Modeling of data networks by example: ns-2 (I)

Holger FuRler

. . Holger FURler
Simulation of Computer Networks I Universitat Mannheim, WS05/06

Course overview

1. Introduction

7. NS-2: Fixed networks

2. Building block: RNG

8. NS-2: Wireless networks

3. Building block:
Generating random variates |
and modeling examples

9. Output analysis: single system

4. Building block:
Generating random variates Il
and modeling examples

10. Output analysis: comparing
different configuration

5. Algorithmics:
Management of events

11. Omnet++ / OPNET

6. NS-2: Introduction

12. Simulation lifecycle, summary

Outline of this lecture

» Part I: What and why of ns-2

» Part ll: Ns-2 overall structure and a basic ns-2 example

— Scenario specification with tcl, otcl

— Simulator object

— Generic structure of a ns-2 simulation script
— Ns-2: basic otcl script for UDP traffic

» Part lll: First look into ns-2 internals

» Part IV: Another example from ns tutorial

| A brief history of ... ns-2

» 1989: REAL (‘realistic and large’) network simulator at University of
California, Berkeley

» 1995: DARPA VINT (‘Virtual Inter-Network Testbed’) project; LBL, Xerox
PARC, UCB, USCI/ISI

— Developed ns-2 as their simulation tool

— Nice overview paper: Lee Breslau et al., Advances in network simulation, IEEE
Computer, May 2000

“Network researchers must test Internet protocols under varied conditions
to determine whether they are robust and reliable. The Virtual Inter-
Network Testbed (VINT) project has enhanced its network simulator and
related software to provide several practical innovations that broaden the
conditions under which researchers can evaluate network protocols.”

» Currently: DARPA SAMAN and NSF CONSER projects develop ns-2

| Goals of ns-2

» Support networking research and education
Network

— Protocol design, traffic studies, etc
education:

— Protocol comparison A
visualizations and

. . . educational scripts
» Provide a collaborative environment P

— Freely distributed, open source http://www.isi.edu/nsnam/dist
« Share code, protocols, models, etc
— Allow easy comparison of similar protocols

— Increase confidence in results
* More people look at models in more situations

« Experts develop models

» Multiple levels of detail in one simulator

— Packet level We focus on
— Session level packet level simulations

[Source: Ns Tutorial 2002, Padmaparna Haldar]

| Elements of ns ‘package’

]] [Source: Ns Tutorial 2002, Padmaparna Haldar]
» Ns, the simulator itself

» Nam, the network animator

— Visualize ns (or other) output
— Nam editor: GUI interface to generate ns scripts

»» Pre-processing:

— Traffic and topology generators

»» Post-processing:
— Simple trace analysis, often in Awk, Perl, or Tcl

Pre-processing: Post-processing:
Generate network scenarios Analysis of trace files, visualizations

| Current status of ns-2

» Ns-2: most recent release is ns-2.27

— Daily snapshots available
— Full validation suite

» Nam: most recent release is nam-1.10

» Ns-2 is pretty large:

— Requires about 250 MB disk space
— More than 200 K lines of code

» Available for Linux, FreeBSD, SunOS, Solaris
— Also runs on Windows 9x/2000/XP with cygwin

» Functionality:

— Wired world: various routing methods, multicast, ‘all’ flavors of TCP,
UDP, various traffic sources, various queuing disciplines, quality of
service mechanisms, ...

— Wireless world: ad hoc routing, mobile IP, directed diffusion, sensor-
MAC, ...

| Our goal

»

»

»

»

»

»

»

»

Learn how to generate network scenarios
Learn how to run a simulation
Learn how to analyze simulation output

Understand how ns-2 works internally

Our focus is not on how to implement new functionality

Lecture 6 (today): introduction to ns-2

Lecture 7: experiments with TCP using ns-2

Lecture 8: experiments with wireless ad hoc networks using ns-2

J

Il What do we want/have to model?

