Modeling of data networks by example: NS-2 (III) Wireless Networks

Holger Füßler

Course overview

1. Introduction 7. NS-2: Fixed networks 8. NS-2: Wireless networks 2. Building block: RNG 3. Building block: Generating random variates I 9. Output analysis: single system and modeling examples 4. Building block: 10. Output analysis: comparing Generating random variates II different configurations and modeling examples 5. Algorithmics: 11. Omnet++ / OPNET **Management of events** 6. NS-2: Introduction 12. Simulation lifecycle, summary

Lecture overview

Retrace and understand a typical use case for simulation of (wireless) computer networks

- Part I: Basics on Mobile Ad-Hoc Network Routing
- Part II: Ns-2 and the cmu wireless extensions
- Part III: Ns-2 scripts for MANET simulation
- Part IV: Output of MANET simulations
 - the CMU trace file
 - vizualization and analysis

Lecture overview

Retrace and understand a typical use case for simulation of (wireless) computer networks

- Part I: Basics on Mobile Ad-Hoc Network Routing
- Part II: Ns-2 and the cmu wireless extensions
- Part III: Ns-2 scripts for MANET simulation
- » Part IV: Output of MANET simulations
 - the CMU trace file
 - vizualization and analysis

Mobile Ad-Hoc Networking

Characterization:

- All (network) nodes are equipped with radio technology
- nodes can be mobile
- Networks are forming up spontaneously
- Nodes are routers and end-systems

- End-System
- Router

Mobile Ad-Hoc Network Routing

- Routing is the "classical" MANET problem
 - links often unidirectional
 - radio range unstable
 - strict energy constraints
 - mobility- /radio-induced topology changes
- But also:
 - link / physical layer research
 - cooperativeness
 - security
 - transport layer (TCP ceases to work over wireless links)

MANET example 1: Sensor networks

- usually high node density
- but also low mobility
- dominating node property is the availability of sensors (light/heat/movement)
- single nodes are highly restricted on energy and computation power

MANET example 2: Vehicular Ad-Hoc Networks

- Ad-Hoc Networks between street-bound cars based on ad-hoc network principles (see http://www.fleetnet.de)
- additional sensors (position / movement / possibly radar)
- very high mobility
- almost no energy restrictions

Node Mobility – Why is routing hard?

Classification of Routing Algorithms

Proactive vs. Reactive

- Proactive Algorithms:
 - all nodes permanently keep routes to all other nodes
- Reactive Algorithms:
 - only when communication is desired, the nodes "build up" a routing information
- Discussion:
 - proactive is more suited for "equally distributed" communication
 - But: Above a certain mobility rate, pro-active routing will fully load the network

Classification of Routing Algorithms

- Topology-Based Algorithms:
 - a (distributed) network topology is built based on the neighborhood relationship between nodes
 - the actual routing is done by
 - Source Routing
 - Distance-Vector Routing
 - Shortest-Path Routing (Link-State)
- Position-Based Algorithms:
 - Routing is done mainly in a greedy way minimizing the remaining distance to the destination
 - only possible, when nodes know about their current position
 - if no "greedy route" is found, a recovery strategy is used

The IETF MANET group

- Topology-Based Algorithms:
 - reactive
 - AODV (Ad-Hoc On-Demand Distance Vector Routing)
 - DSR (Dynamic Source Routing)
 - proactive
 - TBRPF (Truncated Reverse-Path Broadcasting)
 - OLSR (Optimized Link-State Routing)
- Position-Based Algorithms:
 - none (so far ;-))

Classification of Routing Algorithms

- Perkins / Royer 1999 (download available)
- Re-Active Routing Method (i.e. on-demand)
- Topology-Based Distance-Vector Routing
- meanwhile RFC status (experimental RFC 3561)

AODV operation

» Route Requests (RREQ) are flooded on-demand

- When a node re-broadcasts a Route Request, it sets up a reverse path pointing towards the source
 - AODV assumes symmetric (bi-directional) links
- When the intended destination receives a Route Request, it replies by sending a Route Reply

» Route Reply travels along the reverse path set-up when Route Request is forwarded

[Source: Nitin Vaidya]

Route Requests in AODV

Represents a node that has received RREQ for D from S

Route Requests in AODV

Represents transmission of RREQ

Route Requests in AODV

Represents links on Reverse Path

Reverse Path Setup in AODV

 Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

Reverse Path Setup in AODV

Reverse Path Setup in AODV

Node D does not forward RREQ, because node D is the intended target of the RREQ

Route Reply in AODV

Represents links on path taken by RREP

Forward Path Setup in AODV

Forward links are setup when RREP travels along the reverse path

Represents a link on the forward path

Data Delivery in AODV

Routing table entries used to forward data packet. Route is *not* included in packet header.

