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1 Motivation and Overview

This paper gives an overview of Indoor Positioning Systems based on Wireless
LAN. Different techniques, used by three different positioning systems, are de-
scribed and compared with respect to their contribution to the robustness and
accuracy of the resulting position.

1.1 Motivation

The increasing distribution of mobile devices leads to a higher demand for the so
called location based services (LBS). LBS are a subset of context aware services.
The context aware services use the context of a user to provide the service.
Within this category are the personalized services in e-commerce, like the ama-
zon book suggestions based on the buyers interests or last buys, but also dating
platforms for people or peronalized newsletters.
LBS as special context aware services provide information using the spatial
context of the user, for example in a car navigation system, an electronic tourist
guide or an emergency system. In general, a lot of locations based services give
answer to questions like “Where am I?” or “Where is the next cinema, phone cell,
gas station?” and so on. Often, more than one context is used, leading to more
complex applications pointing a person to persons with the same interests in
her environment or to a cinema, which is not only open, but where also a movie
starts within 15 minutes that perfectly meets the users flavour. An overview
on LBS can be found in [Küpper, 2005] and [Schiller and Voisard, 2004], for
example.
A LBS depends heavily on the underlying positioning system, that determines
the current location of the user. There are dedicated positioning systems like the
Global Positioning System (GPS) or the upcoming European positioning system
Galileo (planned start: 2010) [Wikipedia, 2005a]. They calculate the position
of the user with an accuracy of about twenty meters [Wikipedia, 2005b]. The
main drawback of these systems is their dependence on a line-of-sight to the
satellites, so they are typically not usable for indoor positioning.
A different approach is the localization of a user via her mobile phone in the
GSM/UMTS net. This localization is mainly based on the currently used base
station. This simple approach with an accuracy of about 200 meters in cities
down to three to four kilometers in rural areas can be approved by several
techniques to an accuracy of up to 50 meters. This is enough for most outdoor
applications (like guiding you to the next cinema near you), but in many cases
not enough for indoor applications (like guiding you to a book in a library).
There are special positioning systems for indoor purposes, based on Infrared,
Ultrasound or RFID. A short overview with references to further readings can
be found at [Küpper, 2005, p. 241 ff.]. All of these systems require installations
in the building and special devices weared by the users.
The increasing proliferation of wireless local area networks (Wireless LAN) lead
to the development of positioning systems that solely use the existing data



provided in a Wireless LAN to determine the position of a user. There is no
need for additional installations if a Wireless LAN infrastructrure already exists
(thats the case in more and more company and public buildings). Moreover,
a lot of mobile devices like notebooks, Personal Digital Assistants (PDAs) and
smart phones have built-in support for Wireless LANs. The accuracy of Wireless
LAN based systems is in general not as high as the accuracy of dedicated indoor
positioing systems based on Infrared or Ultrasound, but it is high enough for a
lot of applications.
One of the most important facts of Wireless LAN based positioning is that the
user is already connected to a Wireless LAN. Location based services typically
need a communication infrastructure to provide the user with information. In a
Wireless LAN environment you can use the same infrastructure for positioning
and communication.

1.2 Overview

This paper gives an overview of Wireless LAN based indoor positioning sys-
tems. In Section 2, we give a short introduction to location based services and
positioning systems as part of LBS. We also mention the technical basics of po-
sitioning systems, as far as they are related to Wireless LAN based positioning.
At last, we provide you with a rough understanding of the technical background
of Wireless LANs and the common techniques used by the different positioning
systems. These systems are presented in Section 3. We focus on the similarities
and differences of the presented systems and how they performed in the tests.
Finally we have a look at some applications and other systems beyond the direct
scope of this paper in Section 4.

2 Basics

With this section, we describe some common aspects of positioning systems and
Wireless LANs.

2.1 Positioning Systems

To use the spatial context of a user, the LBS needs information about the
current position of the user. Their are a lot of positioning systems to determine
the absolute position of a user to a certain degree, but as mentioned in Section
1.1, especially for indoor purposes most of them are not suitable. On the other
side, there is no need for an absolute positioning for some applications. The
NearMe Project described in Section 4 is an example of such an approach.
The focus of this paper lies on positioning systems providing an absolute position
estimation. To gain an absolute position, there are three basic approaches:



(a) Triangulation (b) Trilateration, Source: [Wikipedia, 2005c]

Figure 1: Triangulation can be used, if two locations are known together with
the angles of each line-of-sight to a reference direction (usually north). With Tri-
lateration, a position is determined by three distances to three known locations.

Triangulation, Figure 1(a). Triangulation is used, if the angles to known
locations are given. With two known locations, the absolute position in 2D can
be determined. This approach is also known as cross bearing in the nautic.
The two angles are used to determine the line-of-sights to each of the known
locations. With the position of the locations, these lines are unique in the
two-dimensional space and intersect in the desired position.

