
Chapter4
Feature-Based Motion II:

Parameter Estimation

This chapter describes the algorithm for computing the parameters of the
projective motion model, based on the feature-correspondences that we ob-
tained in the last chapter. We construct the algorithm step by step, start-
ing with a simpler affine motion model, prior to considering the projective
motion model. Whereas the parameter estimation for affine motion can
be realized with linear least-squares, an equivalent problem formulation for
projective motion leads to a non-linear optimization problem. Furthermore,
we study the case of images with multiple independent motions in the same
frame. To extract the dominant motion model in this case, we apply the
RANSAC algorithm, which is a robust estimation algorithm that is not af-
fected by outlier data. An evaluation of the robust estimation algorithm
shows that the accuracy of the results in practice is worse than expected
from a theoretic evaluation. However, after analyzing this discrepancy, we
propose a modification to reach the theoretical performance.

Never mistake motion for action.
(Ernest Hemingway)
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106 Chapter 4. Feature-Based Motion II: Parameter Estimation

4.1 Introduction

Chapter 2 presented how camera motion can be described with a projec-
tive motion model. In this chapter, we address algorithms to solve the
inverse problem of estimating the model parameters from a set of point-
correspondences.

We describe the algorithm in two steps. First, we assume that the video
sequence shows only background motion without foreground objects that
move in a different direction. This allows us to include all the correspon-
dences in the parameter estimation. In Section 4.3, we describe an enhanced
algorithm that generalizes the algorithm such that foreground motion and
outlier data are excluded from to estimating the motion parameters. The
applied algorithm is the RANSAC (Random Sample Consensus) [73] al-
gorithm, which is a probabilistic algorithm only succeeding with a certain
probability. Our experiments show that the practical performance does
not reach the theoretically predicted probability of success. We will derive
an explanation and propose a modification to increase the robustness in
Section 4.3.3.

Besides the RANSAC algorithm, other robust estimation algorithms
have been proposed. We conducted experiments with the LTS (Least
Trimmed Squares) and LMedS (Least Median of Squares) algorithms. These
algorithms are explained and compared to RANSAC in Appendix C.

4.2 Computing motion model parameters

In the following two sections, we will first consider the estimation problem
for the affine motion model, since this can be solved with linear least-
squares. After that, we will discuss the projective motion model in Sec-
tions 4.2.3 and 4.2.4.

4.2.1 One-dimensional affine motion

Let us first illustrate the principles for simple one-dimensional affine mo-
tion. If we denote the positions in the first (one-dimensional) picture by
xi and the corresponding position in the second picture by x′i, we can for-
mulate the affine motion model as x′i = a · xi + b. Each selection of model
parameters defines a line in an x, x′ diagram which illustrates the corre-
sponding positions between x and x′. The two possible types of motion
which are possible with this simple transform are depicted in Figure 4.1(a).
The two types of motion are translatorial motion, which is specified us-
ing the b parameter and zoom, which is specified with the a parameter.
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Figure 4.1: One-dimensional affine motion. The horizontal axis shows
the position x in the first picture while the vertical axis shows
the corresponding position x′ in the second picture. (a) Lines
in the x, x′ diagram depict the motion between x and x′. (b)
From the feature-correspondence step, we get a set of (noisy)
correspondences {x ↔ x′} which are drawn as dots. A least-
squares fit is carried out by minimizing the sum of model er-
rors |g(xi)− x‘i|.

The center of the zoom is at the position where the model line crosses the
identity line x = x′.

The parameter-estimation problem is now to obtain an estimate for the
parameters a and b, based on a set of measured point-correspondences. We
denote a set of points in the first image as {xi} and their corresponding
points in the second image as {x̂i}. Since the point measurements are
not exact, we cannot assume that they will all fit perfectly to the motion
model. Hence, the best solution is to compute a least-squares fit to the data.
We consequently define the model error as the sum of squared distances
between the measured positions x̂i and the positions obtained from the
motion model (Figure 4.1(b)). This results in the definition of the model
error as E =

∑
i((axi + b)− x̂i)2. To minimize the model error E, we take

its derivatives with respect to the motion parameters

∂E

∂a
=
∑

i

2(axi + b− x̂i)xi ;
∂E

∂b
=
∑

i

2(axi + b− x̂i), (4.1)

and set them to zero. This leads to the two equations∑
i

(ax2
i + bxi − x̂ixi) = 0 ;

∑
i

(axi + b− x̂i) = 0, (4.2)
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108 Chapter 4. Feature-Based Motion II: Parameter Estimation

which can be written in matrix form as[∑
i x

2
i

∑
i xi∑

i xi
∑

i 1

](
a
b

)
=
(∑

i x̂ixi∑
x̂i

)
. (4.3)

By solving this linear equation system, we can determine the unknown
model parameters a and b. Note that the problem solved so far is mathe-
matically identical to the problem of simple linear regression.