Additional Comments

- » AODV is (in reality) much more complicated
- » sequence-number mechanism, among other things for count-toinfinity protection
- > lots of protocol parameters (time-out values, link-layer notification, backward path setup via flooding)

Lecture overview

Retrace and understand a typical use case for simulation of (wireless) computer networks

- Part I: Basics on Mobile Ad-Hoc Network Routing
- Part II: Ns-2 and the CMU wireless extensions
- Part III: Ns-2 scripts for MANET simulation
- Part IV: Output of MANET simulations
 - the CMU trace file
 - vizualization and analysis

NS-2's Wireless Extensions

- >> Originally, ns-2 has no support for wireless networks
- CMU monarch wireless extensions (1998) (http://www.monarch.cs.cmu.edu/cmu-ns.html)
 - mobile nodes with programmable trajectories
 - IEEE 802.11 DCF MAC protocol
 - ARP / DSR / DSDV / TORA
 - wireless networking (Lucent WaveLan DSSS radio)
 - two ray ground radio propagation
 - utility scripts (movement, analysis, vizualization)
 - ...
- » already included in actual ns-2 releases

ns-2 wireless node

Figure 16.1: Schematic of a mobilenode under the CMU monarch's wireless extensions to no

- 1. Packet injected
- 2. non-local → RTAgent (e.g. AODV)
 - do route request if necessary
 - drop packet or select next hop (add to packet header)
- 3. hand packet to link layer
 - do ARP if necessary (IP)
- 4. hand packet to interface queue
- 5. MAC: get packets one-by-one
 - perform Media Access
- **6.** Radio Propagation Model represents radio characteristics
- 7. NetIf is interface to channel
 - knows who is sending and if this is jamming my transmission
- 8. Reception of Packets

Lecture overview

Retrace and understand a typical use case for simulation of (wireless) computer networks

- Part I: Basics on Mobile Ad-Hoc Network Routing
- Part II: Ns-2 and the CMU wireless extensions
- Part III: Ns-2 scripts for MANET simulation
- » Part IV: Output of MANET simulations
 - the CMU trace file
 - visualization and analysis

Wireless "scripting basics" – Part 1

Simulation Script

Radio Stuff Channel/WirelessChannel set val(chan) Propagation/TwoRayGround set val(prop) set val(netif) Phy/WirelessPhy set val(rr) 250.0 set val(mac) Mac/802 11 set val(bw) 2.0e6 set val(ifq) Queue/DropTail/PriQueue set val(11) Antenna/OmniAntenna set val(ant) set val(ifqlen) 50 # Basic Sim Setup set val(nn) 11 set val(rp) AODV set val(x) 2000 set val(y) set val(simtime) 30 God set rrange \$val(rr) Mac/802 11 set rrange \$val(rr)

Simulation Script Cont'd

```
# Initialize Global Variables
set ns
                  [new Simulator]
set tracefd
                  [open aodv-static line.tr w]
set god
                  [create-god $val(nn)]
$ns trace-all $tracefd
set topo
               [new Topography]
$topo load flatgrid $val(x) $val(y)
set channel [new $val(chan)]
$ns node-config -adhocRouting $val(rp) \
                  -llType $val(ll) \
                  -macType $val(mac) \
                  -ifqType $val(ifq) \
                  -ifqLen $val(ifqlen) \
                  -antType $val(ant) \
                  -phyType $val(netif) \
                  -topoInstance $topo \
                  -agentTrace ON \
                  -routerTrace ON \
                  -macTrace ON \
                  -movementTrace ON \
                  -channel $channel \
                  -propType $val(prop)
```