Trilateration, Figure 1(b). If the distance to three known locations is
known, the absolute position in 2D can be determined by the section of the
three circles around these locations.
Often, combinations of angulation and lateration are used. In a GSM environ-
ment for example, the angle and the distance of the mobile phone according to
the base station can roughly be estimated. This is used to increase the accuracy
of positioning compared to just using the associated base station as location
estimate.

Fingerprinting. With fingerprinting, the location is estimated by comparing
some observations at the current location with observations in a database. Com-
pared to the former two approaches, this requires a lot more prior knowledge
about the environment. Fingerprinting is the most natural way of a localization
for a human being, for example in the case of a localization by room numbers
that you compare with a building plan, by reading signs in a city and matching
them to a city map or just by looking at a front side of a house and trying to



remember, where you have seen this house last time. From the computational
point of view, using fingerprinting for localization is similar to face recognition.
So most of pattern recognition approaches can be used for this purpose.

2.2 Wireless LAN

Generally, if we talk about Wireless LANs, we talk about the IEEE 802.11
standards group [IEEE, 2005]. Today, the most widely used standards are IEEE
802.11b and IEEE 802.11g. The IEEE 802.11b standard provides a maximum
raw data rate of 11MBit/s. The newer IEEE 802.11g standard is backwards
compatible with IEEE 802.11b and provides a maximum raw data rate of 54
MBit/s. Both standards use an adaptive rate selection, so the maximum data
rate scales back to 48, 36, 24, 18, 12, 9 and 6 MBit/s in an IEEE 802.11g
network and to 5.5, 2 and 1 MBit/s in IEEE802.11b networks.
A Wireless LAN uses the ISM band at 2.4 GHz (ISM: free for industrial (I),
scientific (S) and medical (M) use). The 802.11 standard describes 14 overlap-
ping channels whose center frequencies are 5 MHz apart from the next channels.
Depending on national differences, a subset of these channels are actually used,
for example channels 1 to 11 in the USA and 1 to 13 in Europe.
Wireless LAN clients can communicate in two modes, the infrastructure mode
and the ad-hoc mode. The ad-hoc mode can be used to establish a Wireless
LAN without a dedicated access point.

Infrastructure mode. In infrastructure mode the clients communicate with
an access point (AP) in a point-to-multipoint configuration. To determine the
AP to use, a client sends a ProbeRequest packet over every channel and checks for
ProbeResponse packets from one or more APs. Both client and AP measure the
signal strength (s) and the signal-to-noise ratio (SNR) of every transmission.
The client simply associates with the AP providing the best s and SNR.

The signal strength and signal-to-noise ratio. The measured s and SNR
can be obtained from the hardware device driver of a Wireless LAN client. s is
reported in units of dBm, the signal level according to a signal power of 1 mW:

s mW ≡ 10 log10 s dBm (1)

The SNR is expressed in dB and a signal power of s mW and a noise power of
n mW gives us a SNR of

SNR = 10 log10

( s

n

)
dB (2)

According to [Haeberlen et al., 2004, p. 3], the process of probing each channel
and measuring the s and SNR of each AP takes about 1.6 seconds (see Section
3.2.5 for the used hardware).



Figure 2: General setup of a Wireless LAN positioning system

The described positioning systems rely on the signal strength s of the communi-
cation between the AP and the client. The SNR is not suitable for positioning
purposes; according to [Bahl and Padmanabhan, 2000], it is impacted by ran-
dom fluctuations in the noise process.

2.3 Wireless LAN Positioning

In this section, we introduce the mathematical model and notation we use
troughout the paper. Furthermore, we describe some common aspects of Wire-
less LAN positioning and have a look at some properties of the signal strength
of a Wireless LAN communication.

2.3.1 General Setup

Generally, a Wireless LAN positioning system consists a number of access points
and a server forming the infrastructure and one ore more clients (Figure 2).
To calculate the position of the client, the signal strength between the client
and all reachable access points are required. This data acquisition can be done
by the client or within the infrastructure (if the signal strength information is
obtainable from the APs).
Normally a server is required. It can be used to actually calculate the positions
of the clients (which is refered to as an infrastructure based setup) or at least to
provide some data as prior knowledge for the clients (like positions of the APs
or known signal strengths for given locations), if the position is calculated by
the clients themselves (which is refered to as client based setup).
The client can communicate via the Wireless LAN with the server, either to
obtain its position or the training data or to provide its measures of the signal
strength in an infrastructure based setup.



