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ABSTRACT

Ubiquitous computing environments are typically based upon ad
hoc networks of mobile computing devices. These devices may be
equipped with sensor hardware to sense the physical environment
and may be attached to real world artifacts to form so-called smart
things. The data sensed by various smart things can then be com-
bined to derive knowledge about the environment, which in turn
enables the smart things to “react” intelligently to their environ-
ment. For this so—called sensor fusion, temporal relationships (X
happened before Y) and real-time issues (X and Y happened within
a certain time interval) play an important role. Thus physical time
and clock synchronization are crucial in such environments. How-
ever, due to the characteristics of sparse ad hoc networks, classical
clock synchronization algorithms are not applicable in this setting.
We present a time synchronization scheme that is appropriate for
sparse ad hoc networks.
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1. INTRODUCTION

Consider ubiquitous computing scenarios where everyday things
(such as watches, coffee cups, books) are made “smart” by attach-
ing small computing devices to them that are able to sense the phys-
ical environment (e.g., location, illumination, temperature, acceler-
ation) and are able to communicate via short range radio with each
other. Such smart things are spontaneously networked: if they are
brought into the vicinity of one another, acommunication link is es-
tablished, which is removed again when the smart things are moved
away from each other. In general, communication links are rather
short lived and the resulting network of smart things is highly dy-
namic.

In such a setting, one often wants to reason about the “real world”
(the environment of the smart things) as sensed by smart artifacts.
The idea is to combine the information collected about the environ-
ment by the individual smart things into some higher level infor-
mation or knowledge [4, 7, 8, 11] also known as sensor fusion.

Consider for example environment monitoring systems, which in-
volve the detection of direction and speed of certain phenomena
such as fire, oil slicks, water pollution, or animal herds. Mobile
computing devices equipped with sensors, clocks, and short range
radio are deployed in the environment (e.g., dropped into water,
or attached to animals). The devices record the time when they
detect or no longer detect the phenomenon and communicate this
information to other devices as they pass by. In order to determine
the direction of the phenomenon, temporal ordering of these events
originating from different devices (and thus different clocks) has
to be determined. To estimate the speed of the phenomenon time
differences between events originating from different devices have
to be calculated.

Time synchronization is also useful for estimating proximity of and
distances between smart things by taking into account the points in
time when a certain phenomenon in the environment (e.g., sound,
light, air pressure) is sensed by different smart things.

These examples indicate that temporal ordering and other real-
time® issues play an important role in such environments. As we
will see later, neither logical time [12, 14] nor classical physical
clock synchronization algorithms [3, 13, 16, 17] can be used to
solve this problem in general. We will suggest an algorithm that
solves the temporal ordering problem and other real-time issues in
environments sketched above.

2. ADHOC NETWORKS

Ad hoc networks [2] are networks of mobile wireless computing
devices. Due to the limited communication range of wireless tech-
nology (about 10 meters for Bluetooth [1]), nodes of the network
form spontaneous connections when they are brought within the
communication range of each other, providing typically a symmet-
rical communication link where message exchange is possible in
both directions. The limited communication range and the mobility
of the nodes lead to frequent reconfiguration of the network topol-

ogy.

The left hand side of figure 1 shows the configurations (topologies)
of an ad hoc network consisting of three nodes at two points in
time t1 < t2. Atty nodes 1 and 2 are able to communicate with

Throughout the paper the term real-time refers to UTC.
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Figure 1: Connectivity vs. message flow in ad hoc networks

each other, and at ¢ nodes 2 and 3 are able to communicate with
each other. This may result from the following physical setting:
nodes 1 and 3 are out of the communication range of each other.
At t1 node 2 is within the communication range of node 1, then
node 2 is moved out of the communication range of node 1 into the
communication range of node 3.

Assuming this setting, there is no point in time ¢; < ¢ < ¢, where
communication between node 1 and 3 (either directly or indirectly
via node 2) is possible. This example shows an important property
of ad hoc networks: the frequent temporary existence of network
partitions, especially in sparse ad hoc networks with only a few
nodes distributed over a large area (relative to the communication
range) in contrast to dense ad hoc networks.

Despite this partitioning, it is often possible for two nodes that al-
ways reside in different partitions to communicate in an indirect
way with each other by using store and forward techniques. In fig-
ure 1, node 1 can send a message to node 2 at ¢y, which is then
stored in node 2 and forwarded to node 3 at ¢4, resulting in an uni-
directional delayed message flow from node 1 to node 2, which is
depicted in the right hand side of figure 1. In contrast, an immedi-
ate message flow is possible if there is no need to store a message
on intermediate nodes as in classical networks.