Wireless "scripting basics" – node-config options

option	available values	default	
general			
addressType	flat, hierarchical	flat	
MPLS	ON, OFF	OFF	
both satellite- and wireless-oriented			
wiredRouting	ON, OFF	OFF	
llType	LL, LL/Sat	""	
тасТуре	Mac/802_11, Mac/Csma/Ca, Mac/Sat,		
	Mac/Sat/UnslottedAloha, Mac/Tdma	""	
ifqType	Queue/DropTail, Queue/DropTail/PriQueue	""	
phyType	Phy/WirelessPhy, Phy/Sat	""	
wireless-oriented			
adhocRouting	DIFFUSION/RATE, DIFFUSION/PROB, DSDV,		
	DSR, FLOODING, OMNIMCAST, AODV, TORA	""	
propType	Propagation/TwoRayGround, Propagation/Shadowing	""	
propInstance	Propagation/TwoRayGround, Propagation/Shadowing	""	
antType	Antenna/OmniAntenna	""	
channel	Channel/WirelessChannel, Channel/Sat	""	
topoInstance	<topology fi="" le=""></topology>	""	
mobileIP	ON, OFF	OFF	
energyModel	EnergyModel	""	
initialEnergy	<value in="" joules=""></value>	""	
rxPower	<value in="" w=""></value>	""	
txPower	<value in="" w=""></value>	""	
idlePower	<value in="" w=""></value>	""	
agentTrace	ON, OFF	OFF	
routerTrace	ON, OFF	OFF	
macTrace	ON, OFF	OFF	
movementTrace	ON, OFF	OFF	
errProc	UniformErrorProc	""	
FECProc	?	?	
toraDebug	ON, OFF	OFF	
satellite-oriented			
satNodeType	polar, geo, terminal, geo-repeater	""	
downlinkBW	<pre><bandwidth "2mb"="" e.g.="" value,=""></bandwidth></pre>	""	

» node-config options from ns-doc

Wireless "scripting basics" – Part 2

Simulation Script Cont'd

```
for {set i 0} {$i < $val(nn)} {incr i} {</pre>
      set node ($i) [$ns node]
      $node ($i) random-motion 0
# source the mymnt pattern and the comm pattern
source move-static line.tcl
source comm-static line.tcl
for {set i 0} {$i < $val(nn) } {incr i} {
    $ns_ at $val(simtime) "$node_($i) reset";
$ns at $val(simtime).2 "stop"
$ns at $val(simtime).21 "puts \"NS EXITING...\" ; $ns_
proc stop {} {
    global ns_ tracefd aggrfd
    $ns flush-trace
    close $tracefd
puts "Starting Simulation..."
$ns run
```

The Comm Pattern

```
set commsrcno 0
set commdstno 8

set udp_(0) [new Agent/UDP]

$ns_ attach-agent $node_($commsrcno) $udp_(0)
set null_(0) [new Agent/Null]

$ns_ attach-agent $node_($commdstno) $null_(0)
set cbr_(0) [new Application/Traffic/CBR]

$cbr_(0) set packetSize_ 512

$cbr_(0) set interval_ 4.0

$cbr_(0) set random_ 1

$cbr_(0) set maxpkts_ 40

$cbr_(0) attach-agent $udp_(0)
$ns_ connect $udp_(0) $null_(0)

$ns_ at 2.5 "$cbr_(0) start"
```

Wireless "scripting basics" – The "Movement Pattern"

move-static_line.tcl

move-static_line.tcl cont'd

\$node_(0)	set X_	175.00
\$node_(0)	set Y_	175.00
\$node_(0)	set Z_	0.00
\$node_(1)	set X_	350.00
\$node_(1)	set Y_	175.00
\$node_(1)	set Z_	0.00

Excursion: Real Movement

» Real Movement, i.e. nodes changing position is supported as follows:

\$ns at \$time "\$node setdest x2 y2 <speed>"

- > letting the node \$node move from the position it holds at simulation time \$time to x2 / y2 with <speed> m/s beginning at time \$time
- >> Usually, a utility like "setdest" (in the indep-utils dir) is used to generate random waypoint traffic
- » Or: Use real-live movements "converted" to ns-2 input

Lecture overview

Retrace and understand a typical use case for simulation of (wireless) computer networks