2.3.2 The mathematical model

The mathematical description in the different papers was unified in this overview.
Throughout this paper, we assume the following mathematical model:
Generally, the localization is done by the analysis of samples of the signal
strength of the APs in communication range to an mobile device. If we have n
APs in our setup, this reads

sT = (s1, . . . , sn). (3)

All vectors s belong to the n-dimensional signal space S. On the other side, we
have the two- or three-dimensional physical space X with locations x ∈ X as

xT = (x1, x2). (4)

X can be three-dimensional with xT = (x1, x2, x3) if we want to determine a
location in three dimensions, like in a multistorey building.
The localization process L itself can then be seen as

x = L(s). (5)

2.3.3 Common aspects

Proximity sensing. Proximity sensing is the simplest Wireless LAN posi-
tioning system. It uses only the associated AP as information and estimates the
position of the client as the position of the AP. The accuracy is as low as the
range of an AP, typically between 10 and 300 meters depending on the obstacles
between the AP and the client. Despite the simplicity of this approach, their
are a lot of applications that need not more accuracy than this (the GUIDE
project for example, mentioned in Section 4).

Symmetry of AP to client communication. Wireless LAN positioning
systems can calculate the position on the clients using data obtained by the client
or the position can be calculated on an external system (in the infrastructure)
using data obtained by the APs. However, [Bahl and Padmanabhan, 2000, p.
2] mentioned, that this decision has no impact on the accuracy of user location
and tracking; their tests showed only litte asymmetry within the precision of
measurements at both ends. [Ekahau, Inc., 2002, p. 2] prefers measuring on
the client side. They argue that the signals of the APs are stronger and more
consistent as the APs are hooked up to an electricity outlet.

The multipath problem. An RF signal in an indoor environment is always
influenced by reflections, diffraction and scattering caused by obstacles within
buildings. So in general, the signal reaches the receiver via several paths, which
is refered to as the multipath problem. The multipath problem is one reason, why
a triangulation or trilateration with Wireless LAN signals is almost impossible.



Aliasing. Another problem for Wireless LAN positioning is aliasing. Alias-
ing means, that there are several distinct locations receiving the same signal
strength of an AP. Even worse, due to variations in the signal strength caused
by obstacles, the two locations need not to be in the same distance to the AP.
This partly explains, why a trilateration of the position via the signal strength
leads not to an accurate estimate.

2.3.4 Installation Costs

The installation costs of such a positioning system are in general not as much
as for other positioning systems, assuming that there already is a Wireless LAN
installation. To get a high accuracy, the APs should overlap so that at every
position at least two APs are reachable. But this is prefered for a stable network
communication, anyway. Under certain conditions, it could be reasonable to
place additional APs just to increase the positioning accuracy, see Figure 8.
Every Wireless LAN compatible client should be usable for positioning. How-
ever, for a client based setup, the clients need to be able to run a client software
to calculate their positions. Most PDAs and of course every notebook should
fulfill these requirements.
In the infrastructure, a server is needed, either to provide the training data
for the clients or to perform the actual positioning. The needed performance
depends on the number of clients and if the server is dedicated for positioning,
instead of being used for additional (location-based) services.

2.3.5 Infrastructure vs. Client

As mentioned in the last section, we distinguish between infrastructure based
and client based setups. The techniques proposed in this paper can be used to
calculate the position within the former or the latter. As the measured signal
strength is symmetric between the client and the AP, this decision depends only
on application requirements. As we will see in the next sections, a client based
setup is preferable with respect to anonymity and scalability. But if the clients
are not capable performing the calculations for positioning or if the tracking
of clients without their knowledge is specially required, an infrastructure based
setup is needed.

2.3.6 Anonymity

In an anonymous system, the client can obtain its position without knowledge
of the system. GPS, for example, is such an anonymous system. The anonymity
of a Wireless LAN based positioning system depends on the general setup. An
infrastructure based system provides no anonymity, as the position is calculated
by a central server in the infrastructure.
With a client based setup, the position is calculated on the client side and is
not known by the infrastructure. However, a client cannot be anonymous if



(a) An example of the normalized signal
strength histogram from an access point.

(b) An example of the autocorrelation be-
tween samples from an access point (one
sample per second). The subfigure shows
the autocorrelation for the first 10 seconds.

Figure 3: Characteristics of the signal strength. [Youssef and Agrawala, 2005]

it uses the Wireless LAN, as at least the used MAC address of this client is
known in this case. In the setups mentioned in this paper, the client needs the
communication with the infrastructure, at least to receive the training data.
Furthermore, the infrastructure could calculate the position of the client on its
own and without knowledge of the client. So in general it is possible to track a
client in a Wireless LAN without its knowledge.

2.3.7 Scalability

Scalability is an issue in Wireless LAN positioning systems. Apart from the
general scalability of Wireless LANs, in an infrastructure based setup, the scal-
ability depends on the performance of the server that calculates the position.
With respect to this, a client based setup should be prefered. But the distribu-
tion of the training data still restricts the scalability and needs a sophisticated
approach like incremental updates or peer to peer distributions.