4.2.2 Two-dimensional affine motion

In the two-dimensional case, our measurements consist of positions (xi, yi)
in the first image and corresponding position (x̂i, ŷi) in the second image.
The position that is obtained by transforming (xi, yi) according to the
motion model will be denoted as (x′i, y

′
i). Now, it is the 2-D affine motion

model (
x′

y′

)
=
[
a00 a01

a10 a11

](
x
y

)
+
(

tx
ty

)
, (4.4)

for which we want to find a good estimate of the six parameters {aik}, tx, ty.
As a direct generalization of the model error of the one-dimensional case, we
can define the model error as: E2 =

∑
i(x

′
i−x̂i)2+(y′i−ŷi)2. In a geometrical

sense, this is the sum of Euclidean distances between the measured positions
in the second frame and the positions to which the features from the first
image are transformed (Fig 4.2). Note that this definition assumes that
the measurements in the first frame are exact and errors are only made
in measuring the position in the second picture. Since this is not true in
practice, it is proposed in [85] to use a more symmetric error definition
like the symmetric transfer error or the reprojection error. However, this
would lead to a more complicated solution with only very little increase of
accuracy. Consequently, we will use the definition of Euclidean error E2.

To solve for the minimum error E2, we again take the partial derivatives
with respect to the model parameters a{ij}, tx, ty and set them to zero. This
gives the equation system

∑
i x

2
i

∑
i xiyi

∑
i xi 0 0 0∑

i xiyi
∑

i y
2
i

∑
i yi 0 0 0∑

i xi
∑

i yi
∑

i 1 0 0 0
0 0 0

∑
i x

2
i

∑
i xiyi

∑
i xi

0 0 0
∑

i xiyi
∑

i y
2
i

∑
i yi

0 0 0
∑

i xi
∑

i yi
∑

i 1




a00

a01

tx
a10

a11

ty

 =



∑
i x̂ixi∑
x̂iyi∑
x̂i∑

i ŷixi∑
ŷiyi∑
ŷi

 ,

which obviously can be solved more easily by splitting the equation system
into two independent systems. The first one determines the parameters for
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Figure 4.2: The model error is specified as the Euclidean distance between
the detected feature position in the second frame and the ideal
feature position according to the motion model.

the horizontal motion component a00, a01, tx, while the second one deter-
mines parameters a10, a11, ty for the vertical component.

4.2.3 One-dimensional projective motion

Let us now switch from the affine model to projective motion. We again
consider the one-dimensional case first, for which we use a one-dimensional
projective motion model in the inhomogeneous representation x′i = (a ·
x + b)/(c · x + 1). The most important difference for the estimation is
the fact that this motion model is not linear anymore. Would we use the
same model error definition as above and proceed with the same approach,
we would get a non-linear equation system which is much more difficult
to solve. However, we can apply a trick to linearize the equation system
by modifying the model error definition. Instead of using the Euclidean
distance

E2(a, b, c) =
∑

i

(x′i − x̂i)2 =
∑

i

(
axi + b

cxi + 1
− x̂i

)2

, (4.5)

we multiply with the nominator of the motion model and obtain the alge-
braic error

Ea(a, b, c) =
∑

i

(
(
axi + b

cxi + 1
− x̂i) · (cxi + 1)

)2

=
∑

i

(axi + b− x̂i(cxi + 1))2 .

(4.6)
With this new error definition, we can again compute the partial deriva-
tives and set them to zero to obtain the optimal parameter estimate. After
reordering the obtained equations, we can write them as the equation sys-
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Figure 4.3: Estimation of parameters for the perspective motion model us-
ing linear least-squares on a algebraic distance, and using non-
linear least-squares on the Euclidean distance.

tem  ∑i x
2
i

∑
i xi

∑
i−x2

i x̂i∑
i xi

∑
i 1

∑
i−xix̂i∑

i x
2
i x̂i

∑
i xix̂i

∑
i−x2

i x̂
2
i

a
b
c

 =

∑i xix̂i∑
i x̂i∑

i xix̂
2
i

 . (4.7)

The use of the algebraic error instead of the Euclidean error enables a more
easy computation of the parameters, since only a small linear equation
system has to be solved. However, the penalty for this simplification of
the computation is a reduction of parameter accuracy. Because of the
changed definition of our model error, we now optimize a geometrically
meaningless algebraic distance. As long as the noise level in the data is low,
the difference between both models is small, but it increases with a larger
noise variance. This behaviour is illustrated in Figure 4.3, where random
sample data was generated for an example model with the parameters a =
2, b = 3, c = 0.5. In Fig 4.3(a), the data was distorted by Gaussian noise
with σ = 0.01 and in Fig 4.3(b), a higher noise level of σ = 0.03 was
chosen. It can be seen that the non-linear least-squares fit using squared
Euclidean distances closely approximates the internal parameters. The fit
using algebraic distances results in a reasonable solution for low noise, but
it is strongly biased in the case of high noise.

