
Triangle-based View Interpolation Without Depth-Buffering

Chi-Wing Fu
�

Tien-Tsin Wong
�

Pheng-Ann Heng
�

�

The Chinese University of Hong Kong
�

The Hong Kong University of Science and Technology

Abstract

In this paper, we propose a triangle-based view interpolation algorithm which can correctly resolve
the visibility problem without depth-buffering. The algorithm is especially useful when depth information
is not available, such as in the case of real-world photographs. By subdividing the reference image into
variable-sized triangles, view interpolation can be done efficiently using existing graphics hardware. We
derive the drawing order between each pair of neighboring triangles from the epipolar geometry. Using this
drawing order, a graph can be built and topological sorting is applied on the graph to obtain the complete
drawing order of all triangles in linear time.

1 Introduction

Traditional geometry-based computer graphics requires significant amount of time to render complex scenery
due to the dependency of the rendering time on the scene complexity. Even with the state-of-the-art graphics
accelerator, interactive rendering is still far from satisfactory. Image-based computer graphics provides an
alternative to render complex scene within a short period of time. Several image-based approaches have been
proposed during the last few years. In this paper, we focus on solving the visibility problem when warping a
given image (reference image) to generate an image (desired image) from a new viewpoint.

Given an image with depth, image as viewed from another viewpoint can be synthesized by reprojecting
each pixel. Since multiple pixels may be mapped to the same location in the new image, visibility has to be
resolved. The most straightforwardmethod is depth-buffering. However, in some cases, the depth information
may not be available or not accurate. This is especially common for real-world photographs. In that case,
only the correspondences or optical flow information are determined. We cannot resolve the visibility by
depth-buffering.

McMillan [14, 13] proposed a clever solution to the visibility problem. Once the mapping of pixels from
the reference image to the desired image is known (either by pixel reprojection [4] or by finding the point
correspondences [10] or optical flow [16]), the image can be warped correctly. No depth-buffering is needed.
The visibility is solved by mapping pixels in a specific order. From now on, whenever we use the term
McMillan’s drawing order, we actually refer to this pixel drawing order.

Due to the nature of the drawing order, only small image entities, such as pixels, can be applied. How-
ever, warping image in a pixel-by-pixel manner (pixel-based warping) is time-consuming and cannot utilize
existing graphics hardware. Moreover, gap occurs between adjacent pixels after they are warped. If the image
is subdivided into larger image entities (a group of neighboring pixels like triangles) and the mapping is then
applied on them instead of pixels, we can make use of the graphics hardware to accelerate the image warping.
The gap problem can also be solved at the same time. We call the triangle-by-triangle image warping the
triangle-based warping. Unfortunately, McMillan’s drawing order cannot be applied to larger entities. We

1



introduce a visibility sorting algorithm to find out the ordering of triangles for image warping. We will also
show that the time complexity of the algorithm is linear to the number of triangles. Since the image is now
subdivided into triangles, warping can be done efficiently with the assistance of graphics hardware.

2 Related Work

Chen and Williams [4] warped images by reprojecting each pixel onto the new image. Depth-buffering is used
to solve the visibilityas multiple pixels may be mapped to the same location in the new image. Darsa et al. [5]
subdivided the depth image into triangles and performed reprojection on each of them. Again the visibility is
solved by depth-buffering. Seitz and Dyer [19] introduced the view morphing which can correctly interpolate
two different views based on image morphing [2]. The positions of the cameras and the correspondence of
some feature points are required.

McMillan [12, 14, 13] first proposed a drawing order to solve the visibility without using depth-buffering.
The optical flow (i.e. the 2D mapping from the reference image to the desired image) has to be determined
either by pixel reprojection just as in view interpolation [4] or correspondence determination [7] in computer
vision.

