Simulation Software:
Omnet++ GTNetS GlomoSim / QualNet

Holger FuRler

Course overview

1. Introduction

7. NS-2: Fixed networks

2. Building block: RNG

8. NS-2: Wireless networks

3. Building block:
Generating random variates |
and modeling examples

9. Output analysis

4. Building block:
Generating random variates Il
and modeling examples

10. Simulation lifecycle, summary

5. Algorithmics:
Management of events

11. Alternative Simulators

6. NS-2: Introduction

Simulation software and tools

» ... where simulation meets software technology

— How to build models and run simulations conveniently.

— T

General-purpose Simulation package
programming language (language and/or simulator)

Packaging
standard
elements of
DES

» Criteria:

— General capabilities (flexibility, available models, re-use, ...)
— Hardware/software considerations

— Graphical facilities

— Statistical features

— “Learning curve”, documentation, support

— Output reports and plots

J

Choice of simulation software

» So far we know ns-2

What do you like about ns-2?
What do you dislike?

» Many more options:

Today:

CSIM: C-based simulation package (http://www.atl.external.Imco.com/proj/csim/)
JSIM: Java-based simulation package (http://chief.cs.uga.edu/~jam/jsim/)
OMNeT++

GTNetS

GloMoSim / QualNet

OPNET Modeler

» OMNeT++ / GTNetS / QualNet

Lecture overview: OMNeT++

»

»

»

»

»

»

»

OMNeT++ overview

Concept

Architecture / Steps to follow
Simulator internals

Example

Existing modules

Differences with ns-2

Simulation of Computer Networks I

Holger FURler - 5
Universitat Mannheim

OMNeT++

»

»

»

»

»

»

Open-source, generic simulation framework -- best suited for
simulation of communication networks, multiprocessors and other
complex distributed systems (further examples: queuing systems, hardware
architectures, server farm, business processes, call centers)

C++ based simulation kernel plus a set of libraries and tools (GUI
and command-line)

Platform: Unix, Windows

Being developed at BUTE (Technical University of Budapest), CVS
at Uni Karlsruhe

Contributions from worldwide

Active user community (mailing list has about 240 subscribers)

Concept

Separation of concerns:

simulation = sim. program + experiments

model parameters, batch vs. GUI
execution, sequential vs parallel
execution, analysis of results

simulator + model

framework of
generic services &

tools -
‘topology’ + behaviour
NED language, expressed in C++,
graphical editor ysing the simulation
library

J

Architecture

configuration file
omnetpp.ini

network impl. of simulation user
deseription simple kamel interface
* ned modules library libraries
*cc *lib/*a *lib/*a
REDC compilg g e
impl, of sim_std.a envir.a
1Pl of emdenv.a
* necc
(' C++ compiling),
\I/ \[/ AN N
C linking)
Y
simulation program
S ~
(execution ¥
output files
*.vec, *.ana, etc.

Simulation of Computer Networks I

Holger FURler - 8
Universitat Mannheim

Steps to follow

1. Map your system into a set of communicating modules
2. Use NED (or GNED) to define the model’s structure

3. Using C++, describe the active components of the model as
concurrent processes

4. Provide a suitable configuration file containing options of OMNeT++
and parameters to your model

5. Build the simulation program and run it

6. Analyze results written into output vector files.

Defining the topology

»» NED - Network Description Language

declares simple modules with their interfaces
defines compound modules (submodules, interconnection)

defines the network as instance of a module type

» GNED -- Graphical Network Editor

works directly with NED files

two-way tool: you may edit in NED
sources or graphical view — they are
automatically kept consistent

GNED - C:/0MNeT ++/bin/fddi_net.ned - TUBNRing

File Edit View Draw Options Help

D|=(@] 4 [|a)fFw] v

B [2] nedfile Uniiled =
&] nedfile ...bin/fddi_net.

