Ex. 9-1: Routing in General / Flooding

- a) Classify the following routing methods due to the schematics of the lecture.
 - i) Backward Learning
 - ii) Flooding
 - iii) Distance-Vector Routing
- b) You are programming flooding in a router. Each router *i* knows about its ID *i* and links $L = \{l_1, \ldots, l_N\}$. Assume that your development environment offers the hook procedure

packetReceived(NLPacket nlp, Link l),

i.e., this method is called on the reception of a packet p on link l. Also, you can use the procedures

GiveToLower(NLPacket nlp, Link 1) and GiveToUpper(ULPacket p).

- i) Define the minimum network layer packet data structure required for flooding. *HINT: You can use C/Java-style syntax to describe the data structure, e.g., the NLPacket payload would be NLPacket.payload.*
- ii) Implement the body of packetReceived(..)
- c) What is the Big-Oh complexity of the number of LL packets of your algorithm, when the network has *V* nodes and *E* edges, the average path is *L*_{*P*} hops and there are *U* sending requests of the upper layers?
- d) What additional information would be required to be able to additionally use backward learning and how could backward learning be integrated into your program?

Ex. 9-2: Routing Information Protocol (RIP)

- a) Which routing principle is used by RIP?
- b) Define the (minimalistic) packet format of a RIP-like protocol and describe the protocol using the data structure you have defined.
- c) The following figure depicts an examplary network with 5 nodes with the Routing Table entries given below. Explain (step by step) the evolution of these routing tables after the failure of link \overline{AB} .

Node A			
Destination	Link	Costs	
А	—	0	
В	\overline{AB}	1	
С	\overline{AC}	1	
D	AB	2	
E	\overline{AB}	2	

	No	Node B	
S	Destination	Link	
	A	AB	
	В	_	
	C	\overline{AB}	
	D	BD	
	E	BE	
_			

Node C				
Destination	Link	Costs		
А	\overline{AC}	1		
В	\overline{AC}	2		
С	_	0		
D	CE	2		
E	\overline{CE}	1		

Node D			
Destination	Link	Costs	
А	BD	2	
В	BD	1	
С	DE	2	
D	—	0	
E	\overline{DE}	1	

Node E				
Destination	Link	Costs		
А	BE	2		
В	BE	1		
С	CE	1		
D	DE	1		
E	—	0		

d) What is the Big-Oh complexity of the number of LL packets of the algorithm, when the network has V nodes and E edges, the average path is L_P hops and there are U sending requests of the upper layers?