Scenario specification

Application layer protocol Implementation of
 Application layer protocol
* Transport protocol

* Routing protocol

* Queue behavior

Transport protocol

Routing protocol * Link behavior
Queues

Packets
Nodes Links

Il Requirements

» Scenario specification ‘language’

— We want to experiment easily with various scenarios without
recompiling protocol logic

» Language for implementing protocol logic

— Speed is important aspect

»» Both should be object-oriented

— Reusability
— Extensibility (method overloading)

Il NS-2 overall architecture

“shadow objects”
\

.t Cr
I ||
N |
A
| ':
Scenario specification Protocol logic

» OTcl: Object version of the ‘Tool Command Language’
— Tcl intro: http://www.tcl.tk/scripting/

. . Holger FuRler - 11
Simulation of Computer Networks I Universitat I\/Iannf?eim WS05/06

Il Tcl: Ousterhout on scripting languages

Scripting: Higher Level Programming for the 21st Century, John K. Ousterhout
IEEE Computer magazine, March 1998

1000
Scripting
Visnal Basic
=
o
E 100 + =
& Telperl
@
C
=
& Tava
- C++
; Assembly System Programuning,
None Strong

Kigure 1. A comparison of various programming langnages based on their level (higher
level langnages extcute more machine instructions for ¢ach langnage statement) and their
degree of typing, System programming langpages like C ténd to be strongly typed and
medinm level (5-10 instructions/starement). Scripting langpnages Like Tel tend to be

Degree of Typing

weakly typed and very high level (100-1000 instructions/statement).

Simulation of Computer Networks

Scipting:

» System integration
language

* Interpreted

* Typeless

J

Holger FURler- 12
Universitat Mannheim, WS05/06

Il Tcl: basic commands

» Variables
- set x 10

- puts “x is $x”

» Functions and expressions

- set y [pow x 2]
- set y [expr x*x]

» Procedures

- proc pow {x n} {
if {$n == 1} { return $x }
set part [pow x [expr $n-1]]
return [expr $x*$part]
}

» Control flow

if {$x > 0} { return $x } else {
return [expr -$x]
}
while { $x > 0 } {
puts $x
incr x -1

}

Simulation of Computer Networks ‘I

Holger FuRler- 13
Universitat Mannheim, WS05/06

Il Object Tcl (Otcl): basic commands

Class Person

constructor:
Person instproc init {age} {
$self instvar age

set age Sage

method:

Person instproc greet {} {
$self instvar age
puts “Sage years old: How

are you doing?”

subclass:

Class Kid -superclass Person

Kid instproc greet {} {
$self instvar age
puts “Sage years old kid:
What’s up, dude?”

set a [new Person 45]
set b [new Kid 15]

Sa greet

Sb greet

=> can easily make variations of existing
things (TCP, TCP/Reno)

[Source: Ns-2 tutorial, P. Haldar, X. Chen, 2002]

Simulation of Computer Networks ‘I

Holger FuRler - 14
Universitat Mannheim, WS05/06

Il Ns-2: Class Simulator

] Scheduler:
Create an instance of Class Simulator . List
* Heap
set ns [new Simulator] - Splay
- Calendar
/) RT
Event
scheduling
Example

Simulator Sns use-scheduler Heap

object

Interfaces
Example
$ns node

Scenario
(e.g., topology)

Nodes, links

set ns [new Simulator] <» Otcl interpreter «» Interpreted hierarchy €«» Compiled hierarchy

Otcl C++

Il Ns-2: a simple otcl script

#Create a simulator object

set ns [new Simulator]

#Open the nam trace file
set nf [open out.nam w]

Sns namtrace-all $nf

#Define a 'finish' procedure
proc finish {} {
global ns nf
$ns flush-trace
#Close the trace file
close $nf
#Execute nam on the trace file
exec nam out.nam &

exit O

#iCreate two nodes
set n0 [$ns node]

set nl [$ns node]

#Create a duplex link between the nodes

$ns duplex-link $n0 $nl 1Mb 10ms DropTail

#Call the finish procedure after 5 seconds
of simulation time

Sns at 5.0 "finish"

#Run the simulation

Sns run

[Source: example1a.tcl, ns-tutorial]

Il Nam output

B nam: C:/cygwin/usrins2/ns-allinone-2.27/ns-2.27/ns-tut... Q@

File Views Analysis {:ygwinﬂqerSZMS-alIinone-2.2?!ns-2.2?Ms-tutorial.fexamples.fout.r

' « | « | u \ > | 44 ‘ 0000000 | =P 20ms

e
< ©

y © Ba

Auto layout: Ca |0.15 Cr |0.75 terations I'IU Recalc re-layout | reset

. . Holger FuRRler- 17
Simulation of Computer Networks I Universitit I\/Iannr?eim WS05/06

Il Ns-2: add data traffic (UDP)

#Create a UDP agent and attach it to node
nO0

set udp0 [new Agent/UDP]

$ns attach-agent $n0 $udp0

Create a CBR traffic source and attach
it to udpO

set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize 500
$cbr0 set interval 0.005

$cbr0 attach-agent $udp0

#Create a Null agent (a traffic sink) and
attach it to node nl

set null0 [new Agent/Null]

$ns attach-agent $nl $null0

#Connect the traffic source with the
traffic sink

$ns connect $udpO0 $null0
#Schedule events for the CBR agent

$ns at 0.5 "$cbr0 start"

$ns at 4.5 "$cbr0 stop"

[Source: example1b.tcl, ns-tutorial]

Il Nam output

. . Holger FuRler- 19
Simulation of Computer Networks I Universitit I\/Iannf?eim WS05/06

Il How do you get information on ns-2 commands?