m imports
’ channel FDDICab
#* channel FODI_SA

& simple FDDI_MAC
B machines
B B params
t @ param Stal
B param add

E gates
, [simple FODI_MAC
* [simple FODI_MAC
*[E‘ module FDDI_SACL
|E| module Computer
|E| module FDDI_SAS

[®8] module FDDI_Snif
[®8] module FODI_Rou
[B8] module FDDIRing

[B8] module TUBNRing
[B8] module TUBSRing
1:‘; network FDDI1

14 network NRing
|E\ module TUB_wire:

* module. T_L.I.B_'SSN;L

TUBNRing

ot eciscol bmecisco! 3 bmeciss (1)
feb 1
— o0
- bmedonct
bmedisco?

ot B
1) 1) fizika2
e bi ﬁi.. i)
g ethsw2
Delf Ly g
e g Q L)—— . 1) bmebi2 ethswl

Goliat bigmac

’b/ﬁtﬁ’% bmeiumﬁ
gy

Challenge gibr shiffer

|

K|]

»
FDDI_SAS FDDI_Sniffer FDDI_Router_port FDDIRing |TUBNRing| TUBSRing TUB_wired TUB_SSt4]»

| Ready

Model structure

Component-oriented approach (Hierarchically nested modules):

» The basic building block is a simple module (programmed in C++).

» Simple modules can be grouped to form compound modules.

» Modules are connected with each other.

PingNstwork
clie nt2 cllent3
EJ<—>EJ
/utennt router\
cllent1 ed servor4

L]
workProcessor

TCPNods —_
7]
-0
L+
processorhlanager
pp
/(orHandling
KT
-
1
networkLaysr

linkLayars[dumOfPorts]
physaysr

TCPUppsrLaysis

apphgaton

{-—@1]

Defining the behaviour

» Behaviour is encapsulated in simple modules, C++.

» A simple module:

— sends messages, reacts to received messages
— collects statistics

» Gates are the input and output interfaces for messages.

» Connections (links) are established between modules, characterized
by:
— Propagation delay
— Bit error rate
— Data rate

Simulation library

» Simulation class library covers commonly needed functionality,
such as:

— random number generation

— queues and other containers

— support for topology discovery and routing

— recording simulation results (output vectors)

— statistics collection and estimation (histograms, etc)

File Edit Simulate Trace

Inspect View Options Help

L SIS

)¢ (coutVectory mbhostamarclass=members.bytessent

Jmon)

Bl (cOutvector) Bushethosta.mac.class-members.bytesSent (ptr0x8280360)

&, @ SIQI RUN. | Fﬁs?’l I#R?SS.

et @ A A& i3 =)

/‘WZ

Run #5: Bushet

| Event #423

|T=0.0902266843 (90ms)

|Next: BusNet bus (id=30

Msgs scheduled: 12

|Msgs created: 293

|

Msgs present: 42

Ev/sec: nfa

| simsec/sec: néa

[Ev/simsec: nfa

LJ-} Bushet (BusNetwo
B parameters (cA
B gates (cArray)
B class-members
hosta (EtherHo
hostB (EtherHo:
hostC (EtherHo
hostD (EtherHo
B hus (Bus) (id=3
B B scheduled-events
B- @& downstream (ch
B # etherframe-21-
Bl # upstream (ches
— @ EndTransmissio
— @ generateNextPz
— @ generateNextPz
— @ generateNextPz
— @ generateNextPz
— @ generateNextPz
— @ generateNextP:
— # generateMNextP:
— @& generateNextP:

&

e,

Self-message {ch
Frame reception

) A (EtherHDetyBUSHELNDStE I_lel

Frame ‘etherfrar
transmitStates

| 2 ")]

1192273

» numConcurrent

[l (EtherHost) BusNethostB (id=9) (ptr0xB2ac6as)