3. TIMEINAD HOC NETWORKS

Ad hoc networks as described in the previous section are impor-
tant for ubiquitous computing environments, where mobile wireless
computing devices equipped with sensor hardware are embedded in
real-world artifacts to form so—called smart things.

The information collected by individual smart things about the en-
vironment is often combined to form higher level information or
knowledge about their environment. This knowledge can in turn be
used by these smart things to react intelligently to changes in the
environment.

When combining the sensor data, temporal relationships (X hap-
pened before Y) and real-time issues (X and Y happened within a
certain time interval) play an important role. Logical time cannot
be used to determine temporal relationships here, because we con-
sider events and their causal relationships in the real world, which
do not manifest themselves in network messages between the event
generating entities, which is a basic assumption for algorithms im-
plementing logical time [12, 14].

So we have to use physical time shared by the smart things, requir-
ing some means of clock synchronization. However, the frequent
temporary network partitions in sparse ad hoc networks are a seri-
ous problem for classical clock synchronization algorithms.

Consider for example figure 2, which models an environment mon-
itoring system ad hoc network as sketched in the introduction. At
real-time ¢, device 1 detects the phenomenon. At ¢ device 2 de-
tects the phenomenon. At ¢3 device 2 passes by device 3, acommu-
nication link is established and E is sent to device 3. At ¢4 device
1 passes by device 3, a link is established and E is sent to device
3.

Now device 3 wants to determine speed and direction of the phe-
nomenon and therefore has to determine whether Ey happened af-
ter E» and the time difference between E; and E».

Classical clock synchronization algorithms rely on two important
assumptions: first, the ability to periodically exchange messages
between nodes that have to be synchronized, and second, the ability
to estimate the time it takes for a message to travel between two (not
necessarily adjacent) nodes to be synchronized.

The scenario depicted in figure 2 is a serious problem for classical
clock synchronization algorithms with the above assumptions, be-
cause the clocks of nodes 1 and 2 have already to be synchronized
when they sense events F1 and E» (and record the time when they
were sensed), in order to compare the time stamps of E; and E>
later when they arrive at node 3. However, as shown in figure 2
there is no way for nodes 1 and 2 to communicate for all ¢ < t3,
which makes clock synchronization of nodes 1 and 2 impossible be-
fore E; and E are sensed (the first assumption for classical clock
synchronization algorithms is violated).

Even at time ¢4 where an unidirectional delayed message path from
node 2 to node 1 via node 3 exists, clock synchronization of nodes 1
and 2 seems almost impossible, because this path is unidirectional
and arbitrarily delayed, ruling out good estimation of message de-
lay (violating assumption two of classical clock synchronization
algorithms).

Last but not least the future might probably bring us millions of
smart everyday things, which all potentially need synchronized
clocks because one day they could meet and want to exchange of-
fline sensed data. In fact, only relatively few smart things will ever
meet in reality, but one cannot know in advance which ones. This
presents an enormous scalability challenge for classical clock syn-
chronization algorithms.

4. COMPUTER CLOCKS

Todays computing devices are equipped with a hardware oscillator
assisted computer clock, which implements an approximation C(t)
for real-time t. C(t) = kftto w(r)dr + C(to) is a real valued
function over real-time ¢, which depends on the angular frequency
w(t) of the hardware oscillator. & is a proportional coefficient.
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Figure 2: Time synchronization in ad hoc networks

For a perfect hardware clock ‘i—f would equal 1. However, all hard-
ware clocks are imperfect, they are subject to clock drift. The exact
clock drift is hard to predict because it depends on environmen-
tal influences (e.g., temperature, pressure, power voltage). One can
usually only assume that the clock drift of a computer clock doesn’t
exceed a maximum value p. This means that we assume:

dc
_p< T <
l-—ps - <1+p 1)

A typical value for p achievable with today’s hardware is 10~°,
which means that the computer clock drifts away from real-time
by no more than one second in ten days, which is still a significant
value. Note that different computer clocks have different maximum
clock drift values p;.

Clock synchronization now tries to equalize C;(t) fori = 2,..., N
computing devices connected by a network. It is not sufficient to
synchronize at one point in real-time ¢,,, since the clocks will drift
away afterwards. So either the precisions of the clocks dgi have to
be adjusted as well, or synchronization of the C; has to be repeated
over and over again. Synchronizing the clocks with UTC is a spe-
cial case called external synchronization where one or more of the
computing devices is equipped with a special hardware clock, like
an atomic clock.

