rechmnermnetze & multimediatechni ik

Exercise Computer graphics — (till October 19, 2006)

Excursus on channel coding and gray-level approximation

Exercise 10:

A sender wants to transmit the following 32 bits

10110100 01011011 01010101 10110110

in four chunk-packets, each of which contains 8 bits. Both, sender and receiver

use the same random number generation which produces the following bit-stream:

1010 0101 1001 0111

For data transmission, the Random Linear Fountain Code from the lecture is

used.

Proceeding:

Sender
Side

Receiver
Side

- Divide the message into chunks.
Combine the chunks bit-wise according to the bit-merging
vector which is taken from the output of the random number
generator.

- Stop sending further chunks as soon as a sufficient number of
XORed chunks with linear independent merging vectors have been
sent.

- Store the incoming chunks until a sufficient number is received.
Sufficient means, that their merging vectors are linearly
independent. The merging vectors are taken from the output of
the random number generator as was done on the sender side.

- After having gathered enough data, calculate the modulo 2
inverse matrix of the matrix formed by the merging vectors.
- XOR the received chunks according to the inverse matrix.

©Thomas Haenselmann — Praktische Informatik 1V — Universitat Mannheim



rechmnermnetze & multimediatechni ik

Exercise Computer graphics

Bi-level display of gray-images

Exercise 11: (a) The following pattern is given for gray-level approximation:

16 5 6 7

15 4 1 8

14 3 2 9

13 12 11 10
A tiny image of 2x2 pixels is to be rendered using the above
pattern. However, it is allowed to increase the resolution of the
result by the factor of 4 for every side resulting in an output
image of 8x8. Which pixels will be set in the output?

1 8

12 4

©Thomas Haenselmann — Praktische Informatik 1V — Universitat Mannheim



rechmnermnetze & multimediatechni ik

Exercise Computer graphics

Bi-level display of gray-images

Exercise 11: (b) This time the 8x4 image below is to be rendered using the
same pattern as before. However, the image size of
8x4 should be preserved using the modulo-technique. The rule is
that a pixel will be set if the value in the pattern is smaller or
equal to the gray level which should be displayed.

Hint:

In the modulo-version of the black & white rendering approach, we first calculate the modulo of both
the x- and the y-coordinate of a pixel. The result then addresses a grid in the pattern. We actually set
the pixel only, if the value within the grid is smaller or equal to the gray-value to be rendered.

Example: We want to render gray value 11 of pixel (6, 3) [first cell is (0,0)]. The corresponding grid-cell
in the pattern is (6 % 4, 3 % 4) = (2, 3). The grid-cell (2, 3) of the pattern is 11. Since 11 <= 11 we set

©Thomas Haenselmann — Praktische Informatik 1V — Universitat Mannheim

the pixel.
Image: Solution should look like this:
10 4 12 1210 6 3 7 2 72 2 2 2 2 2 9 . .
10 512 12 6 15 9 11 2 72 2 2 2 2 9 P!X€]56t=‘
8 912 12 12 4 10 15 2 % 92 92 92 92 92 9 pixel clear = .
910 1 0 1 511 1 2 2 7 72 2 7 % 0 fill out yourself = ?
Pattern:
16 5 6 7
15 4 1 8
14 3 2 9
13 12 11 10



rechmnermnetze & multimediatechni ik

Exercise Computer graphics

Bi-level display of gray-images

Exercise 11: (c) In exercise (a), a gray-value to be rendered was blown up by a
factor according to the pattern. It is easy to imagine that this does
not alter the mean gray value of the B/W image as compared to
the original gray image.

Can you explain why this also holds true for exercise (b)? What
would you object if someone said, that it is a matter of
coincidence whether black or white is set because it mainly
depends on the outcome of the modulo operation.

©Thomas Haenselmann — Praktische Informatik 1V — Universitat Mannheim