4.2.4 Two-dimensional projective motion

Let us now extend the one-dimensional case to estimating the parameters of
two-dimensional projective motion. Recall that we want to determine the
homography matrix H, describing the motion from points pi in one frame
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4.2. Computing motion model parameters 111

to points p′i = Hpi. When estimating the parameters {hik}, we have to
consider that the parameters are scaling invariant. In the previous section,
we adopted the inhomogeneous representation of the motion model. In
the two-dimensional case, we pursue a similar approach by assuming that
h22 = 1. As we have seen in Section 2.3.3, this normalization fails for the
case where the horizon line includes the coordinate origin, since in that case
h22 = 0. An alternative is to use the overcomplete parameterization and
to impose additional constraints like the unit norm ||H||F = 1 where || · ||F
is the Frobenius norm. This second approach imposes no restrictions on
the transform and thus works in any case. However, it is computationally
more complex since it leads to computing a Singular Value Decomposition
[85]. For inter-frame motion, usage of the inhomogeneous formulation is no
problem because the motion is relatively small. The problem only becomes
apparent for large rotation angles (as we will see in Chapter 6).

Recall the normalized perspective motion equations

x′ =
h00x + h01y + h02

h20x + h21y + 1
, y′ =

h10x + h11y + h12

h20x + h21y + 1
. (4.8)

Since the definition of an Euclidean error measure E2 =
∑

i(x
′
i − x̂i)2 +

(y′i − ŷi)2 would again lead to a complicated non-linear equation system,
we will use an algebraic error in a similar way as in the previous section by
defining

Ea =
∑

i

(
(x′i − x̂i)2 + (y′i − ŷi)2

)︸ ︷︷ ︸
Euclidean distance

(h20x + h21y + 1)2

= (h00x + h01y + h02 − x̂i(h20x + h21y + 1))2+

(h10x + h11y + h12 − ŷi(h20x + h21y + 1))2.

(4.9)

Imposing the necessary condition ∂Ea/∂hik = 0 for a minimum error
results in the linear equation system of the form

(∑
i

Ai

)
h =

∑
i

bi, (4.10)

consisting of a sum of matrices Ai and a sum of vectors bi on the right-
hand side. Using the abbreviation ŝi = (x̂2 + ŷ2), the Ai and bi evaluate
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112 Chapter 4. Feature-Based Motion II: Parameter Estimation

(a) Detected correspondences. (b) Motion field estimated with linear
least-squares.

Figure 4.4: (a) The correspondences obtained from the previous process-
ing steps. Most of the correspondence vectors are correct, only
a few are established between unmatching feature-points. (b)
The projective motion-model fitted to the correspondences us-
ing linear least-squares with the algebraic distance measure.

as

Ai =



x2
i xiyi xi 0 0 0 −x2

i x̂i −xiyix̂i

xiyi y2
i yi 0 0 0 −xiyix̂i −y2

i x̂i

xi yi 1 0 0 0 −xix̂i −yix̂i

0 0 0 x2
i xiyi xi −x2

i ŷi −xiyiŷi

0 0 0 xiyi y2
i yi −xiyiŷi −y2

i ŷi

0 0 0 xi yi 1 −xiŷi −yiŷi

x2
i x̂i xiyix̂i xix̂i x2

i ŷi xiyiŷi xiŷi −x2
i ŝi −xiyiŝi

xiyix̂i y2
i x̂i yix̂i xiyiŷi y2

i ŷi yiŷi −xiyiŝi −y2
i ŝi


(4.11)

and
bi =

(
xix̂i yix̂i x̂i xiŷi yiŷi ŷi xiŝi yiŝi

)>
. (4.12)

The solution is collected in the parameter vector

h =
(
h00 h01 h02 h10 h11 h12 h20 h21

)>
. (4.13)

Figure 4.4 shows an example result of applying the linear least-squares
fitting algorithm for the perspective motion model. The rail sequence is
a pure background sequence without foreground objects, so no correspon-
dence outliers from foreground motion are present. However, there is a
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4.2. Computing motion model parameters 113

small number of outliers that are errors of the feature-correspondence al-
gorithm. These few outliers have not much influence since the number of
correct correspondences is significantly larger.

4.2.5 Non-linear least-squares estimation

We have seen previously that the algebraic error measure can result in an
inaccurate estimate if the noise in the data is high. Consequently, we will
develop an alternative least-squares estimator in this section which directly
uses the Euclidean error metric.

Let C = {xi ↔ x̂i} be a set of point-correspondences. We want to find
parameters for H to minimize the error defined as

E2 =
∑

i

e2
i;x + e2

i;y, (4.14)

where ei;x and ei;y are the residuals of a single point-correspondence in
horizontal and vertical direction:

ei;x =
h00xi + h01yi + h02

h20xi + h21yi + 1
− x̂i ; ei;y =

h10xi + h11yi + h12

h20xi + h21yi + 1
− ŷi. (4.15)

To find a solution, we use the Levenberg-Marquardt algorithm [151]. This
algorithm is a combination of a gradient-descent and Newton-like algo-
rithm. Apart from the error function, the algorithm also requires the par-
tial derivatives with respect to the parameters (for the gradient-descent)
and the Hessian matrix (for the Newton optimization-algorithm). Using
the abbreviations D = h20xi + h21yi + 1, Nx = h00xi + h01yi + h02, and
Ny = h10xi + h11yi + h12, we can determine the derivatives as

∂ei;x

∂h00
=

∂ei;y

∂h10
= xi/D ;

∂ei;y

∂h00
=

∂ei;x

∂h10
= 0

∂ei;x

∂h01
=

∂ei;y

∂h11
= yi/D ;

∂ei;y

∂h01
=

∂ei;x

∂h11
= 0

∂ei;x

∂h02
=

∂ei;y

∂h12
= 1/D ;

∂ei;y

∂h02
=

∂ei;x

∂h12
= 0 (4.16)

∂ei;x

∂h20
= −Nxxi/D2 ;

∂ei;y

∂h20
= −Nyxi/D2

∂ei;x

∂h21
= −Nxyi/D2 ;

∂ei;y

∂h21
= −Nyyi/D2.

