
r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

©T
ho

m
as

 H
ae

ns
el

m
an

n
–

Ap
pl

ie
d

Co
m

pu
te

r
Sc

ie
nc

e
IV

, U
ni

ve
rs

ity
 o

f
M

an
nh

ei
m

Lecture 2: Error correction

Exercise 2.1:

In a Hamming code word a check bit toggles. Can the mistake be detected and corrected and if yes, how?

Solution:

When checking the parity of a certain check bit the wrong parity will be detected and the counter is
incremented by the number of the particular check bit. Obviously other check bits will not fail because all
other bits are correct. Note that the counter does already contain the number of the erroneous check bit.
In other words: The normal algorithm of verifying bits considers data bits as well as check bits. No special
care has to be taken.

Exercise Sensor Networks – (till may 9, 2005)

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

©T
ho

m
as

 H
ae

ns
el

m
an

n
–

Ap
pl

ie
d

Co
m

pu
te

r
Sc

ie
nc

e
IV

, U
ni

ve
rs

ity
 o

f
M

an
nh

ei
m

Lecture 2: Error correction

Exercise 2.2:

The following Hamming code word is given: 01111001111. Create an error with as few changes as
possible that can not be detected.

Solution:

 Check bits are turquoise
 toggled bits are red

 12345678901 12345678901
 01111001111 11111000011

For a minimum of toggled bits a data bit should be chosen which influences as few check bits as possible.
Some data bits have only 2 check bits which care for them, e.g., bit number 9 (=8+1). So toggle 9, 8 and
1 and check whether 1 and 8 still result in an even parity (together with the data bits for which they are
responsible).

Note that less than 3 bit changes are not possible, because error correcting codes have a distance of
(2e+1) if e denotes the number of errors which can be corrected.

Exercise Sensor Networks

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

©T
ho

m
as

 H
ae

ns
el

m
an

n
–

Ap
pl

ie
d

Co
m

pu
te

r
Sc

ie
nc

e
IV

, U
ni

ve
rs

ity
 o

f
M

an
nh

ei
m

Lecture 2: Error correction

Exercise 2.2: (continued)

Now generate a bit error changing as many bits as possible. What algorithm do you use to accomplish
this?

Solution:

Iterate over all check bits 1, 2, 4, 8 and so on: Consider all data bits which influence the first check bit –
in this case 3, 5, 7, 9 and 11. In order not to change the parity an even number of bits can be inverted,
possibly including the check bit itself. Continue with the other check bits 2, 4 and 8 in the same way. But
when inverting bits this time take care not to invert those again which have already been changed. Why?
Because this would decrease the number of inverted bits and it would probably destroy the parity of the
lower check bits.

 12345678901 12345678901 12345678901
 01111001111 01111001111 result: 10000110000

Exercise 2.3:

A number of d bit error should be corrected. Explain why a distance of 2d is not sufficient for the code?

Solution:

The reason why the distance has to be 2d+1 and not only 2d is that for every incorrect code word there
has to be a short and a long way to the next correct code word. In the case of a distance of 5 it is always
possible to change 1 or 2 bits (namely those which are incorrect) in order to get to the next correct code
word. Changing 3 bits however is not sensible because it would already be sufficient to change another 2
bits to obtain a valid symbol. However if the distance was e.g., 4, there would be two possibilities to
change 2 bits in order to obtain a valid code word which would not be unique.

Exercise Sensor Networks

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

©T
ho

m
as

 H
ae

ns
el

m
an

n
–

Ap
pl

ie
d

Co
m

pu
te

r
Sc

ie
nc

e
IV

, U
ni

ve
rs

ity
 o

f
M

an
nh

ei
m

Lecture 2: Error correction

Exercise 2.4:

In the last lecture we have seen an estimation of how many redundant bits are necessary to detect and
correct 1 bit errors. Now do the same estimation for 2 bit errors. It is not necessary to find a particular
code, only a lower bound for the number of check bits is of interest.

How many bits are necessary to protect a 7 bits ASCII code against at most 2 toggled bits?

Solution:

The code should contain 2m data bits and a yet unknown number of r check bits.
Remark: The code will contain 2m+r symbols which are divided into 2m valid symbols and 2m+r-2m invalid
ones.

Either one- or two bit errors can occur:

1 bit errors: For each of the valid code words an invalid one can be created by simply swapping one of
the n bits.

2 bit errors: Again one of the n bits can be toggled. For the second error bit (n-1) possibilities remain.
At a first glance n(n-1) possibilities evolve. But since the order of the toggled bits does not
matter the number of possibilities shrinks by 50%. This means n(n-1)/2 erroneous code
words have to be considered for every valid code word.

No error: Of course we must not forget to consider the valid code words.

Exercise Sensor Networks

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

©T
ho

m
as

 H
ae

ns
el

m
an

n
–

Ap
pl

ie
d

Co
m

pu
te

r
Sc

ie
nc

e
IV

, U
ni

ve
rs

ity
 o

f
M

an
nh

ei
m

Lecture 2: Error correction

Exercise 2.4: (continued)

Solution:

In order to protect the 7 bit ASCII code against 2 simultaneous bit errors at last 7 check bits are necessary.

