates the 2-D translation between a pair
of images by taking 2-D Fourier transforms of each image,
computing the phase difference at each frequency, perform-
ing an inverse Fourier transform, and searching for a peak
in the magnitude image. In our experiments, this technique
has proven to work remarkably well, providing good initial
guesses for image pairs which overlap by as little as 50%.

To demonstrate the performance of our algorithm, we digi-
tized an image sequence with a camera panning over a white-
board. Figure 2 shows the final mosaic of the whiteboard, with
the location of a constituent image shown as a white outline.
This mosaic is 1300x2046 pixels, based on compositing 39
NTSC (640x480) resolution images.

To compute this mosaic, we developed an interactive im-
age mosaicing tool which lets the user coarsely position suc-
cessive frames relative to cach other. The tool also has an
automatic mosaicing option which computes the initial rough
placement of each image with respect to the previous one us-
ing phase correlation. Our algorithm then refines the loca-
tion of each image by minimizing (6) using the current mo-
saic as I(z, y) and the input frame being adjusted as I'(z', v').
The images in Figure 2 were automatically composited with-



Figure 2: Whiteboard image mosaic example
The central square shows the size of one input image (tile).

Figure 3: Panoramic image mosaic example (bookshelf and cluttered desk)
These images were pasted onto a planar viewing surface.
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out user intervention using the middle frame (center of the im-
age) as the anchor image (no deformations). As we can see,
our technique works well on this example.

S Panoramic image mosaicing

Another image mosaicing problem which turns out to be
equatly simple to solve is panoramic image mosaicing. In this
scenario, we rotate a camera around its optical center in order
to create a full “viewing sphere” of images. This is similar to
the action of panoramic still photographic cameras where the
rotation of a camera on top of a tripod is mechanically coor-
dinated with the film transport. In our case, however, we can
mosaic multiple 2-D images of arbitrary detail and resolution,
and we need not know the camera motion. Examples of appli-
cations include constructing true scenic panoramas (say of the
vicw at the rim of the Grand Canyon), or limited virtual envi-
ronments (recreating a meeting room or office as seen from
onc location).

Images taken from the same viewpoint with a stationary op-
tical center are related by 2-D projective transformations, just
as in the planar scene case [9]. Intuitively, we cannot tell the
relative depth of points in the scene as we rotate (there is no
motion parallax), so they may as well be located on any plane;
in projective geometry, we could say they lie on the plane at
infinity,w = 0. For many applications, this is viewed as a de-
ficiency, i.e., we cannot recover scene depth from rotational
camera motion. For image mosaicing, this is actually an ad-
vantage since we just want to composite a large scene and be
able to “look around” from a static viewpoint.

More formally, the 2-D transformation denoted by Myp is
related to the viewing matrices V and V' and the inter-view
rotation R by [9]

M;p = V'RV™L ©)
In the case of a calibrated camera (known center of projec-
tion), this has a particularly simple form,

700 701 froz
M;p = T10 11 friz ) (10)
rao/f' ra/f' fraa/f

where f and f’ are the scaled focal lengths in the two views,
and ry; are the entries in the rotation matrix R. In this case,
we only have to recover five independent parameters (or three
if the f values are known) instead of the usual eight.

How do we represent a panoramic scene composited using
our techniques? One approach is to divide the viewing sphere
into several large, potentially overlapping regions, and to rep-
resent each region with a plane onto which we paste the im-
ages. Another approach is to compute the relative position
of cach frame relative to some base frame, and to then re-
compute an arbitrary view on the fly from all visible pieces,
given a particular view direction R and zoom factor f. We
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have implemented both approaches and find that they produce
similar results.

Figure 3 shows a mosaic of a bookshelf and cluttered desk,
which is obviously a non-planar scene. The images were ob-
tained by tilting and panning a video camera mounted on a tri-
pod, without any special steps taken to ensure that the rotation
was around the true center of projection. The complete scene
is registered quite well. Figure 4 shows a complete circular
panorama of an office, unrolled onto a cylindrical surface.

6 Scenes with arbitrary depth

Mosaicing flat scenes or panoramic scenes may be interesting
for certain tele-reality applications, e.g., transmitting white-
board or document contents, or viewing an outdoor panorama.
However, for most applications, we must recover the depth as-
sociated with the scene to give the illusion of a 3-D environ-
ment, e.g., through nearby view synthesis [8]. Two possible
approaches are to model the scene as piecewise-planar or to
recover dense 3-D depth maps.