- Part I: Basics on Mobile Ad-Hoc Network Routing
- Part II: Ns-2 and the CMU wireless extensions
- Part III: Ns-2 scripts for MANET simulation
- Part IV: Output of MANET simulations
 - the CMU trace file
 - vizualization and analysis

Trace Output

- >> The content of the file is controlled by node-config
- Structure different from wired traces
- » typical line:

Trace Output (Details)

» Mac Header:

```
[duration dst src pkt_type]
```

- Duration: Only for RTS/CTS (Network Allocation Vector)
- dst / src: MAC dst/src, for broadcast ffffffff
- pkt_type: Packet Type of enclosed packet (800 for IP)

» IP Header:

```
[src:port dst:port ttl next_hop]
```

- src / dst: network address of node (end-2-end), -1 for broadcast
- ports: port numbers (255 for routing)
- ttl: time to live in hops
- next_hop (from IPs point of view)
- >> further details: "ns-2.27/trace/cmu-trace.(h|cc)"

Tracing: Degrees of Freedom

- >> also: new trace format of form -<valueDescription> value
 activated with \$ns new-trace
 - Better to parse
 - Harder to read (for me [HMF])
 - Almost twice as Big, but bzip2 handles it pretty well
- » also: node position logging in every line
- » also: mechanism for custom lines in trace file

Example Scenario

- >> 11 nodes in a row
- » Routing Protocol: AODV
- >> CBR traffic: node 0 with node 8

Example Trace

» Open Trace File in Editor

- AODV-011-static-0.tr (old trace format)
- AODV-011-static-0.ntr (new trace format)
- » Follow Route Request / Reply in scenario

Evaluation

- > Typical metrics for evaluation of "Routing Protocol Performance" (see also RFC 2501):
 - Packet Delivery Ratio (PDR)
 - (avg) End-2-End Delay / Route Acquisition Time
 - Overhead / Cost
 - on Routing / MAC Layer
 - · overall / per packet or payload bit
- Warning: Do not generate a wrong feeling of linearity!
 - Histogram or Function Plot (Interpolation)?
 - Absolute Values per Simulation Run / per Packet?

Evaluation (End-2-End Delay Line Scenario)

- Histogram shows the end-2-endpacket delay for the nine packets sent
- » "First Packet Delay" higher because of "Route Acquisition Time"
- » Remaining Packets fairly stable

The Grid Scenario (Setup)

- \rightarrow 11 × 11 = 121 nodes (0..120)
- » CBR: 12 → 108
- Which are the shortest routes to be expected?
- >> Hop Length: 9

The Grid Scenario (Route Taken)

- Why is that so?
- » AODV immediately answers the RREQ, even if it's suboptimal
- Protocol Variant: Answer Each RREQ and improve route

Evaluation (End-2-End Delay Grid Scenario)

- Histogram shows the end-2-endpacket delay for the nine packets sent
- » "First Packet Delay" higher because of "Route Acquisition Time"
- » Remaining Packets fairly stable
- » But: "First Packet Delay" one order of magnitude higher than in line scenario

There is still more...

- » play with downloadable examples
- » parser scripts with different purposes
- » have a look at the trace files

Wrap-Up

- >> Basics on Mobile Ad-Hoc Network Routing
 - Challenges
 - Classification of Algorithms
- >> Learned about the wireless extensions of ns-2
- » Created simple AODV simulations
- >> Learned to read the wireless traces

References

- >> The ns-2 user manual http://www.isi.edu/nsnam/ns
- S. Corson, J. Macker: RFC 2501: Mobile Ad-Hoc Networking (MANET) Routing Protocol Performance Issues and Evaluation Considerations
- » C. Perkins, E. Royer "Ad-Hoc On-Demand Distance-Vector Routing"
 - In "Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications (WMCSA) ", pp. 90-100, New Orleans, LA, February 1999
- » C.Perkins, E. Belding-Royer, Samir Das: RFC 3561: Ad-Hoc On-Demand Distance-Vector (AODV) Routing, IETF
- Samir R. Das, Charles E. Perkins, Elizabeth M. Royer, "Performance Comparison of Two On-demand Routing Protocols for Ad Hoc Networks", IEEE Infocom 2000, Tel Aviv, Israel, March 2000