2.3.8 The Signal Strength

The signal strength is the only information we get from the APs that is usable
for the localization process. This section mentions some of the characteristics
of the signal strength:

Variations over time. As the histogram in Figure 3 shows, the signal strength
of a stationary client has significant variations over time.
Further, [Youssef and Agrawala, 2005] showed, that consecutive samples of the
signal strength are strongly autocorrelated. So within a short time period, the
signal strength remains more or less constant.



Figure 4: Signal strength of three access points recorded as the user walks
around. [Bahl and Padmanabhan, 2000]

(a) Large-scale variations: Average signal
strength over distance.

(b) Small-scale variations: Signal strength
contours from an AP in 30.4 cm by 53.3
cm area.

Figure 5: Spatial variations of the signal strength. [Youssef and Agrawala, 2005]

Spatial variations. The authors of the RADAR system recorded the signal
strength of three AP while walking around a floor. As Figure 4 shows, the signal
strength of the APs rises and falls with the distance of the client.
These large-scale variations are very usable for the localization process. Figure
5 (a) shows a more detailed example for those. Another type of variations are
the small-scale variations. Unfortunatly, the signal-strength varies significantly,
if the client is moved within centimeters (Figure 5, b). These variations are
caused by movements within the wave-length of the Wireless LAN signals (12.5
cm) and by the multipath problem. Handling these variations is one of the
challenges in Wireless LAN positioning.

3 Wireless LAN based Positioning Systems

After the common introduction to Wireless LAN positioning, the following main
section of the papers describes three positoning systems in a greater detail. In



a modular way every technique is presented and shortly described that is used
by these systems to overcome the difficulties induced by the variations of the
signal strength.

3.1 RADAR

The RADAR positioning system proposed in [Bahl and Padmanabhan, 2000]
uses measurements s obtained from the APs. A set of samples is collected during
the localization process. For the analysis, only the mean sT = (s1, . . . , sn) is
used. For constant user tracking, the sample set consists of the samples obtained
in a slinding time window. For localization a nearest neighbour search in the
signal space S is used. So the signal space needs to be filled with reference
locations. Two approches are presented: an empirical method based on a set of
training data and the usage of a signal propagation model.

3.1.1 Empirical method

The training data consists of timestamped measurements s merged with times-
tamped positions recorded with the clients at 70 different locations. The authors
face the problem of variations of s with the orientation of the client by explicitly
recording the orientation (as 1 out of 4) for each training sample. For the anal-
ysis a random sample out of the training set is selected and used as input for
the nearest neighbour search in the rest of the training data, but without the
samples obtained at the same location as the input sample. Two modifications
of this method were tested among other modifications of the setup like reduction
of the samples:

1. Max Signal Strength Across Orientations: The signal space is con-
densed in the following way: At each location, the mean s for each ori-
entation is calculated and with this four cumulated samples a resulting
sample is constructed containg the maximum signal strength of each AP:
sT = (max(s1), . . . ,max(sn)).

2. Multiple Nearest Neighbour: Insted of using the nearest neighbour,
the location is determined by averaging the locations of k nearest neigh-
bours in the signal space.

3. Continuous User Tracking: In [Bahl et al., 2000] the authors describe
this modification. Based on the constraint, that the client cannot move
over a long distance in the physical space within a short time, they de-
scribe an algorithm similar to the Viterbi algorithm [Wikipedia, 2005d].
A history of k nearest neighbour sets in signal space is saved over a sliding
window of h samples. Whenever a new sample is obtained, the history is
updated and the shortest path between the sets in the history is calcu-
lated, linking the locations of each set with the shortest euclidean distance
(Figure 6). This path can be viewed as the “most likely” trajectory of the
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Figure 6: The Viterbi-like algoritm. The vertices are the k nearest neighbours
in the h sets in the history. The edges are weighted with the Euclidean distance
of the vertices in physical space. Then, the shortes path is determined (shown
in bold).

client. The location of the client is associated with the start of the path.
As a drawback, this modification leads to a higher latency of h signal
strength samples in the localization process.

4. Environmental Profiling: This is another enhancement described by
[Bahl et al., 2000]. The signal strength varies with changes in the envi-
ronment, for example with the number of people in a building. With
environmental profiling, the RADAR system chooses one out of a number
of training sets that has the best fit for the current environmental situa-
tion. This is done by localizing the APs itself using the signal strengths of
the other APs. As the position of the APs is known, the training set can
be determined, that currently provides the best localization. The profil-
ing process runs constantly with the mean signal strengths measured in a
sliding time window.