Exercise Sensor Networks

nn n−1
2

12m≤2rm

1 bit error

2 bit errors

valid code word

mr
mr mr−1

2
12m≤2rm

mrmr 2

2
1≤2r

77772

2
1≤27

106≤128

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

©T
ho

m
as

 H
ae

ns
el

m
an

n
–

Ap
pl

ie
d

Co
m

pu
te

r
Sc

ie
nc

e
IV

, U
ni

ve
rs

ity
 o

f
M

an
nh

ei
m

4000
3999

Lecture 2: Error correction

Exercise 2.5 (a):

For a given transmission channel there is an average of 1 error in 4000 bits. These single bit errors are
statistically independent. A single packet consists of 128 bytes. It is either transmitted fully and correctly
or not at all. The receiver can detect whether a packet was transmitted free of errors without any
additional costs. If an error occurred the receiver asks the sender only once for retransmission. The request
for retransmission is considered to be an ordinary packet of 128 bytes. If an error occurs in such a request
it is treated as if no request was sent.

How high is the overall data rate in this scenario (in percent of the data rate that could theoretically be
achieved if no error occurred)?

Solution: (a)

Exercise Sensor Networks

 A bit is transmitted correctly with a probability of

 128x8=1024 Bit with a P' of

 An error occurs in all other cases with a P' of

3999
4000

1024

≈77,4%

1−39994000
1024

≈22,6%

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

©T
ho

m
as

 H
ae

ns
el

m
an

n
–

Ap
pl

ie
d

Co
m

pu
te

r
Sc

ie
nc

e
IV

, U
ni

ve
rs

ity
 o

f
M

an
nh

ei
m

Lecture 2: Error correction

Exercise 2.5 (a):

Exercise Sensor Networks

1. attempt

Request for
retransm.

su
cc

es
s

er
ro

r

su
cc

es
s

er
ro

r

0,774 0,774

0,774

0,226

0,226

0,226

0,774x128 0,135x128

0,135x2x128

0,04x3x128

0,05x2x128

1 packet payload
2 lost packets

3 lost packets

2 lost packets

1 packet
payload

Ex
pe

ct
ed

 a
m

ou
nt

 o
f

pa
yl

oa
d

(N
ut

zd
at

en
)

Ex
pe

ct
ed

 a
m

ou
nt

 o
f

lo
st

 d
at

a

In general we can expect:

0,774x128 + 0,135x128 = ca. 116 bytes of payload (expectation value)
0,135x2x128 + 0,04x3x128 + 0,05x2x128 = ca. 63 bytes lost data (expectation value)

Utilization of channel with useful data:
116
11663

≈64,8%

2. attempt

su
cc

es
s

er
ro

r

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

©T
ho

m
as

 H
ae

ns
el

m
an

n
–

Ap
pl

ie
d

Co
m

pu
te

r
Sc

ie
nc

e
IV

, U
ni

ve
rs

ity
 o

f
M

an
nh

ei
m

Lecture 2: Error correction

Exercise 2.5 (b):

To make things easier we assume that a bit error occurs only once per packet. Rather than asking the
sender for retransmission we choose to employ forward error correction, e.g., using the Hamming code
from the lecture (the code itself is not of importance here).

How high is the actual data rate (in percent) compared to the one that would theoretically be possible
without forward error correction and if no errors occurred.

Solution (b)

In order to protect 1024 bits of data against 1 bit errors the following inequality has to hold:

1024+r+1 <= 2r

for r =11 we obtain

1024+11+1 <= 2048

The throughput (with useful data)
in this scenario is

Conclusion: Forward error correction can make more sense than using a protocol for error recovery when
it comes to equally distributed errors, e.g., while doing radio transmissions.

Exercise Sensor Networks

1024
102411

≈98,9%

Slightly different solutions

If the 11 check bits have to fit into the
packet (of 128 bytes) the calculation would
be (1024-11)/1024=ca. 98.9% as well.

If the check bits should be byte aligned the
calculation would be (1024-16)/1024=98.4%

r e c h n e r n e t z e & m u l t i m e d i a t e c h n i k

©T
ho

m
as

 H
ae

ns
el

m
an

n
–

Ap
pl

ie
d

Co
m

pu
te

r
Sc

ie
nc

e
IV

, U
ni

ve
rs

ity
 o

f
M

an
nh

ei
m

Lecture 2: Error correction

Exercise 2.6: Explain why protecting n bits of data against single bit errors with forward error correction
requires only O(log(n)) check bits while protecting a fixed number of c bits against a
number of n toggled bits requires O(2n) check bits. Hint: Think of the table consisting of
valid and invalid code words and of the method in which bits a checked in the Hamming
code.

Solution:

Protecting against single bit errors can e.g., be done with the Hamming code in which n check bits take
care of O(2n)* data bits. Adding only one more check bit is enough to double the number of data bits
which can be protected.

However when protecting code words of a fixed length against n errors (toggled bits) each invalid code
word that might occur has to appear in the code a well. You can imagine the code as a (long) list of all
possible code words. Some of them are meaningful and some of them are marked as invalid. Each valid
code word will be accompanied with a couple of others that are invalid. With an increasing number of bits
the possibilities for errors increase exponentially because each error bit can be combined with the other
error bits as seen in exercise 2.4.

* ([2n-n] to be precise)

Exercise Sensor Networks