If the pixels are forward mapped to the new image, gaps will appear in between those pixels. Laveau and
Faugeras [10] used a backward mapping, which maps pixels from the desired image back to the reference
images, in order to prevent the existence of gap. It is similar to the backward texture mapping in computer
graphics. Mark et al. [11] solved the gap problem by two methods, namely splatting and modeling the image
as a triangular mesh. To prevent the gap using splatting, the footprint of the pixel must be large enough.
However large footprint may blur the image. They also suggested to model the image as a triangular mesh
to prevent the gap. Since McMillan’s drawing order can only be applied to pixel-sized entities, they have to
subdivide the image into pixel-sized triangles by connecting neighboring three pixel samples as in Figure 1(a).
Hence a 512 � 512 image may be subdivided into more than five hundred thousand triangles. Even with the
assistance of graphics hardware, the warping is still slow. Note that their triangular mesh approach is different
from the one proposed in this paper. Their triangles are still in pixel size while our triangles can be in arbitrary
size and shape. Figure 1 shows the differences. Shade et al. [20] further extended the usage of McMillan’s
drawing order to image with multiple layers of depth values.

(a) (b)

Figure 1: Comparison of the (a)pixel-sized and (b)arbitrary-sized triangulation.

3 Epipolar Geometry

Before describing the proposed algorithm, we first describe some basics of epipolar geometry. Consider a
planar perspective image

���
captured with the center of projection at �� . We use the dot notation �� to denote a

3D point and the arrow notation �� to denote a 3D directional vector. A desired image
�	�

is generated with a
new center of projection at �
 . Figure 2 shows the geometry in both 3D and 2D.

2



(a) (b)

Figure 2: The geometry of two cameras (a) in 3D and (b) in 2D.

Each pixel
�

in the image
� �

stores the radiance along the ray �� which is fired from �� passing through the
pixel window associated with

�
. Now, let’s choose an arbitrary pixel

���
from image

� �
. A ray ���� is associated

with it. The intersection point �� � associated with
���

must lie somewhere on the ray ���� . To generate a new
view from �
 , �� � has to be reprojected onto

� �
. The plane constructed by �� , �
 and �� � is known as epipolar plane

in computer vision literature. The vector, �� , originated from �� pointing towards �
 is called positive epipolar
ray while the vector, 	 �� , originated from �� pointing to the opposite direction is called negative epipolar ray.

Now let’s choose another pixel
��


from image
� �

. Occlusion happens only when �� � and �� 
 are reprojected
onto the same 2D location in

� �
. If �� 
 does not lie on the epipolar plane associated with �� � , then �� � and �� 


will never occlude each other (see Figure 3). Hence occlusion happens only when �� , �
 , �� � and �� 
 all lies on
the same plane. Moreover the necessary condition of �� 
 occluding �� � is �
 , �� � and �� 
 are collinear and �� 
 is
in between �� � and �
 , as illustrated in Figures 2 and 5.

Figure 3: Since �� 
 does not lie on the epipolar plane associated with �� � , �� 
 and �� � will never occlude each
other.

From Figure 2, we know that �� 
 will never be occluded by �� � as viewed from �
 no matter where the
exact positions of �� � and �� 
 are. Therefore, if we always draw �� � before ���
 during reprojection, the visibility
problem is solved without knowing or comparing their depth values. And hence, if we can identify those
pixels whose intersection points may occlude each other and derive the drawing order, the visibility problem
can be solved without depth-buffering.

To identify the pixels which may occlude each other, we first intersect the epipolar plane with the planar
projection manifold (image

���
). The intersection line is called the epipolar line. Figure 4(a) illustrates the

terminologies graphically. When the positive epipolar ray �� intersects with the projection manifold
�	�

, the
intersection point on the projection manifold is known as positive epipole. Figure 4 denotes it by a positive
sign. On the other hand, if the negative epipolar ray intersects with the projection manifold, the intersection
point is known as negative epipole and denoted by a negative sign. Note all epipolar lines pass through the

3



epipole (either positive or negative). When the epipolar rays parallel to the planar projection manifold, no
intersection point is found on the plane. All epipolar lines are in parallel.