Based on these derivatives, we obtain the gradient vector and Hessian ma-
trix for each iteration step. The optimization can be started with H equal
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Avg. Avg. Avg. Max. Max. Max.
algebr. nonlin. RANSAC algebr. nonlin. RANSAC

roma 0.150 0.150 0.455 0.513 0.509 1.014
rail 0.112 0.112 0.569 0.450 0.449 1.659
opera4 0.600 0.600 1.122 3.177 3.180 3.682
nature2 0.176 0.176 0.541 0.795 0.803 1.710

Table 4.1: Motion model error Ev for different estimation techniques.
Shown are the average and maximum values, computed over
the complete sequence. Note that the RANSAC column
shows the model error for the drawn sample excluding the re-
estimation step using all inliers.

to the identity matrix as the initial starting condition. Note that the min-
imization of E2 is considerably more complex than for the linear case, be-
cause it is an iterative process and in each iteration, the derivatives of
Eq. (4.16) have to be computed and summed over all feature-points.

Comparison to linear least-squares

To decide if the simplified linear estimation algorithm using algebraic dis-
tances can be used instead of the more complex non-linear algorithm, we
compared the difference between the estimated motion model and the ref-
erence model H?. Since the reference model is unknown, we instead use the
result of our complete motion-estimation system including the parameter
refinement from Section 5.2. We assume that these parameters are very
accurate, since no alignment errors are visible in the reconstructed sprite
image, which is based on these motion parameters.

We quantify the distance between two transforms by transforming a
point using both transforms, computing the distance between the two re-
sulting positions and averaging over the image area. More specifically, if
A is the image area and H and H? are the two transforms, we define the
transform distance Ev as

Ev =
1
|A|

∫∫
A

d(Hp,H?p) dxdy. (4.17)

We computed the transform distance Ev for the four test sequences and
computed the average and the maximum value over all frames. The results
are shown in Table 4.1 (the RANSAC column will be discussed later).

It is clearly visible that the results obtained with the algebraic distance
do not differ much from the results obtained with the Euclidean distance.
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4.3. Robust estimation algorithms 115

(a) Typical frame of nature2. (b) Critical frame in opera4.

Figure 4.5: Detected feature-correspondences. While the sequence (a) has
many features that are well distributed over the frame, only
a few features could be found in sequence (b). Moreover, the
features are not distributed uniformly over the image area.
Consequently, the accuracy of the motion estimation is lower
for sequence (b). See also Table 4.1.

Apparently, the noise in the feature location is so small that no difference
is observable between both parameter estimation algorithms. We can con-
clude that the simpler algebraic distance can be used without sacrifying
accuracy.1

4.3 Robust estimation algorithms

As long as we can assume that the only source of errors are inaccuracies
in the feature-point positions, the parameters can be determined using a
least-squares approximation as described above. Unfortunately, this is only
the case for video sequences showing pure camera motion and no indepen-
dent object motion. In most practical situations, the data is disturbed by
gross outliers or it comprises multiple concurrent motions, so that robust
estimation algorithms have to be applied. The purpose of the robust esti-
mation algorithms is to fit a given function to a set of data points, even if

1Also visible in the table is the unusually high error for the opera4 sequence. The
reason for this is the fact that the sequence shows very little texture (see Fig. 4.5(b)), so
that only few feature-points are generated. Moreover, these features are not distributed
equally over the image. A motion model that is derived from only these features will have
a larger error at positions that are distant to the detected features. We will evaluate the
problem of parameter estimation from a poor set of features in detail in Section 4.3.3.
In most cases, these errors in the feature-based motion estimator can be corrected in the
direct estimation algorithm that will be described in Chapter 5.
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the data is contaminated with a considerable number of outliers.
In this section, we present a robust estimation algorithm that extracts

the dominant motion model from the a mixture of different motions. The
robust estimation algorithm separates the input data into inliers (part of
the dominant motion), and outliers (non-dominant motion or erroneous cor-
respondences). For the estimation of the motion parameters from the inlier
data, we apply the parameter-estimation algorithm derived in Section 4.2.

4.3.1 Breakdown of least-squares fit on data with outliers

The direct least-squares approach for parameter estimation works well for
a small number of outliers that do not deviate too much from the correct
motion. However, the result is significantly distorted when the number of
outliers is larger, or the motion is very different from the correct camera
motion. Especially if the sequence shows independent object motions, a
least-squares fit to the complete data would try to include all visible ob-
ject motions into a single motion model. Obviously, this cannot give a
reasonable result.