3.1.2 Signal propagation model

To avoid the necessarity for the time consuming training phase, the authors also
tested their system with a signal propagation model. With this mathematical
model they generated a set of theoretically-computed signal strength data akin
to the empirical training set.
The used model is an adapted version of the Floor Attenuation Factor propaga-
tion model suggested by [Seidel and Rappaport, 1992]. The authors disregarded
the effect of the floors and instead considered the effects of the walls between
the transmitter and the receiver. The Wall Attenuation Factor (WAF) model
is described by

s = s0 − 10r log
(

d

d0

)
−

{
w ·W w < wmax

wmax ·W w ≥ wmax

(6)

where r indicates the rate at which the signal loss increases with distance, s0 is
the signal strength at some reference distance d0 to the AP and d is the distance



between the client and the AP. w indicates the number of walls between the
client and the AP, wmax is the maximum number of walls up to which the wall
attenuation factor W makes a difference.
The factors r, wmax and W have to be derived empirically. To compute the
signal strength data for a given location, the authors determined the number of
intervening walls using the Cohen-Sutherland algorithm [Foley et al., 1990].

3.1.3 Results

The median resolution of the RADAR system is in the range of 2 to 3 meters
for the empirical method and around 5 meters, if the signal propagation model
is used.
The empirical method is impacted by the number of locations in the training set
(significant decrease in accuracy if less than 40 locations are used), the number
of samples used for the analysis (no significant loss in accuracy, if more than two
samples are used) and the orientation of the client compared to the orientation
during the traing phase (in the worst-case, if the training set contains only
samples of opposite orientations, the median resolution decreases to around 5
meters, which is 67% worse).
The use of the maximum s across orientations lead to a 9% increased resolution.
The only use of the multiple nearest neighbour approach did not improve the re-
sults significantly. But in combination with the maximum s across orientations,
a significant enhancement of 28% could be achieved. This is due to the fact that
in this case, the k nearest neighbours in signal space necessarily correspond to
k physically distinct locations.
If the client is mobile and needs to be tracked instead of locating a stationary
client, the median resolution decreases to 3.5 meters, about 19% worse than
that for a stationary user.
In [Bahl et al., 2000], the authors show, that the resolution cannot be increased
by the use of more than three APs, at least with the nearest neighbour approach.
The continuous user tracking improves the median resolution significantly by
29%. With this approach, a mobile client could be tracked with an median
error distance of 2.37 meters.
The environmental profiling leads to a significant enhancement of accuracy in
environments, where the signal strengths vary strongly over time.

3.1.4 Experimental Setup

The RADAR System as described in [Bahl and Padmanabhan, 2000] is based
on the proprietary WaveLAN RF technology by Lucent. It also uses the ISM
band at 2.4 GHz and is very similar to the IEEE 802.11 standards with respect
to the Wireless LAN architecture and the used protocols. So the results are
comparable to the other systems.



• Access Points:

– Pentium-based PC, FreeBSD 3.0 (3 exemplars)
– Digital RoamAbout NIC, based on Lucent WaveLAN RF

• Client: Pentium-based laptop, Windows 95

• Environment: Second floor of a 3-storey building, 972m2, 70 locations
in the training phase.

In [Bahl et al., 2000] the authors present some enhancements to the RADAR
system. In this paper, they use an IEEE 802.11b setup:

• Access Points: Aeronet AP4800 (5 exemplars)

• Client: Aeronet PC4800 Wireless LAN cards

• Environment: Second floor of a 4-storey building, 935m2.

3.2 Rice

[Haeberlen et al., 2004] present their positioning system that has been deployed
for testing in the Duncan Hall at Rice University (Houston, Texas). It is not
named in a special way, so we refer to it as Rice system for convenience.

3.2.1 Markov localization

The Rice system uses a probabilistic approach. Using the Bayes Rule, the con-
ditional probability P (x|s) of a location x for a given sample s can be expressed
as

P (x|s) =
P (s|x)P (x)

P (s)
(7)

with the conditional probability P (s|x) of obtaining a sample s at location x
and the a-priori probability P (x) of location x. P (s) is a normalizing constant.
The Rice system uses a constant localization system, in which the unknown
a-priori probability is set to the probability of the last estimate. The authors
refer to this approach as Markov localization.

Topological model. Compared to an absolute positioning in a coordinate
system or the positioning in a fine grained grid, like with the RADAR system,
the Rice system uses a topological model of the building. The authors divided
the whole building in cells. Most office rooms consisted of one cell, only the
hallways and large rooms were devided into multiple cells, each in the size of
about a normal office room.
As a consequence, the system is not as accurate according to the actual position
of a client, but for a lot of applications, the determination of the current room
is sufficient.



Figure 7: The floor plan for part of Duncan Hall and the corresponding Markov
chain. [Haeberlen et al., 2004]

Gaussian fit sensor model. For each cell in the topological model, the au-
thors store only the mean µi and the standard deviation σi of the various samples
of an AP i taken in the training phase. The probability P (si = j|x) for a sig-
nal strength of a single AP i and a discrete value j between 0 and 255 can be
calculated as

P (si = j|x) =
G(si) + β

N
(8)

with the discretization G of a Gaussian probability distribution

G(si) =
∫ si+1/2

si−1/2

e−(x−µi)/(2σ2
i )

σi

√
2π

dx (9)

and a small constant β and a normalizer N that ensures that
∑255

j=0 P (si =
j|x) = 1. In the performed tests the authors compare this sensor model to the
conventional sensor model, where each sample s during the training phase is
stored and used for the calculation of P (si|x). They refer to this model as the
Histogram sensor model.