All pixels in
� �

that lie on the same epipolar line have a chance to occlude each other. Figure 5 shows
two pixels,

� �
and

� 

, lying on the same epipolar line. Their associated intersection points �� � and �� 
 are

coplanar and may occlude each other. And �� � will never occlude �� 
 as �� � ’s angle of derivation
� �

is greater
than,

� 

of �� 
 . In other words, if

� 

is closer to the positive epipole on the epipolar line than

� �
,
� �

will never
occlude

� 

. Hence we should always draw

� �
first. The arrow on the epipolar line in Figure 5 indicates the

drawing order of pixels. On the other hand, if
� 


is closer to the negative epipole on the epipolar line than
� �

,
� 


will never occlude
� �

. By intersecting all of the epipolar planes with the image
� �

(Figure 4(b)), we obtain
pictures of the drawing order (Figure 6). Note that once �� and �
 are known, the picture of drawing order is
already determined. It is not necessary to define the epipolar planes explicitly. Hence no depth information
is required in constructing the drawing order.

(a) (b)

Figure 4: The epipolar line is the intersection of the projection manifold and the epipolar plane.

Figure 5: The drawing order between two pixels that lie on the same epipolar line.

Only three main categories of drawing order exist. If the positive epipolar ray intersects with the projec-
tion manifold, a converging pattern (Figure 6(a)) will be obtained. On the other hand, if the negative epipolar
ray intersects, a diverging pattern is resulted (Figure 6(b)). If the epipolar rays parallel to the projection man-
ifold, the epipoles can be regarded as located infinitely far away and the epipolar lines will be all in parallel
(Figure 6(c)).

4



(a) (b) (c)

Figure 6: The drawing patterns

4 Drawing Order for Pixel-Sized Entities

McMillan derived two drawing orders of pixels from the patterns in Figure 6. They are shown in Figure 7.
Following these drawing orders, the visibility can be correctly resolved. No depth-buffering is required.
Pixels on different epipolar lines can be drawn in arbitrary order. However, the epipolar lines only tell us the
ordering of pixel-sized entities that lie on the same line. If we group pixels to form larger entities (such as
triangles) which overlap with multiple epipolar lines (Figure 8), the ordering of them is not clear. McMillan’s
drawing order in Figure 7 is no longer applicable for larger entities.

(a) (b)

Figure 7: Two drawing orders derived from the patterns of epipolar lines.

Figure 8: Larger image entities overlap with multiple epipolar lines.

5 Triangle-based Image Warping

5.1 Triangulation

To warp the image efficiently with triangles, we first have to triangulate the reference image into a set of
triangles based on the associated depth map or the map of optical flow. In our implementation, we use depth
map. But the basic idea of triangulation is applicable to optical flow map as well.

5



The depth map is a two-dimensional array of depth values. Each 2D integral coordinate in the depth
map is associated with a scalar depth value. Therefore, the depth map can be regarded as a special kind of
heightfield. The most obvious way to triangulate the heightfield is to form a grid first. Then each rectangle in
the grid is triangulated into two triangles, as depicted in Figure 1(a). However, the number of triangles is about
twice the number of samples in the depth map which is very large. Several adaptive methods [17, 6, 15] have
been proposed to directly triangulate the heightfield and range data into a mesh of variable-sized triangles.
We can also start with a fine triangular mesh and decimate it using various post-processing mesh reduction
algorithms [8, 18, 21]. Since the triangulation methods can be found in several literatures, we will not discuss
them in detail. Note that we only need a 2D triangulation on an image, not 3D. The output of the above
algorithms are 3D. We can reproject those triangles onto the image to obtain the required 2D triangular mesh.

One major criterion of choosing the triangulation method is that all elements in the same triangle should
have similar depth or optical flow values. Otherwise, the triangle will be excessively distorted after warping
and introduces visual artifacts. The triangle should be subdivided into smaller triangles if the elements inside
have depth or optical flow values with significant difference. A threshold can be used to guide the subdivision.
Hence it is a tuning problem. Figure 9 shows the result of triangulating an attic scene.

(a) (b)

Figure 9: Triangulation of the attic scene.

Note the triangulation is done only once before any image warping. Hence the triangulation can be
done off-line without affecting the frame rate of image warping. The resultant triangular mesh is stored in
a winged-edge data structure [1, 22] as the connectivity information will facilitate the visibility sorting of
triangles in the next phase. A more compact alternative to store the triangular mesh with connectivity is
directed-edge data structure proposed by Campagna et al. [3].