1 1154404

¥ Event #423,

5.8317926 16.3106134 16.6777326

Generating packe| |BusNethosts
¥k Event #424,

Encapsulating h:
Sent from BusNei
¥ Event #425,

transmitState: ~
» humConcurrent
Received frame {
Packet {EtherFr:

gen[0]

gen(1]

ng

Filling in sourc
No incoming cart
t
transmitStates |
0, numConcurret
%k Event #426,
transmitStates: |
0, numConcurret

sink[0]

sink[1]

Last value: t=16.677783 (16.67s) value=1.23014e+06 | Options... |
-_— =

LIl
= X Esebtseios

= 3| 1@]
J(EtherMAC) BusNethostB.mac (id=15) (ptr0x525d708)

Self-message {(cMessage)EndReception received I
Frame reception complete

Frame ‘etherframe-28-1663" not destined to us, discarding
transmitStates TE_IDLE_STATE, receiveState: RX_IDLE_STATE,
ConcurrentTransmissions: 0, queuelength: 0

¥% Event #120550, T=16,736358 (16,73s}, HModule #15 ‘BusNet hostB,mac”
transmitStates TX_IDLE_STATE, receiveState: RX_IDLE_STATE, backoffs: 0, num
ConcurrentTransmissions: 0, queuelength: 0

&0 x|

backoffs: 0, num

Self-message {ct

Received frame from upper layer: {(EtherFrame}etherframe-14-1689

IFG elapsed, not|f-

|Packet (EtherFrame}etherframe-14-1689 arrived from higher layers, enqueueing

Transmitting a copy of frame {EtherFrame)etherframe-21-11

1 Filling in source address
No incoming carrier signals detected, frame clear to send, wait IFG first
T transmitState: TRANSHITTING STATE receiveState: R¥ IDLE STATE transmitState: WAIT_IFG_STATE, receiveState: RX_IDLE_STATE, backoffs: 0, nu
- . . - mConcurrentTransmissionss 0, queuelength: 1 -

Simulation of Computer Networks

—f

Holger FuRler - 14
Universitat Mannheim

Running under the GUI

»

»

»

»

»

»

»

»

»

»

Run or single-step the simulation

Monitor state of simulation and execution speed
Examine model object tree

Explore modules and see message flow
Examine scheduled events

Trace what one module is doing

Step to next event in a module

Look at state variables and statistics

Find out pointer values for C++ debugging (gdb)

Look at results being recorded

J

Simple example

» Station:

Station

— gen sink

Submodels can be connected to each other or to parent module

Simple definition in NED

simple MAC

parameters: address;

gates:

in: from higher layer, from network;
out: to higher layer, to network;

endsimple

. . Holger FuRler-17
Simulation of Computer Networks I Universigtét Mannheim

A compound model

module Station
parameters: mac address;

gates:
in: in; out: out;
submodules:
mac: MAC
parameters:

address=mac_ address;
gen: Generator;
sink: Sink;

connections:
mac.to network --> out,
mac.from network <-- 1n,
mac.to higher layer --> sink.in,
mac.from higher layer <-- gen.out;
endmodule

Holger FuRler-18
Universitat Mannheim

Simulation of Computer Networks I

Existing modules

» Simulation Models TCP/IP networks:

— IPSuite
— IPv6Suite

»» LAN/MAN protocols:

— Ethernet
— FDDI
— Token Ring

» Wireless LAN protocols:

— 802.11
— Hiperlan/2

» Mobility and ad-hoc frameworks:

— Mobility Framework
— An AODV framework

OMNeT++ vs NS-2 (seen from OMNeT’s perspective)

