Ex. 8-1: Selective Repeat

(see winter term 99/00) The transmission of a data frame (packet) with *n* bits shall happen via selective repeat, i.e., the recipient confirms each correctly received data frame by an acknowledgement (ACK) at once. If the recipient discovers a transmission error, he discards the packet. The sender waits a certain amount of time for the ACK and then repeats the transmission.

- 1. What is the probability that a packet is transmitted incorrectly and discarded by the recipient, if the probability of inverting one single bit is *p*?
- 2. How long is the time *t* for transmitting a single packet with *n* bits if the delay between sender and recipient is δ and the transmission rate is $r \left[\frac{\text{Bit}}{s}\right]$?
- 3. How long does the transmission of a packet take if only the second transmission is successful? What is the probability of this occurrence?
- 4. Let *T* be a random variable that measures the total time of a single packet transmission, i.e., the time it takes until a packet is received successfully. First, draw the probability tree that depicts the different sending cases. Then, compute the expected value E(T) of *T*.

Hints:

$$\sum_{i=0}^{\infty} q^{i} = \frac{1}{1-q} \qquad |q| < 1$$
$$\sum_{i=0}^{\infty} iq^{i} = \frac{1}{(1-q)^{2}} \qquad |q| < 1$$
$$E(T) = \sum_{\forall t \in \{T\}} tp(t)$$

where p(t) is the probability of t as an event of T.

Ex. 8-2: Wireless LAN

Consider the following situation in an 802.11 network:

- 1. In which mode of operation is this network in?
- 2. Why is the start of the back-off timers delayed by DIFS?
- 3. How is the back-off timer determined? Explain this considering station 1?
- 4. Why are collisions still possible? How does a station act after a collision occurs, particularly regarding its back-off time?

Ex. 8-3: Virtual Circuit vs. Datagram

Ex. 8-3.1: Example

Assume a packet-switched wired network with the following topology:

The maximum packet payload is 2'000 bytes. Unique node identifiers are 32 bits. The system can support up to 4096 connections. All nodes know the complete topology and route optimizing a shortest-path metric.

Describe a data transfer of 8'500 bytes from S to D. Also give the minimum packet size for every packet exchange. Do this both for a virtual-circuit and a datagram system.

Ex. 8-3.2: Questions

Which of the two implementation alternatives (virtual circuits vs. datagrams) is more advantageous considering the following criteria? Discuss!

Criteria	Virtual Circuit	Datagram
Complexity of connection establishment		
Complexity of addressing		
Complexity of routing		
Complexity of congestion control (transport layer)		
Complexity of order recovery (transport layer)		
Complexity within the routers		
Error-Proneness		

Ex. 8-3.3: Big-Oh Complexity

Compare virtual-circuit and datagram networks regarding the asymptotic complexity of and in Big-Oh notation. Assume the following input parameters:

- *C* : Number of connections
- V : Number of nodes (vertices)
- *E* : Number of links (edges)
- *L* : Average path length
- *P* : number of packets

Give the *O*() complexity of packet size, router computation cost, and router memory consumption.