3.2.2 Tracking with Markov Chains

While the Markov localization works well for stationary clients, the use of the
last position estimation as a-priori probability harms the accuracy for a mobile
client with continuously changing position. The authors describe a solution,
with which the position estimate between each set of measurements is updated
using a Markov chain that encodes assumptions about how the client can move
from cell to cell. The Markov chain can be thought of as a finite-state-machine
(Figure 7).



3.2.3 Calibration

The Rice system uses calibration to cope with variations in the measured signal
strength due to changing environment and, very important, different hardware.
The authors observed that these variations can be described by a linear trans-
formation

C(s) = c1s− c2. (10)

The determination of the two parameters c1 and c2 can be done in a manual,
quasi-automatic and automatic way. With manual calibration the user has
to specifiy the current cell and the system tries to estimate the parameters.
Quasi-automatic calibration uses the fact, that the normalizing constant P (s)
in Equation 7 remains very low for all cells, if a wrong calibration function is
used. The automatic calibration proposed by the authors is not as robust as
manual or quasi-automatic calibration. It uses an expectation-maximization
algorithm, but also a Monte-Carlo approach is mentioned that could lead to a
more robust calibration.

3.2.4 Results

The tests were performed with with subsets of the training data, like with the
RADAR system. The authors took at least 100 measures in each of the 510
cells, thus they had a training set of about 50.000 samples.
The Gaussian sensor model lead to a correct localization in over 97% of the
trials, the histogram method in over 95% of the trials. While these results seem
comparable, the Gaussian method performed better in “pathological” cases,
typically returning a cell that is “off-by-one” from the correct location.
To achive an accuracy of 90%, the Gaussian system needs 2 samples, with the
Histogram method, 3 samples are needed. Tests with the size of the training set
show, that the Gaussian model needs only around half the size of the training
set as the Histogram method.
The AP density could be reduced to 17 APs and still the Gaussian system
can detect the correct cell in over 90% of the trials. The Histogram method
performed in a comparable way, but again a little weaker than the Gaussian
system.
The tracking with hidden markov-models lead to a correct localization in 71%
of the trials at a speed of 4m/s. In 79% the correct cell or the previous cell was
chosen (lag), and in 86% the correct cell or an adjacent cell was chosen.
The calibration was tested with a time-varying environment. Due to the vari-
ations, less than 70% of the localization were correct. This could significantly
be improved by calibration to 88%.

3.2.5 Experimental Setup

• Access Points: Cisco Aironet 1200 Series with 802.11a/b (27 exemplars)
+ 6 other APs in adjacent buildings



• Clients:

– D-Link AirPlus DWL-650+ Wireless LAN PCMCIA cards with TI
ACX100 chipset

– Dell Latitude X200 laptop, Linux 2.4.25 kernel

– IBM Thinkpad T40p, Linux 2.4.20 kernel

– Driver: ACX100 (http://acx100.sourceforge.net). The driver was
modified for stability. The code that handles the AP scanning was
optimized to reduce the required scanning time.

• Environment: A 3-storey building with complex geometry, 135, 178m2,
divided in 510 cells.

3.3 Horus

The Horus Wireless LAN Location Determination System (referd to as Horus
system) introduced by [Youssef and Agrawala, 2005] aims at two goals: high
accuracy and low computational requirements. It uses a probabilistic approach
like the Rice system with several modular enhancements to achieve an accuracy
of 0.6 meters. The enhancements are suitable for other implementations, too.
The authors also enhanced the RADAR system and increased the accuracy of
the RADAR system by more than 50%.

3.3.1 Correlation Handling

Whereas the signal strength underlies variations over time, the authors showed
that the autocorrelation of successive samples collected from one AP is as high
as 0.9. They propose an autoregressive model to capture this autocorrelation:

st = αst−1 + (1− α)vt; 0 ≤ α ≤ 1 (11)

where vt is a noise process and st is the stationary time series representing
the samples from one AP. Based on this model, the variance of such correlated
samples is given by

1 + α

1− α
σ2. (12)

During the training phase, the value α is estimated and stored with the dis-
tribution parameters µ and σ. During the localization process, the Gaussian
distribution is adapted with the appropriate α.