5.2 Image-based Visibility Sorting

Given two arbitrary triangles,
� �

and
� 


, obtained by triangulating the image. We can check whether these two
triangles may occlude each other, by checking the range of epipolar lines these triangles occupy. Let’s call
the range of epipolar lines occupied by a triangle the epipolar band. Figure 10(a) shows the epipolar band
occupied by triangle

� �
in light gray while that of triangle

� 

in dark gray. If the epipolar bands occupied by

these two triangles have no intersection (Figure 10(a)), no occlusion will occur between these two triangles.

6



Because there are no element (pixel) in the two triangles sharing any common epipolar line. Hence the order
of drawing these two triangles is irrelevant. On the other hand, if two epipolar bands intersect (Figure 10(b)),
some elements from the two triangles are lying on the same epipolar line. Hence the occlusion may occur after
warping. Therefore, the ordering of these two triangles does matter. In the specific example of Figure 10(b),
� �

may occlude
� 


as
� �

is closer to the positive epipole than
� 


in the intersection region.

(a) (b)

Figure 10: Epipolar band.

Now, let’s define two ordering relations � and � .

Definition 1 If all elements in a triangle
� �

must be drawn before any element in another triangle
� 


in order
to preserve the correct visibility, we say

� �
must be drawn before

� 

and denote this ordering relation as

� � � � 

.

Definition 2 If the drawing order between the elements in triangle
� �

and elements in another triangle
� 


is irrelevant, the drawing order between these two triangles are also irrelevant. We denote this ordering
relation as

� � � � 

.

Since all the triangles are obtained by triangulating the image with center of projection at �� , they must
be visible, non-overlapping and connected as viewed from �� . Instead of considering the order of any two
arbitrary triangles from the mesh, we first consider the ordering between each pair of neighboring triangles
which are sharing a common edge as in Figure 11(a). Now we will show that the ordering of any two
neighboring triangles can be determined by the position of the positive or negative epipole.

Theorem 1 Given two neighboring triangles which are sharing a common edge. The planar projection
manifold can be divided into two halves by extending the shared edge. The triangle with the positive epipole
on its side should be drawn later during warping. On the other hand, the triangle with the negative epipole
on its side should be drawn first during warping. If the epipole (either positive or negative) lies exactly on
the shared edge, the ordering of these two triangles is irrelevant.

Proof: Let’s denote the triangle with the positive (negative) epipole on its side as
���

and the other as
���

. All
epipolar lines on the planar projection manifold must be straight lines. And they must all pass through the
positive (negative) epipole. Now we can draw a straight epipolar line starting from the positive (negative)
epipole and passing through both

� �
and

� �
. Since the positive (negative) epipole is on the same side as

� �
,

whenever the straight epipolar line passes through both
� �

and
� �

, it should first pass through
� �

, then the
shared edge and finally

� �
(Figure 11(a)). Therefore whenever there are elements in

� �
which are sharing

a common epipolar line with some elements in
���

, the elements in
���

should be closer to the epipole than
those in

���
. If the epipole is positive, all elements in

���
are closer to the positive epipole than any element in

���
. Hence, no element in triangle

���
will occlude any element in

���
and we must draw

���
before

���
during

warping, i.e.
��� � ���

. Figure 12(a) shows one such example (
���
	 � �

and
����	 � 


). On the other hand, if

7



the epipole is negative, no element in
� �

will occlude any element in
� �

as all elements in
� �

are farther away
from the negative epipole. So we must draw

� �
before

� �
during warping, i.e.

� � � � �
. Figure 12(d) shows a

specific example (
� � 	 � �

and
� � 	 � 


).

(a) (b)

Figure 11: (a) The straight line starting from the epipole always enter
���

before
���

whenever the line cuts both
���

and
���

. (b) If the epipole lies on the shared edge, the epipolar bands of these two neighboring triangles
have no intersection.

When the epipole lies on the shared edge, the epipolar bands of
���

and
���

have no intersection (Fig-
ure 11(b)). Because one can always separate the epipolar bands of the two triangles by drawing a line which
coincides with the shared edge. In other words, no element in

� �
and

���
shares a common epipolar line.

