
Objekterkennung durch Vergleich von Texturen

Objekterkennung mittels Texturen (I)

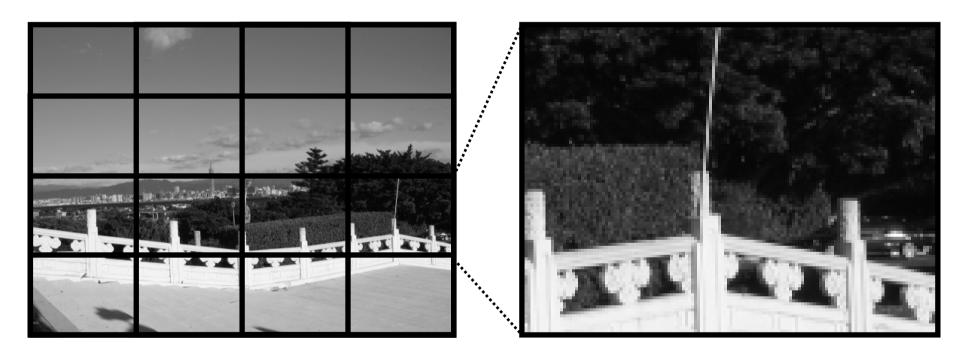
Textur:

- Visuelle Muster, die durch Farben bzw. Helligkeiten in einem Bild entstehen.
- Entstehen durch Reflektion des Lichtes an einer Oberfläche (Gras, Holz, Metall, Stoff, aber auch Wolken)
- Enthalten Informationen über die Struktur der Oberfläche

Objekterkennung mittels Texturen (II)

Homogener Texturdeskriptor

- Beschreibt Richtung, Unebenheit und Regelmäßigkeit einer Textur
- Gut geeignet zur Beschreibung homogener Flächen
- Die im Bild enthaltenen Frequenzen werden ermittelt und deren Durchschnitt und Standardabweichung wird berechnet.
- Invariant gegenüber Skalierung und Rotation

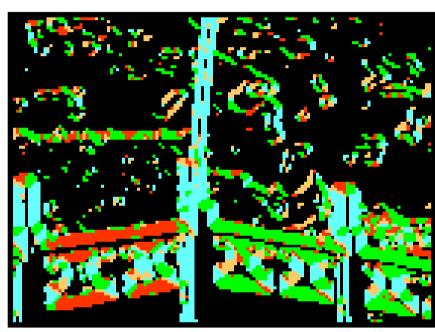

Objekterkennung mittels Texturen (III)

Kantenhistogramm (edge histogram)

- Beschreibt nicht-homogene Texturen
- Beschreibt lokale (in einem Bildbereich) Verteilung von Kanten
- Einteilung des Bildes in 16 gleichgroße Blöcke
- Berechnung von Kanten für jeden Block
- 5 Typen von Kanten: vertikal, horizontal, 45 Grad, 135 Grad, ungerichtet
- Speicherung der Werte in einem Histogramm für jeden Typ und jeden Block (5 x 16 = 80 Elemente)
- Skalierungsinvariant
- Bei einem Vergleich kann (muss aber nicht) die Rotation berücksichtigt werden.
- In MPEG-7 werden nur 3 Bits zur Beschreibung eines Histogrammelementes verwendet (insgesamt 240 Bits zur Beschreibung der Textur).

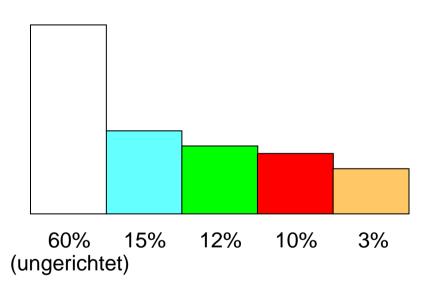
Objekterkennung mittels Texturen (IV)

Berechnung des Kantenhistogramms

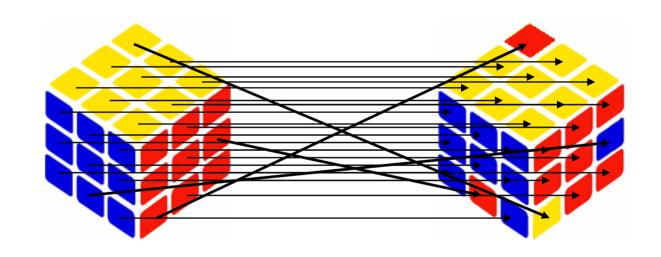


Einteilung des Bildes in 16 Regionen

Berechnung der Kanten für jede Region


Objekterkennung mittels Texturen (V)

Berechnung des Kantenhistogramms


0 Grad, 45 Grad, 90 Grad, 135 Grad

Berechnung des Kantenanstiegs

Berechnung der Histogramme

Objekterkennung durch Vergleich von Bewegungen

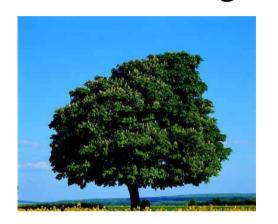
Objekterkennung durch Bewegungsanalyse (I)

Bewegungsaktivität (motion activity)

- Beschreibung der Bewegung in einem Videosegment
- Grobeinteilung in Kategorien:
 - langsam: Fernsehsprecher
 - schnell: Strassenscene
 - rasend: Fußball, Basketball
- Standardabweichung der Längen der Bewegungsvektoren
- Standardabweichung wird einer von 5 Kategorien zugeordnet
- Optionale Parameter:
 - Richtung der Bewegung
 - Bewegungsaktivität einer Bildregion
 - Zeitliche Dauer einer Bewegung

Objekterkennung durch Bewegungsanalyse (II)

Bewegungsbahn (motion trajectory)


- Beschreibung der Bewegung eines Bildbereiches in einem Videosegment
- Ähnlich wie Bewegungsaktivität, nur können mehrere Bewegungen beschrieben werden
- Beispiel: Verkehrsüberwachung
 - bei einer Verkehrsüberwachung wird für jedes einzelne Fahrzeug und jede Person im Bild eine Beschreibung der Bewegung gespeichert
 - Suchanfrage liefert Objekte in der Nähe
- Beispiel: Überwachung eines öffentlichen Platzes
 - Suchanfrage liefert Personen, die sich nach einem bestimmten Muster bewegen (z.B. sich langsam bewegen und plötzlich losrennen)

Zusammenfassung

- Modellbasierte Objekterkennung basiert auf dem Vergleich aus dem Bild extrahierter Merkmale mit einem Modell des gesuchten Objektes
- Die Wahl des Objektmodells orientiert sich an dem zu erkennenden Objekt sowie den zur Verfügung stehenden Daten.
- Erkennung von Objekten durch Vergleich von:
 - Konturen (Kompaktheit, Exzentrizität, Krümmungen)
 - Farben (Farbraum, menschliche Wahrnehmung, Histogramm, dominante Farbe)
 - Texturen (homogener Texturdeskriptor, Kantenhistogramm)
 - Bewegungen (Bewegungsaktivität, Bewegungsbahn)

Zusammenfassung

• Was wären gute Modelle für folgende Objekte?

Fragen?