The first approach is to assume that the scene is piecewise-
planar, as is the case with many man-made environments such
as building exteriors and office interiors. The image mosaic-
ing technique developed in Section 4 can then be applied to
each of the planar regions in the image. Once the indepen-
dent planar pieces have been composited, we could, in prin-
ciple, recover the relative geometry of the various planes and
the camera motion [9]. However, rather than pursuing this ap-
proach in this paper, we will purse the second, more general
solution which is to recover a full depth map, i.e., to infer the
missing z component associated with each pixelin a given im-
age sequence.

When the camera motion is known, the problem of depth
map recovery is called stereo reconstruction (or multi-frame
stereo if more than two views are used). This problem has
been extensively studied in photogrammetry and computer vi-
sion. When the camera motion is unknown, we have the more
difficult structure from motion problem [10]. In this section,
we present our solution to this latter problem based on recov-
ering projective depth, which is particularly simple and robust
and fits in well with the methods already developed in this pa-
per.

To formulate the projective structure from motion recovery
problem, we note that the coordinates corresponding to a pixel
u with projective depth w in some other frame can be written
as

v’ = V'Ep = V'RV lu + wV't = Mypu + wi, (11)

where V, E, R, and t are defined in (2-3), and M,p and t
are the computed planar projection matrix and epipole direc-
tion [9]. To recover the parameters in Myp and t for each
frame along with the depth values w (which are the same for
all frames), we use the same Levenberg-Marquardt algorithm
as before.
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In more detail, we write the projection equation as

2! moz; + myy; + low; + ma
' mez; + mryi +tawi + 1

maz; + may; +ihiwi +ms

mez; + mryi +tawi+ 1

Y% 12
We compute the partial derivatives of z; and y; w.r.t. the my
and i (which we concatenate into the motion vector m) as
before in (7). Similarly, we compute the partials of z; and y;
with respect to w;, i.e.,
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where D; is the denominator in (12).

To estimate the unknown parameters, we alternate itera-
tions of the Levenberg-Marquardt algorithm over the mo-
tion parameters {mo, ..., t2} in m and the depth parameters
{w;}, using the partial derivatives defined above to compute
the approximate Hessian matrices A and the weighted error
vectors b as in (8). In our current implementation, in order
to reduce the total number of parameters being estimated, we
represent the depth map using a tensor-product spline, and
only recover the depth estimates at the spline control vertices
(the complete depth map is available by interpolation) [11].

Figure 5 shows an example of using our projective depth
recovery algorithm. The image sequence was taken by mov-
ing the camera up and over the scene of a table with stacks
of papers (Figure 5a). The resulting depth-map is shown in
Figure Sb as intensity-coded range values. Figure 5¢ shows
the original intensity image texture mapped onto the surface
seen from a side viewpoint which is not part of the original se-
quence (an example of view extrapolation). Figure 5d shows
a set of grid lines overlayed on the recovered surface to better
judge its shape. The shape is recovered reasonably well in ar-
eas where there is sufficient texture and the extrapolated views
look reasonable.

7 Full 3-D model recovery

Recovering depth maps may be adequate for many tele-reality
applications, e.g., scanning library bookshelves or supermar-
ket aisles, but for other applications, i.e., when we need to see
the back side of an object, full 3-D models are required. This
is the most difficult image mosaicing problem, since not only
do we have to recover depth, but we also have to merge (regis-
ter and composite) multiple depth maps, and represent objects
given no a priori knowledge about their rough shape or topol-
ogy.

For simple topologies and shapes, deformable physically-
based models can do a good job of recovering thc unknown
geometry [16]. For general topologies, the problem is more
difficult, but techniques do exist for extracting 3-D shape from
multiple views. For example, we can recover a volumetric de-
scription from the binary silhouettes of an object against its
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background [17], compute local optic flow (pixel motion) es-
timates and convert these into sparse 3-D point estimates [18],
or track the occluding contours of an object to generate 3-D
space curves [19]. A complete survey of 3-D shape extrac-
tion techniques is beyond the scope of this paper. Instead, we
present the results of two of our previously developed algo-
rithms applied to an image sequence of a cup rotating on a cal-
ibrated turntable (Figure 6a).