Figure 4.6 shows an example taken from a sequence with panning cam-
era motion (background moves to the left) and object motion (human walks
to the right) at the same time. The result of fitting the model to all corre-
spondences is shown in Fig 4.6(b). This non-sense result presents a motion
field which indeed moves to the left at the right part of the picture (where
mostly camera motion is visible) and in the other direction at the left side
(where a large object is visible). However, this motion field is neither a
good representation for the camera motion nor for the object motion.

The solution to this problem is to separate feature-correspondences that
originate from different motions and to compute independent motion fields
for each set of correspondences. However, this is a chicken-and-egg problem.
How can we classify the correspondences into different motion types if the
motion fields are unknown, and on the other hand, how can we compute the
motion-field parameters, if the sets of consistent feature-correspondences
are unknown? This problem is addressed in the following sections.

4.3.2 Robust estimation using RANSAC

We consider the following inverse problem. We are given two video frames
that contain several areas with different motions. Two motions are con-
sidered different if the motions cannot be explained by a single projective
motion model. The apparent motion model parameters as well as the seg-
mentation into differently moving image areas are unknown. The only input
is a sparse set of samples of the image motion. The objective is to obtain
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4.3. Robust estimation algorithms 117

(a) Detected correspondences (outliers found by RANSAC are drawn in
white color).

(b) Motion field computed from all corre-
spondences.

(c) Motion field computed using inlier cor-
respondences only.

Figure 4.6: Example from the human sequence. The computed correspon-
dences are shown in (a). They are classified as either inliers
(black) or outliers (white) by a RANSAC algorithm. (b) shows
the result of fitting a projective motion model on the whole
data-set using a least-squares estimation with algebraic dis-
tance measure. (c) shows the result of using the same estima-
tion technique, but fitting only to the inlier correspondences.
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x’

x

Figure 4.7: Illustration of multiple motions. Each point represents the
motion of one feature-correspondence. Correspondences for
different motion models lie on different manifolds.

the model parameters for the dominant motion, i.e., the motion model that
has the largest support of input data. In practice, this dominant motion is
usually the camera motion.

The main difference to the last section is that we now have a mixture
of several motions with unknown parameters. For the one-dimensional
case, this is visualized in Figure 4.7. As mentioned earlier, we cannot
start with estimating motion parameters for one of the models, since the
partitioning into uniform motion areas is still unknown, and we also cannot
start with the partitioning until the motion model parameters are known.
This deadlock situation can be solved with robust estimation algorithms, of
which RANSAC (RANdom SAmple Consensus) [73] is the most prominent
one (other approaches [175, 183, 159] are described in Appendix C). The
idea is to repeatedly guess a set of model parameters using small subsets
of data that are drawn randomly from the input. The hope is to draw a
subset with samples that are part of the same motion model. After each
subset draw, the motion parameters for this subset are determined and the
amount of input data that is consistent with these parameters is counted.
The set of model parameters that has the largest support of input data is
considered to be the most dominant motion model visible in the image.

Introductory examples

Let us consider again the previous example of estimating a one-dimensional
perspective motion model. Since we have three free parameters, we also
need three input correspondences to determine one set of parameters. Con-
sequently, every draw from the input data must contain three samples.
From these samples, we can directly calculate the motion parameters. Now,
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(a) Non-fitting sample.
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Figure 4.8: Two steps of the RANSAC algorithm. A sample set of size
three is drawn to compute the parameters of a one-dimensional
perspective motion model. All input data that is close to the
model computed from the drawn samples is considered as in-
liers (black dots). Circles mark the outlier data.

basically two cases are possible. If we are unlucky, the samples will be drawn
from different motions (Figure 4.8(a)) and their support of inlier input data
(the data which is close to the computed motion model) is small. However,
if we draw the samples from a consistent motion (Figure 4.8(b)), the ob-
tained parameter set will have a larger support. To increase the probability
of finding a consistent set of samples, we have to repeat the random draw-
ing of subsets several times where the number depends on the fraction of
inlier data. Finally, we select the largest set of inliers and assume that it
mainly consists of data from only one motion model. Consequently, we can
now use a standard least-squares estimation on this inlier data to obtain
an accurate parameter set for the motion model.

RANSAC algorithm

Let us now describe the RANSAC algorithm for the special case of es-
timating the parameters of a two-dimensional perspective motion model.
We denote the set of correspondences, which we use as algorithm input,
by C = {pi ↔ p̂i}, and we further denote the Euclidean distance between
two points pi and pk as d(pi,pk). The RANSAC algorithm can then be
described with the following steps.

1. Draw a subset S of size |S| = 4 from C. Four correspondences are
required to solve for the eight free parameters of the motion model.

2. Compute the parameters {hjk} of the motion model H from the cor-
respondences in S using the linear system in Eq. (3.2).
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3. Determine the set of inliers I = {pi ↔ p̂i ∈ C | d(p̂i,Hpi) < ε} which
is the set of correspondences that comply with the motion model. In
other words, this means that we use the current set of parameters to
transform the features from the first image into the second and com-
pare this with the measured positions. If the distance is low, then the
pair of points is assumed to comply with the motion model, and it is
selected as an inlier.

4. Repeat Steps 1–3 several times (N) and choose the set of inliers for
which |I| is largest.

5. Perform a least-squares approximation of the motion parameters with
the set of inliers as described in Equation (4.10). The solution is the
result of the RANSAC algorithm.