Therefore their ordering is irrelevant and we say
��� � ���

. Figures 12(b) & 12(e) show two such cases.
If the epipolar ray does not intersect with the planar projection manifold, the epipoles can be regarded

as located infinitely far away. All epipolar lines are in parallel and pointing from the negative epipole to
the positive epipole. We can still determine which triangle is on the same side with the infinite epipole by
determining the direction of the epipolar line. Figure 12 shows all the possible cases and their corresponding
drawing order between two neighboring triangles. From the diagrams (g) to (l), the epipoles are drawn outside
the projection image to indicate that they are located infinitely far away.

5.3 Topological Sorting

Using the simple method described, one can always derive the drawing order of two neighboring triangles.
This ordering can be further extended to cover any two arbitrary triangles from the mesh by constructing
a drawing order graph. By representing each triangle as a node and the relation � as a directed edge in
the graph, we can construct a graph of drawing order. No edge is needed to represent the relation � as the
ordering is irrelevant. Note the constructed graph may contain disjointed subgraphs. Figure 13(a) shows seven
connected triangles. The drawing order of each pair of neighboring triangles are shown as arrows crossing the
shared edges between neighboring triangles. The constructed graph is shown in Figure 13(b). Figure 13(c)
shows two valid drawing orders derived from the example graph. Note there is no unique ordering for the
same graph.

There is no need to construct the graph explicitly. The graph can be implicitly represented as a set of
ordering relation between each pair of neighboring triangles. Hence, for each shared edge, we determine
the drawing order between the neighboring triangles using Theorem 1. The time complexity of the graph
construction is obviously

�������
where

�
is the number of shared edges. As each triangle has three edges,

�

must be smaller than 3 � where � is total number of triangles. Hence, the time complexity should be linear
to the total number of triangles.

The final step to find out the ordering of all triangles is to perform a topological sort on the drawing order
graph. The details of topological sort can be found in various introductory algorithm literatures [9, 23]. The
basic idea of topological sort is to find out and output a triangle

� �
such that no other triangle is needed to be

8



� 
 � � � � � � � 
 � � � � 


(a) (b) (c)

� � � � 
 � � � � 
 � 
 � � �

(d) (e) (f)

� 
 � � � � � � � 
 � � � � 


(g) (h) (i)

� � � � 
 � � � � 
 � 
 � � �

(j) (k) (l)

Figure 12: The drawing orders of all cases.

9



(a) (b) (c) (d)

Figure 13: (a)-(c): Construction of drawing order graph. (d) Cycle may exist in the graph.

drawn before
� �

, i.e.
� �

is not on the right hand side of any � relation.
Topological sort can always generate an ordering if the drawing order graph does not consist of any

cycle. It seems that the graph will be a directed acyclic graph. However cycle does exist in extremely rare
cases. Figure 13(d) shows one special example of triangulation such that cycle exists. If the epipole locates
inside the gray region, cycle will occur. If a relation satisfies the criteria of partial ordering [9] (transitivity,
antisymmetry and reflexivity), the associated directed graph can be guaranteed cycle-free. However the
relation � we have defined is not transitive. In order words, if

� � � � 

and

� 
 � � � , it does not imply
� � � � � . Because we say

� � � � 

if

� �
must be drawn before

� 

in order to preserve the correctness of the

visibility. If
� � � � 


and
� 
 � � � , it is very common that

� � � � � , i.e. the drawing of
� �

and
� � is no longer

relevant. This can be demonstrated by Figure 13(d).
The original topological sort must be modified to handle the case when a cycle is found. This can be

easily achieved by a linear-time cycle detector, randomly picking a triangle in the cycle and drawing it to
the screen, hence breaking the cycle. This approach may result in visual artifact (occlusion among different
objects may be incorrect). Another approach is to fall back to use pixel-based warping for triangles in the
cycle.