3.3.2 Continuous Space Estimator

Similar to the k nearest neigbour approach, the Horus system uses a center of
mass estimation to localize the client. To do so, N locations with the highest



probability p(i) are chosen and the clients location is estimated as

x =
∑N

i=1 p(i)x(i)∑N
i=1 p(i)

. (13)

The difference to the k nearest neighbour approach lies in the locations weighted
by their probability p(i). This approach is accompanied by another technique
called time avaraging in the pysical space.
With this technique, the locations of the client is estimated by avaraging the
last estimates over a sliding time window of size W like

x =
1

min(W, t)

t∑
i=t−min(W,t)−1

xi. (14)

3.3.3 Small-Scale Compensator

As mentioned in Section 3, the signal strength varies within small-scale changes
of the clients localization. To deal with these variations, the Horus system uses
perturbation of the measured sample. First, it detects a small-scale variation
by calculating the distance of two consecuting location estimates. Assuming
that the client is moving constantly, the system determines to use small-scale
compensating if the distance is above a certain treshold.
If such a variation is detected, the sample is perturbated. That means, artifical
variations in the samples are produced and the localization process is repeated
with these variated samples. Then the nearest location to the last estimate ist
chosen as new location estimate.

3.3.4 Incremental Triangulation Clustering

This module is different from all other enhancements mentioned in this paper.
Its only purpose is to reduce the computational requirements of the localization
process. This is achieved by clustering the environment. A cluster is defined by
the set of APs that are reachable from a location.
During the localization process, the AP with the highest signal strength is chosen
and only locations within clusters covered by this AP are searched. For the
second AP, only locations covered by the first and the second AP are searched
and so on.
During this process, the probabilities of the location estimate are compared. If
the highest estimate has a significant higher probability (by a threshold) than
the second highest estimate, the localization stops and returns this location. In
best case, the algorithm stops after using only one AP.



3.3.5 Results

The basic Horus system achieves an accuracy of 1.4 meters at 90% of the time
and about 2 meters in 95% of the time. This is comparable to the results of
the Rice system, that uses also the probabilistic approach. Likewise the authors
stated a slightly advantage for a parametric method, i.e. for using a Gaussian
estimator, like the Gaussian sensor model of the Rice system.
The correlation handler lead to a significant increase of 19%. Moreover, the
authors showed that not using the correlation handler lead to a worse accuracy
if more than two samples are avaraged for the analysis.
The continuous space estimator enhanced the accuracy by more than 13% with-
out time-avaraging. With time-avaraging, the performance could be increased
by more than 24%.
The perturbation has a parameter to tune to achieve significant enhancements:
the amount of perturbation has to be chosen. The tests showed, that the number
of APs used for perturbation is not relevant. With a suitable perturbation, the
accuracy could be enhanced by more than 25%.
The clustering technique is tuned by the threshold, with which the probabil-
ities of the estimated locations are compared. Depending on that threshold,
the number of consulted APs in the localization process changes. Unsurpris-
ingly, the accuracy increases with the number of APs. But the reduction of the
computational effort can be more than a magnitude. According to the authors,
Horus needs onl 250 multiplications compared with 2708 multiplications needed
by the RADAR system.

3.3.6 Experimental Setup

• Access Points: Cisco Access Points (21 exemplars)

• Clients:

– Orinoco Silver Card, 11 MBit/s

– Testbed 1: Windows XP, Testbed 2: Linux (Kernel 2.5.7).

• Environment: Testbed 1: 4th floor of a building, 1766m2, 172 reference
locations; Testbed 2: 432m2, 110 reference locations.

4 Applications and Practical Issues

4.1 Implementations and Applications

Ekahau, Inc. Ekahau, Inc. provides a commercial Wireless LAN positioning
system, called Ekahau Positioning Engine 2.0 [Ekahau, Inc., 2002]. The details
of the system are not publicly available. Ekahau uses a probabilistic approach,



like Rice and Horus, based on the Bayes Rule. The actual localization is done
by fitting the samples to a probabilistic model. This localization is enhanced
by rail tracking, an approach that uses a Hidden Markov Model. The results
presented in [Ekahau, Inc., 2002] are in the range of the results of the horus
system.

The GUIDE Project. The GUIDE project has been developed to provide
city vistors with a hand-held context-aware tourist guide [Cheverst et al., 2000].
Whereas the system is rather an outdoor positioning system and thus beyond
the scope of this paper, the application itself is interesting. The authors identify
the following requirements for such a context-aware applicaton:

• Flexibility: If some contents (or a guided tour) are provided, the user
have to be able to decide, when, which part and with which speed he can
use the system.

• Context-Aware Information: The information should be adapted to
the context of the user, both the personal context like her role, personal
interests, tasks and her environmental context like her position, the day-
of-time (think of opening times of the cafeteria being involved in this
adaption).

• Support for Dynamic Information: The system must be able to pro-
vide current changes in the information, like changed opening-times, re-
port of a defect printer and so on.

• Support for interactive Services: The system should provide interac-
tive capabilities like messaging with other users, reserving a room for a
conference, calling for a taxi and so on.