» “Just a matter of language.” Excerpt from ns manual:

» Ns manual The following is a list of simulator commands

commonlyused in simulation scripts:

» Plenty of examples In set ns_ [new Simulator]

ns-2 27/tcl This command creates an instance of the simulator
: object.
» Ns-2 tutorial by Marc Greis set now [$ns_ now]
The scheduler keeps track of time in a simulation.
ns-2 27/ns—tutorial This returns scheduler’s notion of current time.
$ns_ halt

This stops or pauses the scheduler.
$ns_run
This starts the scheduler.

$ns_ at <time> <event>

Il Generic ns-2 script

set ns [new Simulator]

#
#
#
#
#
#
#
#
#
#

[Turn on tracing]

Create topology

Setup packet loss, link dynamics

Create routing agents
Create:
- multicast groups

- protocol agents

- application and/or setup traffic sources

Post-processing procs

Start simulation

[Source: Ns-2 tutorial, P. Haldar, X. Chen, 2002]

Il Nam editor for generating simple set-ups

B NAM Editor - 0 M[(=]E3
File Edit Tools Help
\ O |'—'| Agent TCPSink — I Traffic Source I FTP — | Loss Model Periodic — | @l

|T| me : | 0.0

QI

-

Periodic

FTH
@ TCPSink

v

[»

Simulation of Computer Networks

|4 |
Eﬁ'ﬂlIIIIIIIIIIIIIIlIIIIIIIIIIIIII|IIIIIIIIlIIIIIIIIII|lIIIlIIIllIIIIIIlIIIIIIIIIIII|IIIIIIIII|IIIIIIIII|IIIlIIIII|IlIIIlIII|IIIlIIIlI|IIIIIIIII|IIIIIIIII|IIIIIlIIIlIIIIIIIII|IIIIIIIII|IIIIIIIlI|IlIIIlIII|IIIllIIlI|IlIIIIIII|IIIIIIIII|IIIIIIIIIIlIIIlIIIIIIIlIIIlIIIIIIIlIIIllIIIIIIIIIIIIIIIIIIlIIIIIIIlIIIIIIIIIIIIlIIIIIIII .

Holger FuRler - 22
Universitat Mannheim, WS05/06

lll A first look into ns-2 internals

»» We now have an basic understanding of the language used to
specify a network scenario, but:

» How are all these network elements represented/coded on the C++
side of ns-2?

»» What do we need as ‘primitives’?

e - Connectors -
Application agent - Receive or ‘handling’ Application agent
L functions T

- Packet classifiers
Transport agent Transport agent
Node —> Node —> Node

lll Basic Ns-2 internals

» Every NsObject has
recv () method

» Connector: has target ()
and drop ()

» BiConnector: has
uptarget () and
downtarget ()

Class hierarchy

Base class
TclObject for objects
(or SplitObject), that exists

in tcl and C++

BiConnector

lll Example: connector

class Connector : public NsObject {
public:
Connector();
inline NsObject* target() { return target_; }
virtual void drop(Packet* p);
protected:
virtual void drop(Packet* p, const char *s);

int command(int argc, const char*const*
argv);

void recv(Packet*, Handler* callback = 0);

inline void send(Packet* p, Handler* h) {
target_->recv(p, h); }

NsObiject* target_;

NsObject* drop_; // drop target for this
connector

Holger FURler - 25

};
Simulation of Computer Networks I Universitat Mannheim, WS05/06

lll Ns-2 simple links

» A simple link is a sequence of connectors.