In practice, cycle seldom occurs and no cycle has been found in all our experiments. Physically, if a cycle
exists, it implies there exists some objects � ,

�
, and � such that � is in front of

�
,
�

is in front of � and � is in
front of � (like the objects in M. C. Escher’s drawing). Obviously, it is not possible in real world. We believe
the source of cycle is due to improper triangulation. If the triangulation algorithm fails to separate objects
with different depth values, the cycle problem may appear.

The time complexity of the topological sort is
��� ���

�
�

where
�

is the number of relations (edges in
the graph) and � is the number of triangles. Since

�
is at most � � , the time complexity is actually linear to

the number of triangles.

6 Results

Figure 14 shows three frames from an animation sequence of warping an image of Beethoven statue. The
images on the first row show the result if the image is forward warped in a pixel-by-pixel manner. Since
no splatting is performed, gap exists in between the pixels. Images on the second row are the final images
of running our algorithm. The third row shows their corresponding warped triangulation together with the
drawing order. To distinguish one triangle from another, we use three distinct colors to color neighboring
triangles. The intensity of the triangle indicates the drawing order. The darker the color, the former is the
triangle in the drawing order. In Figures 14(h) & 14(i), it shows how the visibility is resolved by the drawing
order. Note all triangles in the front (those closer to the viewpoint) are lighter in color than those in the back.
The coloring in Figure 14(g), 15(d) and 16(d) look random because the drawing order is irrelevant. In this
case, all triangles are visible and no occlusion occurs as viewed from the original viewpoint �� .

10



An indoor scene is shown in Figure 15 while an outdoor scene is shown in Figure 16. The first row shows
the final warped images while the second row shows the warped triangles together with the drawing order.
Note how the visibility is correctly resolved even no depth-buffering is used. The shaft in the attic scene and
the building in the city scene correctly overlap the background without comparing the depth values. Since
the image is now triangulated as a set of connected triangles, no gap exists in between them. The holes in
between the triangles in our result are intentionally introduced to prevent excessive elongation after warping
two neighboring triangles with discontinuous depth or optical flow values.

The best condition for executing the proposed algorithm is when the image resolution is high and the
scenery contains objects with gradually changing depth values (distances from the viewpoint). In this case,
the image can be triangulated into few large triangles. Both topological sorting and image warping can be
performed rapidly. On the other hand, if the image resolution is low and the scenery contains objects with
abruptly changing depth values, the image may be triangulated into many small triangles. The computational
time of topological sorting may dominant the overall execution time and hence overwhelm the advantage of
drawing triangles.

7 Conclusions

In this paper, we proposed a triangle-based image warping algorithm which solves visibility without using
depth-buffering. By grouping pixels to form triangles, the image warping can be done more efficiently with
the utilization of graphics hardware. Moreover, the gap problem of pixel-based approach is also removed at
the same time.

Deriving from the epipolar geometry, we introduce the drawing order between two neighboring triangles.
The ordering relation allows us to construct a graph of drawing order. Applying the topological sorting on
this graph gives us the drawing order of all triangles. No depth-buffering is needed if the triangles are drawn
in this order. Both the graph construction and topological sorting have a linear time complexity. Moreover
the graph construction and topological sorting are required only when the epipolar ray changes. If the user
only translates the viewpoint along the epipolar ray or rotates about the original viewpoint, the same ordering
can be used without rebuilding the graph and sorting the relations.

Web Information

Demonstrative movies and sample images are available on the web at
http://www.acm.org/jgt/papers/FuWongHeng99/
http://www.cse.cuhk.edu.hk/ � cwfu/papers/triOrder/triOrder.html
http://www.cs.ust.hk/ � ttwong/papers/triorder/triorder.html

Chi-Wing Fu, Department of Computer Science & Engineering, The Chinese University of Hong Kong
(CUHK), Shatin, Hong Kong (cwfu@cse.cuhk.edu.hk) (http://www.cse.cuhk.edu.hk/ � cwfu/)

Tien-Tsin Wong, Department of Computer Science, The Hong Kong University of Science & Technology
(HKUST), Clear Water Bay, Kowloon, Hong Kong (ttwong@acm.org) (http://www.cs.ust.hk/ � ttwong/)

Pheng-Ann Heng, Department of Computer Science & Engineering, The Chinese University of Hong Kong
(CUHK), Shatin, Hong Kong (pheng@cse.cuhk.edu.hk) (http://www.cse.cuhk.edu.hk/ � pheng/)

11



References

[1] Bruce G. Baumgart. Winged edge polyhedron representation. Technical report, Stanford Artificial
Intelligence Laboratory, Stanford University, October 1972. Technical Report CS-320.