The RANSAC algorithm has two parameters that have to be chosen
initially: the number of draws N and the inlier threshold ε. A good value for
the inlier threshold can be obtained from the evaluation of the feature-point
detector. The more accurate it can locate the features, the smaller ε can
be chosen. Section 3.2.5 showed that the number of found correspondences
by increasing ε saturates very quickly. Hence, we have chosen a small value
around 1.5 for ε, but the right selection of ε is not critical. If it is chosen
too low, some correct correspondences will be sorted out as outliers, but
usually the set of inliers is still large enough to estimate accurate model
parameters. If it is chosen too high, some outlier data will be included, but
since these outliers cannot differ much from the inliers (their error is below
ε), their influence in the least-squares approximation will be limited.

The required number of draws N primarily depends on the percentage
of outliers po we expect in the input, and it also depends on the maximum
probability for algorithm failure that is acceptable. This probability P that
the RANSAC algorithm will fail computes as

P (po, |S|, N) = ( 1− ( 1− po︸ ︷︷ ︸
percentage of inliers

)|S|

︸ ︷︷ ︸
probability to draw set of inliers︸ ︷︷ ︸

probability to draw set with at least one outlier

)N

︸ ︷︷ ︸
probability to get only outlier sets after all draws

, (4.18)

where |S| is the size of the subset to be drawn (four in our case). By
fixing a probability P (o, |S|, N) of algorithm failure, we can compute the
required number of draws N . Clearly, we can always increase N to be more
robust, however, this will also increase the required computation time. Let
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us assume as an example that we have an outlier percentage of 30%, then
only 20 draws would be enough to reduce the probability of algorithm
failure to 0.004. Since the inner loop of the RANSAC algorithm is not
very computationally expensive, we can even choose a larger number of
draws, like 50. Section 3.3.1 discussed that by using motion prediction, the
correspondences will lock to the camera motion and fewer correspondences
will be generated for foreground objects. This favourable effect can reduce
the number of outliers beforehand, so that the typical percentage of outliers
is even lower than in the example.

4.3.3 Robustness of the RANSAC algorithm

The RANSAC algorithm is a probabilistic technique that is not always
successful. However, by increasing the number of draws, the probability of
failure can be reduced to arbitrarily small values. Using Eq. (4.18) implies
that the number of draws N depends on the fraction of outliers po, the
sample subset size |S| and the maximum allowed probability of failure P .
For simplicity, we will abbreviate the probability that a non-fitting subset is
drawn by pf = 1−(1−po)|S| during the following discussion. Consequently,
to achieve a maximum error rate of not more than P , we need at least
N = log P/ log pf draws.

Robustness against outliers

To validate the theoretical derivation of the probability of success, we gen-
erated synthetic input data, consisting of a fraction pi of inlier correspon-
dences (motion vectors) that were consistent with a given motion model.
Furthermore, this set of data was contaminated with a fraction pn of ran-
dom motion vectors, and a fraction p2 of object motion vectors that are
consistent with a second motion model. In total, this gives an outlier frac-
tion of po = p2 + pn. We carried out a large number of random draws
and compared the obtained motion model with the predefined inlier model,
which gave us a measured probability p′f to draw a non-fitting subset. The
obtained p′f was very close to the theoretical value pf . The result did not
depend on the type of outlier (noise or secondary motion model). RANSAC
could also successfully find the correct motion model if pm > 50%. How-
ever, it should be noted that the fraction of secondary motion data must
be smaller than the fraction of inliers (p2 < pi), since otherwise the second
motion model is the dominant one.
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Difference between theory and practice

In a second set of experiments, we measured the robustness of the RANSAC
algorithm for noisy real-world data. We selected sequences for which the
correct motion model H? was previously computed using our complete
motion-estimation system. We computed feature-correspondences and clas-
sified them into inliers I? and outliers based on the precomputed accurate
motion model. This gave us the fraction of outliers po in our input data.
Afterwards, the RANSAC algorithm was executed with a large number of
subset draws. For each subset (not only for the best one), the refined mo-
tion model was computed as described in Step 5 of the RANSAC algorithm
and another set of inliers IR was determined based on the refined motion
model. If this set of inliers was equal for more than 90% to the set of inliers
I? obtained with the accurate motion model, the computed motion model
was considered to be correct. Note that a direct comparison between mo-
tion models is not possible because of small differences in the parameters.
The fraction p′f of incorrect motion models that we obtained in the sim-
ulation should approximately equal the theoretical fraction pf . However,
we noticed that the actual probability to draw a non-fitting subset is much
higher (see Table 4.2; compare columns theory vs. refinement steps=1). As
a consequence, an inaccurate motion model is often computed even if all of
the four correspondences in our subset are inliers. This effect will now be
further analyzed.

Dependency of the failure probability on the sample distances

In order to find the reason for this degraded performance, we marked the
randomly drawn subset and the obtained set of inliers in the input image
(see Fig. 4.12(b)). It can be seen that the inliers are spatially concentrated
with an almost clear border to the area with outliers. Moreover, it can also
be verified that the inlier area is larger if the points from the drawn subset
are spatially distant (Fig. 4.12(a)).