' Link :
| |
| |
head _ | |
—»qg—» enqT _ queue_f— deqT_ link_ ttl * rcevT_ —|—>
|] :
i i
| |
! drophead _ » drpT |
| |
| |
e e e e e e e e = e = e e e e S S S S S S S S S — —

Simulation of Computer Networks

Holger FURler - 26
Universitat Mannheim, WS05/06

lll Ns-2 link basics

Trace dequeue operation

Trace ‘receive’ by next node

- — - — — — — — | —— — —

v \
head _

— ¢ enqT_ —*|queue_[— deqT_ —{link_ » ttl * revT_ "
| |
4 AN 4 i
| |
! drophead _ » drpT |
| |
| |

Trace enqueue operation Trace drops

TTL decrement operator

Simulation of Computer Networks I

Holger FURler - 27
Universitat Mannheim, WS05/06

lll Classifier

From ns manual;

»

»

class Classifier : public NsObject {

public:

The function of a node when it
receives a packet is to examine
the packet’s fields, usually its
destination address, and on
occasion, its source address. It
should then map the values to
an outgoing interface object that
is the next downstream recipient
of this packet.

In ns, this task is performed by a
simple classifier object. Multiple
classifier objects, each looking at
a specific portion of the packet
forward the packet through the
node. A node in ns uses many
different types of classifiers for
different purposes.

b

~Classifier();

void recv(Packet*, Handler* h = 0);

protected:

Classifier();
void install(int slot, NsObject*);
void clear(int slot);

virtual int command(int argc, const
char*const* argv);

virtual int classify(Packet *const) = 0;
void alloc(int);

NsObject** slot_; /* table that maps slot
number to a NsObject */

int nslot_;

int maxslot_;

lll Ns-2 node basics (unicast)

[e T -
iNODE Port @ I

: Classifier |

! i

| i

! i

i Amu i

i Addr agents_ i

: Classifier |

! i

Node entry C |
—- .

entry_ | |

! |

!

!

!

Classification :

based on packet i—-— — A A A S
header

. . Holger FuRler - 29
Simulation of Computer Networks I Universitit I\/Iannr?eim WS05/06

lll Our first ns-2 scripts revisited

nl
enqT_[*queue_|*deqT_|* link_ tel_ revT_
drophead [drpT

nl
entry_

[Source: Dr. A. Kirstadter]

Simulation of Computer Networks I

Holger FuRler - 30

Universitat Mannheim, WS05/06

lll Our first ns-2 scripts revisted (2)

Port
Classifier

L

Link n0-nl1

Link n1-n0

4

[Source: Dr. A. Kirstadter]

. . Holger FURler - 31
Simulation of Computer Networks I Universitat I\/Iannk?eim WS05/06

lll Our first ns-2 scripts revisted (3)

Port

Classifier
Agéqt
Link n0-n1
Linknl-n0 |«

.) Holger FuRler - 32
Simulation of Computer Networks I Universitat Mannﬁeim WS05/06

lll Ns-2 events and packets (coarse overview)

» Events: packets and ‘at-events’

— Class Packet is derived from
class event

— Obijects in the class Packet are
the fundamental unit of
exchange between objects in
the simulation.

Examples:

» void schedule (Handler*,
Event*, double delay);
// sched later event

» s.schedule(target , p, txt +
delay); // from delay.cc

class Event {
public:
Event* next ; /* event list */

Handler* handler ; /* handler
to call when event ready */

double time ; /* time at which
event is ready */

int uid ; /* unique ID */
Event () time (0), uid (0) {}

}; // from scheduler.cc

IV Another example from ns tutorial (1)

#Create seven nodes ©
\@
for {set i 0} {$i < 7} {incr i} {
©

set n($i) [$ns node]

}

#Create links between the nodes

@

) /
for {set i 0} {$i < 7} {incr i} { \\\\\\ o
/

O
Sns duplex-link $n($i)

Sn([expr ($i+1)%7]) 1Mb 10ms DropTail

IV Another example from ns tutorial (2)

Send data from n0 to n3.

@
#Tell the simulator to use dynamic
routing
O
$ns rtproto DV T\\\\\
.®/®
©
$ns rtmodel-at 1.0 down $n(l) $n(2) ’/,” aa“QQQQQ
¢ \
$ns rtmodel-at 2.0 up $n(l) $n(2) ©

To play with this example, go to O

ns-2.27/ns-tutorial/example3.tcl /
/®

J

Wrap-up

»

»

»

»

»

Introduction to ns-2

Specify scenario via Otcl, specifiy protocol logic via C++
Some first ns-2 scripts that show generic ns-2 script structure
Nam: to visualize simulations

Some internals of ns-2: connectors, recv functions, classifiers as
basis for links and nodes

Discussion

»» What is the better approach to network simulation: top-down or
bottom-up?

. . Holger FuRler- 37
Simulation of Computer Networks Universitat Mannheim, WS05/06