NearMe. Another interesting project is the NearMe Wireless Proximity Server
[Krumm and Hinckley, 2004]. It uses a completely different approach of deter-
mining objects and persons in the proximity of a client, instead of trying to
estimate the absolute position.
The NearMe system consists of a server and the clients. The clients are available
for different Windows systems, but the server communicates over an open SOAP
interface, so a new client can easily be built.
The clients can register themselves to the server and send a Wireless LAN
signature, consisting of a global unique identifier (GUID), a timestamp and
a set of MAC addresses of APs in their range and the corresponding signal
strengths. During registration, the client can specify a certain type, which can
be a person of course, but also a non-person type like a conference room, a
printer or a cafeteria.
The non-person types can be used to tag an object or a location with a Wireless
LAN signature.



After the registration and the submitting of the current Wireless LAN signature,
the client receives two lists. One contains persons and other objects in the short
range proximity, meaning, they are in the area of an AP that is also in the clients
range. The other list contains persons and objects in a long range proximity,
meaning, they are reachable over the areas of overlapping APs that also overlaps
with an AP in the clients range.
The proximitiy for the short range list is estimated by an analysis of the Wireless
LAN signatures of both the client and the person or object in question. The
authors extract the following features from this signature:

• The number of APs in common between the two signatures.

• A correlation coefficient, representing how common the signal strengths
for the APs are.

• The sum of squared differences of signal strength.

• The number of APs in each signature that are not in common.

Using these features and a lot of training data, the authors fitted a polynomial
function to weight these features and to calculate the proximity.
For long range proximities, the estimated time is given to move from the current
position to the target. To achieve this, the NearMe server analyses the data in
its database and calculates for each pair of overlapping APs a time interval that
is needed to move from one AP to the other. With data recorded in the past,
when a client sended signatures while moving from one AP to the other, the
server can take the difference of the timestamps as time-estimate.
NearMe is different from the other systems in the way that it gives no absolute
position and no guidance how to reach a destination. In return, it doesn’t need
any training and works out of the box, as long as there are clients or tagged
objects close-by.

4.2 Clues to achieve better results

Ekahau, Inc. provides a guide for achieving better accuracy with her positioning
engine [Ekahau, Inc., 2003]. Some of the results are mentioned here because
they are vaild for other systems and approaches, too.

Asymmetric coverage. Especially for two APs and large areas, it is pos-
sible to get a symmetric coverage, like in Figure 8. In this case, the system
cannot differentiate between the area of the upper left corner and the area of
the lower right corner. So APs should be placed in a way that they cover the
area asymmetric.
To avoid these problems, a third antenna should be used for large areas. If a
higher accuracy is needed, the use of directional antennas is recommended (Fig-
ure 9), of course this often leads to additional costs especially for the positioning
purpose.



Figure 8: Symmetric coverage, two omnidirectional antennas in opposite corners
of an open space. [Ekahau, Inc., 2003]

(a) Omnidirectional antennas (b) Directional antennas

Figure 9: Different antennas.[Ekahau, Inc., 2003]



Figure 10: Significant signal variations within one area. [Ekahau, Inc., 2003]

Figure 11: Sample point on edge of adjacent area. [Ekahau, Inc., 2003]

Coverage of logical areas. To get a better localization result for practical
purposes, the position of the reference locations should be chosen with care. In
general, at least one reference location should be placed in every logical area
like a room or a part of a hallway. In a more complex area, like the corner of a
hallway, the variations of the signal strength can vary strongly. In such areas,
the reference locations should reflect these variations (Figure 10).
The placement of reference locations near shared edges (including walls) should
always be avoided (Figure 11). In most cases, a worse localization in the correct
room is prefered to an almost exact absolute position estimation within half a
meter, but behind a wall in the next room.



5 Conclusion

With this paper we tried to give a rough overview of existing localization ap-
proaches in Wireless LANs and how they deal with the rather awkward envi-
ronment of a Wireless LAN regarding the localization.
The results of all approaches are very encouraging and they all showed, that it
is possible to implement practical Location based services on top of a Wireless
LAN positioning system.
The main advantages for all proposed systems are:

• No need for additonal hardware, every existing Wireless LAN environment
can be used.

• Additonal possibilities for applications due to the permanent connection
with a full ethernet, if necessary with access to the internet.

• High accuracy compared with systems like GPS or GSM/UMTS

To choose a best system out of the presented systems is not necessary, as the
authors of the Horus system mentioned, every system can be improved by the
presented techniques. So the best results are achievable, if most, if not all of the
presented enhancements are implemented. A basic design decision may be to
chose a probabilistic approach, like the Rice and the Horus system, they proved
to be more accurate than the empiric approach.
For a real-life implementation, the distribution of the training-data to the clients
and the auto-updating and recalibrating are of course steps that need attention.
The further challenges in Wireless LAN positioning are the development of a self-
learning process that completely removes the training phase and automatically
adapts with the changing environment.
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