Our first technique converts each image into a binary sil-
houette by comparing the image with an empty background
image. Each cube in the octree volumetric 3-D model is
then projected (using the known camera position) into the sil-
houette, and cubes that fall outside the silhouette are culled.
Cubes which fall partially into the silhouette are marked for
later subdivision, and the process is repeated after each com-
plete revolution at successively finer resolutions [17]. The re-
sulting octree is shown in Figure 6b.

Our second technique extracts silhouette (extremal) edges
from the image sequence, and uses a multi-frame stereo algo-
rithm to reconstruct their 3-D position (internal albedo edges
are also extracted and reconstructed) [19]. Figure 6¢c shows
one of the edge images used by the algorithm, and Figure 6d
shows the collection of 3-D curves estimated by the algorithm.
Figure 6¢ shows the 3-D epipoiar curves connecting these to
form a mesh (only a portion of the cup is shown for clarity).

To produce a complete smooth 3-D surface, we must in-
terpolate and smooth the geometry available with these tech-
niques. We do this using the particle-based surface modeler
developed in [20] to smooth out the rough geometry provided
by the volumetric (octree) recovery technique. Once a de-
tailed surface description is available, we then apply inverse
texture mapping to associate a color with each point in our sur-
face representation, by projecting the points into each input
image, and computing the average color over all frames where
a given point is visible. A view of the final texture-mapped
particle-based model is shown in Figure 6f.

These examples demonstrate some of our algorithms for
reconstructing an isolated object undergoing known motion.
Similar techniques can be used to solve the more general 3-
D scene recovery problem where the camera motion is un-
known. Methods for determining the motion include the pro-
jective motion algorithm presented in the previous section, as
well as techniques described in [10, 21] and elsewhere.

8 Applications

Given automated techniques for building 2-D and 3-D scenes
from video sequences, what can we do with these models? In
this section, we describe a number of potential applications,
including whiteboard and document scanning, 3-D model ac-
quisition for inverse CAD, model acquisition for computer an-
imation and special effects, supermarket shopping at home,
interactive walkthroughs of historical buildings, and live tele-
reality (telepresence) applications.
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Figure 6: 3-D model recovery example
(a) input image, (b) octree recovered from silhouettes (c) 2-D edges, (d) 3-D extremal contours (side view), () portion of surface
mesh made from profile and epipolar curves, (f) inverse texture-mapped 3-D model (oblique view),
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The most straightforward application of image mosaicing is
scanning whiteboards or blackboards as an aid to videocon-
ferencing or as an easy way to capture ideas. Scanning can
produce images of much greater resolution than single wide-
angle lens shots. The techniques developed in this paper en-
able any video camera attached to a computer to be used.

Another obvious application of this technology is for doc-
ument scanning. Hand-held scanners currently perform this
function quite well. However, since they are based on linear
CCDs, they are subject to “skewing” problems in each strip of
the scanned image which must be corrected manually. Using
2-D video images as input removes some of these problems.
A final global skew may still be needed to make the document
square, but this can be performed automatically by detecting
document edges or internal horizontal and vertical edges (e.g.,
column borders).

The 3-D model building technology, while more difficult
1o automate reliably, has even greater potential. For example,
we could construct a 3-D fax which would scan 3-D objects at
one end using a video camera and either mechanical or user-
controlled motion, and a 3-D graphics display at the other end
[22]. This fax could be used to transmit 3-D models to a re-
mote site for viewing and design revision, or to input rough
CAD models for reverse engineering or clay mock-up appli-
cations.

Rapid 3-D model building is also critical in the computer
animation and special effects industries. Currently, it can take
days or weeks to build by hand each computer model used in
a feature-length film. The ability to build such models rapidly
from real objects or physical mock-ups would be of great util-
ity, especially when freed from the range and resolution limi-
tations of active rangefinding systems.

A more mass-market application is home shopping applied
not to single objects but to complete stores, such as your lo-
cal supermarket. This has the advantage of having a familiar
look and organization, and enables the pre-planning of your
next shopping trip. The images of the aisles (with their current
contents) can be digitized by rolling a video camera through
the store. Morc detailed geometric models of individual items
can be acquired either by a 3-D model building process, or, in
the future, directly from the manufacturer. The shopper can
then stroll down the aisles, pick out individual items, and look
at their ingredients and prices.