The reason for this behaviour are numerical instabilities that can be
easily visualized in the simpler one-dimensional affine case (Fig. 4.9). In
this case, a linear model is computed through two sample points. However,
the position of the sample points is distorted by some noise. This uncer-
tainty of the sample positions has a higher influence on the obtained model
parameters if the samples have a smaller distance. In our one-dimensional
case, this means that the slope of the model line will be inaccurate and
only a few points near the two samples will be classified as inliers.

To validate this explanation, we have further analyzed the dependency
between the probability of having found a successful set of parameters and
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x’

x

computed motion model

Figure 4.9: RANSAC for a linear estimation problem. Even though both
selected points are inliers, the model defined by these points
differs much from the optimum model. Inaccuracies in the
point positions have a large influence on the model if the points
are close together.

the distance between the samples from which the parameters were derived.
In order to show this dependency, we computed the total sample distance

ds =
1
2

∑
i,k∈{1,2,3,4}

d(psi ,psk
) (4.19)

for each selected subset {s1, s2, s3, s4} and plotted the measured probability
of failure p′f depending on ds. It can be observed (Fig. 4.10) that the
probability of failure indeed decreases with larger sample distances. On
the other hand, the estimation will almost certainly fail if the distances are
very small.

Improving RANSAC by equalizing the sample distribution

One possible solution (even though described for the related problem of
computing a fundamental matrix) has been proposed in [201]. The idea
is to disable the selection of samples which are too close by dividing the
image into a grid of rectangular buckets, similar to the technique described
in Section 3.3.1. Random samples are now obtained in two steps. First, a
bucket is randomly selected, followed by a random selection of a feature-
point within this bucket. Since the number of points in the buckets are
unequal, the selection is weighted by the number of points. To get spatially
distant samples, a bucket may only be chosen once in each iteration.

We do not follow this technique, since it favours the selection of distant
feature-points, but it cannot prevent that the position of the sample set is
degenerated. For example, all feature-points could lie in one line.
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Figure 4.10: Probability of generating an inaccurate motion model depend-
ing on the distance between the samples in the drawn subset.
The opera4 sequence is not included since the number of fea-
tures is very low and unequally distributed.

Improving RANSAC using iterative model refinement

As an alternative solution, we propose to keep the original random sam-
ple selection strategy, but to carry out the motion-parameter refinement
(Step 5) of the RANSAC algorithm several times. The idea is that the
initially obtained motion model is not always accurate, but it still includes
a considerable number of inliers. Each time the model parameters are
adapted to the newly obtained set of inliers, the number of inliers will
increase.

A sample result is shown in Figure 4.12(b)-(d), where the set of inliers
after each of the refinement steps is marked. It is clearly visible that the
area of inliers grows with each refinement step. The measured probabilities
of failure p′f for the improved algorithm are shown in Figure 4.11 and Ta-
ble 4.2. It is interesting to note that for a larger number of refinement steps
(≥ 3), the measured probabilities of failure are even below the theoretical
value. The reason for this is that some of the outlier correspondences are
very close to being classified as inliers. Consequently, even if one of these
almost-inliers is selected, the motion model still converges to the correct
model.

Because each additional refinement step might improve the final mo-
tion model, the probability of failure p′f decreases which also means that
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Figure 4.11: Probability of generating an inaccurate motion model depend-
ing on the distance between the four samples in the drawn
subset. The values are based on the rail sequence. The proba-
bility is drawn for different numbers of model refinement steps
(the original RANSAC uses a single step). Also shown is the
distribution of the sample distances as they were drawn ran-
domly from the image.

the number of required subset draws N can be reduced. On the other hand,
each refinement step requires some additional computation time. Hence,
the question arises what the optimum number of refinement steps is. Since
the most computational intensive step in the RANSAC algorithm is the sep-
aration of the samples into inliers and outliers, we count the total required
computation time in units of these classification steps to be performed. If
we denote the number of refinement steps as R, we get the total computa-
tion time C as

C = (R + 1) · dlog P/ log p′fe. (4.20)

After conducting experiments on several test-sequences, we could see that
three refinement steps resulted in the lowest computation time. Since the
probability of failure p′f for three refinement steps is usually close to or
smaller than the theoretically determined value pf , we can use the theoret-
ically computed number of iterations.
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(a) Good sample set (original RANSAC). (b) Degenerate sample set (after 1st refine-
ment = original RANSAC).

(c) Degenerate sample set (after 2nd refine-
ment).

(d) Degenerate sample set (after 3rd refine-
ment).

Figure 4.12: Examples for obtained sets of inliers (black color). (a) A good
sample set provides an accurate motion model. (b)-(d) A non-
fitting sample gives inaccurate motion parameters, but they
can be improved by additional refinement steps.

4.4 Summary

This chapter described the second half of the feature-based camera-motion
estimation. Whereas the previous chapter presented the computation of
feature-point correspondences, the current chapter explored the estimation
of motion parameters from feature-point correspondences.

First, we considered the parameter estimation for scenes in which only
camera motion is present. We found that a simple linear algorithm can be
used for affine motion models, but that non-linear optimization is required
for the projective motion model. However, a comparison between the non-
linear parameter estimation and a linear approximation showed that the
accuracy of the linear-approximation algorithm is comparable.