Due to unpredictability and imperfect measurability of message de-
lays, physical clock synchronization is always imperfect. There-
fore one has to take care to avoid false statements when reasoning
about temporal ordering and real-time issues based on synchro-
nized computer clocks.

5. SYNCHRONIZATION ALGORITHM

The algorithm we will present considers message flows in ad hoc
networks, which can be depicted by (time independent) message
flow graphs, where the nodes of the graph correspond to network
nodes, each equipped with its own computer clock. Paths in the
graph correspond to possibly delayed message flows between the
nodes.

Computing nodes are able to sense events in the real world via sen-
sor hardware. When node 7 senses an event E at real-time ¢(E)
it generates a time stamp S;(E) using its local clock, which may
later be passed to other nodes inside exchanged messages.

The algorithm enables all participating nodes to reason about sets

of time stamps (e.g., determine temporal ordering and time spans)
received from arbitrary nodes.

Goals

Handles all kinds of partitioning in sparse ad hoc networks.

e Does not require a particular network topology beyond the
one required already by the application that needs time syn-
chronization.

e Correctness: When the algorithm claims a certain property
on a set of time stamps {S;(E;)} suchas S1(E1) < S2(E?2),
then this property must also hold on the corresponding set
of points in real time {¢(E;)}, i.e., t(E1) < t(E2). How-
ever, the algorithm is allowed not to claim such a property on
S;(E;) although the property holds on the corresponding set
t(E;). For example, if t(E,) < t(E2) then the algorithm is
allowed to report S1(E1) maybe < S2(E-).

e Usefulness: Minimal number of maybe results.
o Scalability.

e Performance: Low message overhead for time synchroniza-
tion.

Assumptions
e Computer clocks with known maximum clock drift p;.

e When an application message is exchanged between two ad-
jacent nodes, the connection between the nodes remains es-
tablished long enough to exchange another (synchronization
algorithm) message between these two nodes.

5.1 Theldea

The basic idea of the algorithm is not to synchronize the local com-
puter clocks of the devices but instead generate time stamps using
unsynchronized local clocks. When such locally generated time
stamps are passed between devices, they are transformed to the lo-
cal time of the receiving device.

Due to various reasons such transformations cannot be done with
high precision, therefore the algorithm uses time intervals as a
lower and upper bound for the exact value. When a message con-
taining a time stamp is transferred between devices, the time stamps
are first transformed from the local time to UTC (which is used as
a common time transfer format) and then to the local time of the
receiver.
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Figure 3: Message delay estimation

Stated in more detail, the algorithm determines lower and upper
bounds for the real-time passed from generation of the time stamp
in the source node to arrival of the message in the destination node,
transforms these bounds to the time of the receiver and subtracts
the resulting values from the time of arrival in the destination node.
The resulting interval specifies lower and upper bounds for the time
stamp relative to the local time of the receiving node.

5.2 Time Transformation

As we will see in the following section, transforming real-time dif-
ferences At into computer clock differences AC and vice versa is
at the heart of the algorithm. These transformations cannot be done
exactly due to the unpredictability of the computer clocks, but will
result in estimates (lower and upper bounds). Basis for the trans-
formation is the difference based version of inequality 1:

AC
—p< 2 <
l—ps g sttp (@)

which can be transformed into (1 — p)At < AC < (1 + p)At
and % <At < %, which means that we can approximate the
computer clock difference AC' that corresponds to the real-time
difference At by the interval [(1 — p)At, (1 + p)At]. Vice versa
the real-time difference At that corresponds to the computer clock
difference AC can be approximated by the interval [2S | A<

. T+p ' 1-p
accordingly.

In order to transform a time difference AC from the local
time of one node (with p;) to the local time of a different
node (with p2), AC is first estimated by the real-time interval
lﬁfl , lﬁ—pcl], which in turn is estimated by the computer time

interval [ACi—;’;—f , AC}—fZ—f] relative to the local time of node 2.

5.3 Message Delay

As pointed out above, the algorithm will determine estimations for
the lifetime of a time stamp. For this it has to know estimations
for the message delay d of messages sent between adjacent nodes.
Since we cannot assume a constant message delay due to the highly
dynamic characteristics of ad hoc networks, message delay has to
be measured for each transferred message in order to achieve the
correctness goal.