Walkthrough of existing building can have a number of ap-
plications. For example, interactive 3-D walkthroughs of your
home, built by walking a video camera through the rooms and
mosaicing the image sequences, could be used for selling your
house (an extension of existing still-image based systems),
or for re-modeling or renovations. Walkthroughs of historic
building (e.g., palaces or museums) can be used for cduca-
tional and entertainment purposes. A museum scenario might
include the ability to look at individual 3-D objects such as
sculptures, and to bring up related information in a hypertext
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system.

The ultimate in tele-reality systems is dynamic tele-reality
(sometimes called telepresence), which composites video
from multiple source in real-time to create the illusion of be-
ing in a dynamic (and perhaps reactive) 3-D environment. An
example of such an application might be to view a 3-D ver-
sion of a concert with control over the camera shots, even be-
ing able to see the concert from the musicians’ point of view.
Other examples might be to participate or consult in a surgery
from a remote location (tele-medicine), or to remotely par-
ticipate in a virtual classroom. Building such dynamic 3-D
models at frame rates is beyond the processing power of to-
day’s high-performance superscalar workstations, but it could
be achieved using a collection of such machines or special-
purpose stereo hardware.

9 Discussion

Image mosaicing provides a powerful new way of creating the
detailed 3-D models and scenes needed for tele-reality appli-
cations. By registering multiple images together, we can cre-
ate scenes of extremely high resolution and at the same time
recover partial or full 3-D geometric information. While we
use techniques from computer vision to perform the registra-
tion, our focus is different: traditional vision techniques are
designed for inspection, recognition, and robot control, while
our techniques are designed to produce realistic 3-D models
for computer graphics and virtual reality applications.

The approach we use, namely direct minimization of inten-
sity differences between warped images, has a number of ad-
vantages over more traditional vision techniques, which are
based on tracking features from frame to frame [10, 21]. Our
techniques produce dense estimates of shape, work in highly
textured areas where features may not be reliably observed,
and make statistically optimal use of all the information [11].
Our approach is similar to [14], who also use intensity differ-
ences. However, we use full 2-D projective models of mo-
tioninstead of instantaneous quadratic flow fields, and we also
use a projective formulation of structure from motion, which
climinates the need for calibrated cameras. Itis also very sim-
ilar to [3], who also use planar projective motion estimates and
have furthermore demonstrated superresolution results, i.c.,
the ability to obtain higher resolution images by simply jitter-
ing the camera rather than panning.

While our techniques have worked well in the scenes in
which we have tried them, we must be cautious about their
general applicability. The intensity-based techniques we use
are sensitive to image intensity variation, such as those caused
by video camera gain control and vignetting (darkening of the
corners at wide lens apertures); working with band-pass fil-
tered images can remove most of these problems. All vision
techniques are also sensitive to geometric distortions (devia-
tions from the pinhole model) in the optics, so careful calibra-
Lion is necessary for optimal accuracy (the results in this paper



were obtained with uncalibrated cameras).

The depth extraction techniques we use rely on the pres-
ence of texture in the image. In areas of sufficient texture, it is
still possible for the registration/matching algorithm to com-
pute an erroneous depth estimate (such gross errors are less
common in active rangefinders). Where texture is absent, in-
terpolation must be used, and this can lead to erroneous (hallu-
cinated) depth estimates. Other visual cues, such as occluding
contours or shading, can be used to mitigate these problems in
some cases, but a general-purpose reliable vision-based rang-
ing system remains very much an open research problem.

10 Conclusions

In this paper, we have presented a hierarchy of scene mod-
els, ranging from 2-D planar and panoramic mosaics through
full 3-D object models, and developed a collection of associ-
ated scene recovery algorithms. The creation of realistic high-
resolution 3-D scenes from video imagery opens up many
new applications for tele-reality technology. These include
office applications such as whiteboard, document, and book-
shelf scanning, simulated meeting spaces, engineering appli-
cations such as reverse engineering and collaborative design,
and computer graphics applications such as 3-D model build-
ing. More importantly, this technology enables mass market
applications such as home shopping, education (the virtual
classroom), and entertainment (virtual travel). Ultimately, as
processing speeds and reconstruction algorithms improve fur-
ther, we will see dynamic real-time 3-D scene and model re-
covery being used to provide an even more exciting range of
telepresence and tele-reality applications.
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