[2] Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis. In Edwin E. Catmull, editor,
Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 35–42, July 1992.

[3] Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. Directed edges – a scalable representation for
triangle meshes. Journal of Graphics Tools. to appear.

[4] Shenchang Eric Chen and Lance Williams. View interpolation for image synthesis. In Computer Graph-
ics Proceedings, Annual Conference Series (Proc. SIGGRAPH ’93), pages 279–288, 1993.

[5] Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Navigating static environments using image-
space simplification and morphing. In Proceedings of the 1997 Symposium on Interactive 3D Graphics,
pages 25–34, April 1997.

[6] Michael J. Dehaemer and Michael J. Zyda. Simplification of objects rendered by polygonal approxima-
tions. Computer & Graphics, 15(2):175–184, 1991.

[7] Oliver Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge,
MA, 1993.

[8] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Mesh optimiza-
tion. In Computer Graphics (SIGGRAPH ’93 Proceedings), pages 19–26, August 1993.

[9] Donald Knuth. The Art of Computer Programming; Volume 1: Fundamental Algorithms. Addision-
Wesley, 1968.

[10] Stephane Laveau and Olivier Faugeras. 3-D scene representation as a collection of images. In Pro-
ceedings of the Twelfth International Conference on Pattern Recognition (ICPR ’94), pages 689–691,
Jerusalem, Israel, October 1994.

[11] William R. Mark, Leonard McMillan, and Gary Bishop. Post-rendering 3d warping. In Proceedings of
the 1997 Symposium on Interactive 3D Graphics, pages 7–16, April 1997.

[12] Leonard McMillan. Computing visbility without depth. Technical report, University of North Carolina,
October 1995. UNC Computer Science Technical Report TR95-047.

[13] Leonard McMillan. An Image-Based Approach to Three-Dimensional Computer Graphics. PhD thesis,
Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina, 1997.

[14] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering system. In Com-
puter Graphics Proceedings, Annual Conference Series (Proc. SIGGRAPH ’95), pages 39–46, August
1995.

[15] Tim Poston, Tien-Tsin Wong, and Pheng-Ann Heng. Multiresolution isosurface extraction with adaptive
skeleton climbing. Computer Graphics Forum, 17(3):137–148, September 1998. Eurographics’98 issue.

[16] K. Prazdny. On the information in optical flows. Computer Vision, Graphics and Image Processing,
22(9):239–259, 1983.

12



[17] Lori Scarlatos and Theo Pavlidis. Hierarchical triangulation using cartographic coherence. CVGIP:
Graphical Models and Image Processing, 54(2):147–161, March 1992.

[18] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of triangle meshes. In
Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 65–70,
July 1992.

[19] S. M. Seitz and C. R. Dyer. View morphing. In Computer Graphics Proceedings, Annual Conference
Series (Proc. SIGGRAPH ’96), pages 21–30, 1996.

[20] Jonathan Shade, Steven Gortler, Li wei He, and Richard Szeliski. Layered depth images. In Computer
Graphics Proceedings, Annual Conference Series (Proc. SIGGRAPH ’98), pages 231–242, July 1998.

[21] Greg Turk. Re-tiling polygonal surfaces. In Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH
’92 Proceedings), volume 26, pages 55–64, July 1992.

[22] K. Weiler. Polygon comparison using a graph representation. In Computer Graphics (SIGGRAPH ’80
Proceedings), volume 14, pages 10–18, July 1980.

[23] Mark Allen Weiss. Data structures and algorithm analysis. Benjamin/Cummings Pub. Co, 1992.

13



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14: Beethoven.

14



(a) (b) (c)

(d) (e) (f)

Figure 15: Attic.

15



(a) (b) (c)

(d) (e) (f)

Figure 16: City.

16