Afterwards, we extended the algorithm to differentiate between fore-
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Failure risk Refinement steps
P = 0.1% Theory 1 2 3 4 5

rail p′f 42.7% 66.9% 46.5% 36.9% 22.7% 17.9%
po = 13% N 8 18 9 7 5 4
roma p′f 14.6% 31.6% 13.7% 7.9% 6.1% 4.7%
po = 4% N 4 6 4 3 3 3
opera4 p′f 54.1% 62.3% 48.8% 42.0% 38.5% 36.3%
po = 18% N 12 15 10 8 8 7
nature2 p′f 31.7% 55.3% 32.8% 21.8% 17.0% 14.8%
po = 9% N 6 12 7 5 4 4

Table 4.2: Probability of degenerated subset draws for different number
of refinement steps. The original RANSAC algorithm corre-
sponds to refinement steps=1. Also shown is the number of
draws N that are needed to reach an algorithm failure rate
below 0.1%.

ground motion and background motion, such that the camera-motion pa-
rameters can also be estimated even when the camera motion is mixed
with object motion. We applied the RANSAC algorithm2 to detect the
dominant motion and to compute its model parameters. The RANSAC al-
gorithm is a probabilistic algorithm that succeeds only with a certain prob-
ability, which can be increased arbitrarily by carrying out more program
iterations. However, experiments showed that the probability of failure was
larger than predicted by a theoretical analysis. It was found that the rea-
son for the reduced performance are degenerate sets of samples, which lead
to numerical instabilities in the parameter estimation. We addressed this
problem by re-estimating the parameters based on the obtained inlier and
then recomputing the set of inliers for a small number of iterations. This
increases the set of inliers in each iteration such that the parameter estima-
tion is based on more input data, resulting in a more accurate estimation.
With this modification to the RANSAC algorithm, we could increase the
probability of success to reach or even exceed the theoretically predicted
performance.

Resulting algorithm flow-graph

The data-flow of the motion-parameter estimation is depicted in Figure 4.13.
It shows the RANSAC algorithm with an additional loop for the refinement
steps. The algorithm input is formed by the feature-point correspondences

2See Appendix C for a description of alternative algorithms.
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Figure 4.13: Estimation of motion parameters based on a RANSAC algo-
rithm. Depicted is only one iteration. The algorithm is re-
peated several times and the solution with the largest number
of inliers is selected.

that are extracted in the previous step (see Chapter 3). Four random sam-
ples are selected and a candidate motion model is computed from these
samples. All input correspondences are compared with this motion model
to separate them into an inlier set and the outliers. After this, refined
motion parameters are computed with a least-squares approximation on all
inliers. The last two steps, selection of inliers, and least-squares approx-
imation, is repeated three times to converge to a maximum coverage of
feature-points. This whole process is repeated several times, and only the
motion model that had the largest number of inliers is returned as result.

Experimental results

The camera-parameter estimator has been tested on many sequences that
were either recorded from regular DVB broadcasts, or recorded with a
camcorder. Additionally we also used some standard test sequences. The
algorithm proved to be very robust on most sequences. Problems only
arose if the video contained too few features in the background, or if it had
a very low contrast such that the feature-point extraction could not find
good features to track. In most cases, errors in the feature-based motion
estimator could be corrected in the direct motion estimator that will be
explained in the next chapter.

Some example results, in which both background and foreground mo-
tion are present, are depicted in Figure 4.14. In Figures 4.14(a) to (d),
surveillance-type scenes were recorded with a hand-held camera. In a real
application, this could be a remotely controlled pan-tilt-zoom camera in a
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surveillance system. Finally, Figures 4.14(e) and (f) show two scenes of the
stefan test sequence, one with a slow camera motion and one with a very
fast camera pan.

For the experiments, we selected the Harris algorithm to detect features,
the search-range of the feature-matching algorithm was set to 16 pixels
around the predicted feature position, and the RANSAC algorithm used
25 iterations with 3 refinement steps. All algorithm parameters were fixed
for all sequences. The pictures show the inlier (background motion) vectors
in black color and the outliers (foreground motion and erroneous vectors)
in white color.

The examples show that foreground motion and background motion are
well separated. In addition to the foreground motion, a small number of
outliers can be observed that result from bad feature-correspondences. An
interesting effect is visible in Fig. 4.14(f): the foreground object contains
almost no features. The reason is that the feature-correspondence algorithm
only searches for matching correspondences in a small neighborhood around
the predicted feature position. Since the feature positions are predicted
with the camera motion parameters, the predicted position is far away
from the object motion. Consequently, the algorithm does not find the
correspondences for the object motion. For our application, this is an
advantage because the number of outliers in the input for the RANSAC
algorithm is decreased.
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(a) Humans & bus. (b) Biker & tramway.

(c) Car & biker. (d) Car.

(e) Slow camera motion. (f) Fast camera motion.

Figure 4.14: Inliers (black) and outliers (white) as detected by the
RANSAC algorithm for different scenes with foreground ob-
jects. See Section 4.4 for more details about (f).
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