OMNeT++

NS-2

Flexibility

Generic simulation framework

Good for IP networks

Topology Description

NED or GUI

OTcl

Model Management

Models independent of
simulation kernel

Monolithic

Hierarchical Models

Hierarchical module structure

“Flat” models

Debugging

Tkenv

None

Models Available

Few computer systems

Rich in communication
protocols

Scalability

Limit is the virtual memory of
computer

Some problems in large
networks

Parallel Simulation

PDES: Parallel Discrete Event
Simulation

Developed in Georgia Tech

Embeddability

Simulation kernel can be
embedded in other

None

applications

J

References

»» Home page: www.omnetpp.org

» Commercial version also exists: www.omnest.com

Downloadable

Tutorials (M/M/1 queue!)
Manual

Mailing List

Models

Simulation of Computer Networks I

Holger FURler - 21
Universitat Mannheim

GTNetS — The Georgia Tech Network Simulator

» complete new design (pure C++)
» main design goals: scalability, performance

» Download:

» a lot of protocols as network primitives (802.3/11 /1P / TCP)
» primitives for statistics generation / tracing

» natural support for distributed execution

» Mobility: RWP / specified waypoint

» Radio Channel Modelling: ?

The GTNetS Process

Develop Model in C++ (Algorithms)

. B

Write int main() yourself

. B

compile and link against GTNetS object files

. B

run

. . Holger FuRler - 23
Simulation of Computer Networks Universitat Mannheim

GTNetS — Discussion

» pure C++

— IMHO very nice
— BUT: have to provide Functions for reading scenarios etc.

» potentially a lot faster than ns-2

» BUT: lots of people still focus on ns-2 = newer protocols available,
more used means usually mor debugged

References - GTNetS

Download:

» Riley, George F. : “The Georgia Tech Network Simulator”, p. 5-12, In
Proc. of SIGCOMM 2003, Karlsruhe, Germany

. . Holger FuRler - 25
Simulation of Computer Networks I Universﬁét Mannheim

GlomoSim / QualNet

» C++/ ParSec (language for description of parallel processes)

» ParSec has to be installed separately (bad license for commercial
use)

» QualNet is commercial spin-off, GlomoSim free but no longer
maintained

The GlomoSim / QualNet Process

Develop Model in C++ (Algorithms)

. B

Create config.in File

. B

run (no tracing, statistics collected on-line)

. . Holger FuRBler - 27
Simulation of Computer Networks I Universﬁét Mannheim

GlomoSim / QualNet - Discussion

» Strengths:

— Ad-Hoc Networking (routing etc.)
— Radio Channel Modeling (Directional Antennas)
— alot of nodes possible

» Weaknesses:

— needs PARSEC
— licensing, sourcing (QualNet) / up-to-dateness (GlomoSim)
— tracing (for debugging)

GlomoSim vs. ns-2 — Memory Scalability

Memory usage w/o traffic w.r.t. number of nodes
250 1] 1] L 1] 1

T
ns_2 -
GloMoSim -
200 | |
T
150 |- -
_‘ o
&
o v
w .l
3 -
o _ | -
& .
0 i | i J l l l l
100 200 300 400 500 600 700 800 900 J
Nodes

. . Holger FuRler - 29
Simulation of Computer Networks I Universg[ét Mannheim

References — GlomoSim / Qualnet

» GlomoSim:

» QualNet:

. . Holger FuRler - 30
Simulation of Computer Networks Universitat Mannheim

SimpleSim

»» eigenes Projekt am Lehrstuhl

» ldee: Sacrifice Performance for

— Stability
— Reproducability
— Understandability

» So far:

— Pure Java

— Linear Movements

— UDG Radio Propagation

— MACS802.11 / ALOHA MACs
— AODV / DSR Implementation

» In Progress:
— Sim Distribution (SimpleGrid)

J

Wrap-Up — Which Simulator should | use?

» Criteria re-visited:

— General capabilities (flexibility, available models, re-use, ...)
» which specific problem / class of problems do | want to tackle?
* which orders of magnitude for simulation size?

— Hardware/software considerations
* which OS is available / needed?
« which compilers etc.?
— Graphical facilities
+ educational / scientific purpose?
— Statistical features
« tracing vs. inline statistics
— “Learning curve”, documentation, support
 how many languages do | have to learn?
— Output reports and plots

— What do the others in my community use?

