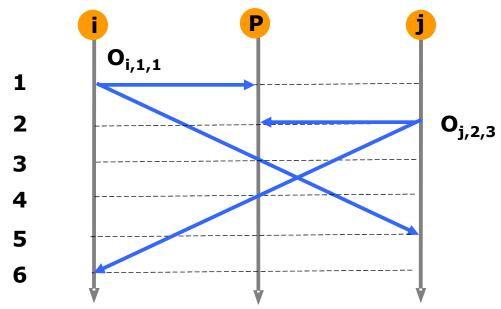
Computergestützte Gruppenarbeit

Übungsblatt 6


Dr. Jürgen Vogel

European Media Laboratory (EML) Heidelberg

SS 2006

Konsistenzkriterien

1) Verdeutlichen Sie sich die Bedeutung von Konsistenz und Korrektheit für kontinuierliche Groupware anhand folgender Abbildung: Für welche Zeiträume lassen sich Aussagen über die Konsistenz und Korrektheit von i und j treffen? P bezeichne die perfekte Instanz.

- 2) Geben Sie ein Beispiel dafür an, dass manche Verfahren zwar Konsistenz, aber nicht Korrektheit herstellen.
- 3) Sei \rightarrow die kausale und < die globale Ordnung. Gilt auch $O_i < O_j \Rightarrow O_i \rightarrow O_j$?

Soft State-Verfahren (1)

Implementieren Sie das in der Vorlesung besprochene Soft State-Verfahren anwendungsunabhängig in Pseudo-Code:

 verwenden Sie für die Verwaltung des Anwendungszustands die folgende Datenstruktur:

- schreiben Sie die folgenden Funktionen
 - setInterest(Integer id, Boolean active)
 Wird von der Anwendung aufgerufen, um das Objekt mit dem
 Identifizierer id aktiv/passiv zu setzen. Jede Instanz kündigt nur
 die Objekte an, die lokal aktiv sind.

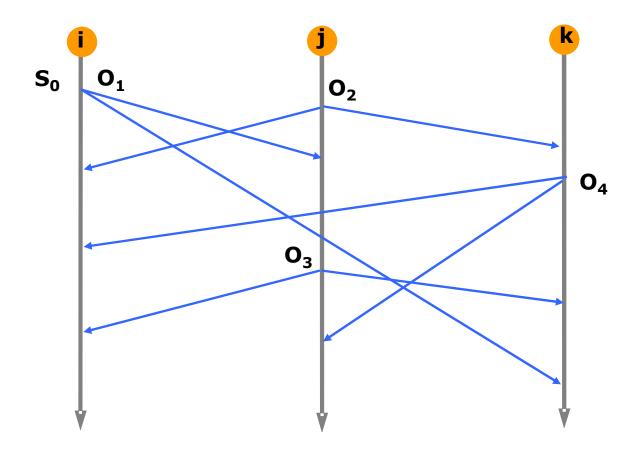
Soft State-Verfahren (2)

- changeData(Integer id, Binary data)
 Wird von der Anwendung zur Veränderung des Objekts id aufgerufen.
- update() Wird periodisch alle T Zeiteinheiten aufgerufen und versendet die lokalen Ankündigungen. Verwenden Sie zu diesem Zweck die Funktion send(Integer id).
- receive(Integer id, Binary data)
 Wird von der Netzwerkschnittstelle aufgerufen, wenn die
 Ankündigung einer entfernten Instanz zum Objekt id empfangen
 wurde.
- Objekte, die seit 5T nicht angekündigt wurden, sollen mit der Funktion delete(Integer id) gelöscht werden.
- Zum Abfragen der aktuellen Zeit können sie die Funktion gettime()
 verwenden.

66

Operations-Transformation (1)

In einer synchronen Sitzung bearbeiten drei Benutzer einen Text mit dem Anfangszustand S_0 = "ABCDEFGH". Die Kausalitätsüberprüfung soll per Zustandsvektor durchgeführt werden (SV_{S_0} = $\langle (i,0),(j,0),(k,0)\rangle \rangle$) und die Intentionserhaltung mit Operations-Tranformation. Die Instanzen-ID's haben folgenden Prioritäten: i < j < k.


Gegeben sei der folgende Zeitablauf mit den Operationen

- O₁ = "lösche von Index 2 bis Index 4"
- O_2 = "füge 'abcd' bei Index 4 ein"
- O_3 = "lösche von Index 5 bis Index 8"
- O_4 = "lösche von Index 6 bis Index 7"

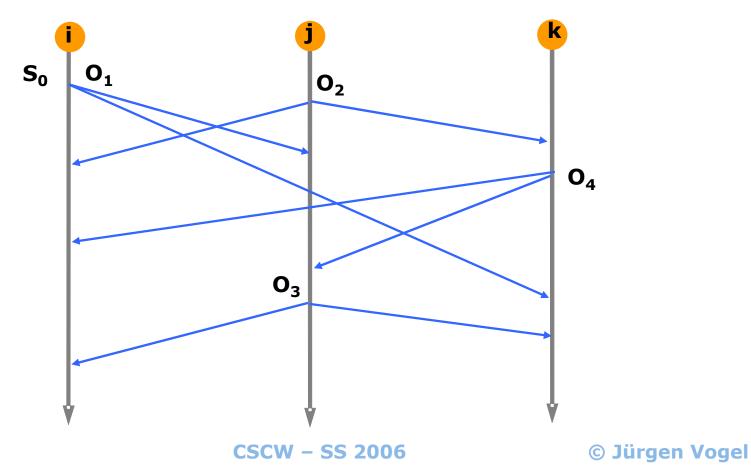
Bestimmen Sie

- die Zustandsvektoren aller Operationen und Zwischenzustände
- die Intention aller Operationen
- alle benötigten Transformationsschritte
- den Endzustand bei allen Instanzen

Operations-Transformation (2)

Objekt-Duplikation (1)

Klausur-Aufgabe vom SS 2005 – 13 Punkte


In einer synchronen Shared Whiteboard-Sitzung bearbeiten drei Benutzer i,j und k gemeinsam eine Folie. Um mögliche Inkonsistenzen zu behandeln, wird das Objektduplikations-Verfahren verwendet.

- 1) Gegeben sei eine Folge von Operationen GO. Erläutern Sie anschaulich (keine Formeln) die folgenden Begriffe: 2F
- Compatible Group (CG)
- Compatible Group Set (CGS)
- Maximum Compatible Group (MCG)
- Maximum Compatible Group Set (MCGS)

Objekt-Duplikation (2)

70

2) Gegeben sei das folgende Ablaufdiagramm. Zu Beginn seien alle Instanzen im Zustand S_0 mit Zustandsvektor $\langle (i,0),(j,0),(k,0)\rangle$. Bestimmen Sie zunächst alle Zustandsvektoren für die angegebenen Operationen. 2P

Objekt-Duplikation (3)

- 3) Es gelte O_1 O_4 und O_1 O_2 . Bestimmen Sie nun im angegebenen Ablaufdiagramm für jede Instanz (i,j und k) jeweils die MCGS durch schrittweise Anwendung des MOVIC-Algorithmus. 4P
- 4) Diskutieren Sie, inwieweit Objektduplikation für kontinuierliche Anwendungen eingesetzt werden kann. 3P