One important observation is that a message transfer between two
nodes is often accomplished by sending two messages, the message
that is to be transferred from the sender to the receiver and an ac-
knowledgment back from the receiver to the sender to inform the

sender of the successful arrival of the message. Thus, it is possi-
ble to measure the round trip time rtt (time passed from sending
the message in the sender to arrival of the acknowledgment in the
sender) using the local clock of the sender. The message delay can
then be estimated by the the lower bound 0 and the upper bound
rtt. Now the sender knows an estimation for the message delay,
but in our algorithm the receiving side has to know this approxima-
tion in order to update the received time stamp. Transferring the
estimation from the sender to the receiver would take another pair
of messages (one for passing the estimation from sender to receiver
and an ack back to the sender to inform the sender of the success-
ful arrival of the message), which would result in 100% message
overhead.

Now have a look at figure 3, which shows two consecutive ac-
knowledged message exchanges between a pair of sender and re-
ceiver. We want to estimate the message delay d for message Mo.
Using the technique pointed out above the estimation would be
0 < d < (ts —t2) — (ts — t5)772= in terms of the sender’s
clock, where ps and p, are the p values for sender and receiver,
respectively. A different estimation is

0<d< (b5 —ta) — (b — tr) @3

in terms of the receiver’s clock that makes use of two consecutive
message transfers. The big advantage of this second estimation
is that the receiver knows an estimation for d without additional
message exchanges since t2 — t; can be piggybacked on M». We
will call ¢5 — 4 the round trip time rtt for the message, which is
measured using the receiver’s clock, and to — ¢ the idle time idle
for the message, which is measured using the sender’s clock.

However, the second estimation has two disadvantages. The indi-
vidual values for to — ¢1 and ts — t4 can become quite large if the
nodes communicate rarely, which leads to bad estimations due to
the clock drift of the local clocks. This problem can be relaxed by
sending a dummy message if the resulting idle value for the mes-
sage would be to large.

The second disadvantage stems from the fact that ¢4, ¢; and s, 2
are associated with different message transfers, forcing both sender
and receiver to keep track of state information between message
transfers (¢1 and ¢4 in figure 3, respectively). This is problematic if
a node sends messages to or receives messages from many different
nodes over time. However, this problem can be relaxed by deleting
state information at the cost of a later dummy message exchange



to reinitialize the clock values, for example in a least recently used
manner. Thus, one can trade off space for message overhead.

54 Time Stamp Calculation

The algorithm for time synchronization in sparse ad hoc net-
works consists of two major parts. First, a representation of time
stamps and rules for transforming them when they are passed be-
tween nodes inside messages, and second, rules for comparing time
stamps.

A time stamp S;(E) for event E is represented in node 7 by the
interval [C;;(E), C;,»(E)] where the end points of the interval are
computer clock values relative to the computer clock in node 4,
such that the value of the computer clock at real-time ¢( E) showed
a value C;(E) with C;;(E) < C;(E) < C;(E). This means
that S;(E) is an estimation of the unknown value C;(E).

Now consider figure 4. Device 1 wants to pass a time stamp on to
device 2, 3, ..., N along the depicted chain of nodes. Each node i
has 3 attributes, the local time r; when the message containing the
time stamp interval is received, the local time s; when the message
containing the time stamp interval is sent, and the clock drift p;. All
time values are measured using the local clock of the device. Each
edge has two attributes rtt; and idle;, the round trip time for send-
ing the message measured using the clock of the receiving node as
described in the previous section, and the idle time elapsed after
sending the last message over this edge measured using the clock
of the sending node. Separate instances of all attributes (except p;
that is a constant attribute of the computer clock) have to be main-
tained for each message, for simplicity we only consider a single
message transfer from node 1 to node V.

The generator of a time-stamped message is a special case, because
it does not receive a message. Instead, r; is set to the time value it
wants to pass along (NOW in figure 4). Now let us consider the
time stamp interval as it is being passed along the chain from node
1tonode N.

Node 1
[r1, 1] = [NOW , NOW]
Node 2
. B 1+p2 . 1—po
[7"2 (s1 1"1)1 — (rtt1 zdlell +p1) ,
1—p2
ro — (81 —7"1)1+p1
Node 3
1+ 1+
[1“3—(81 —Tl)l_z:j —(82—1“2) _Zz
1+p3 . 1—p3 _ —P3
—(rtt1 - zdlel—l T ) — (rtt2 zdleg Ty 2),
1-— — p3
7“3—(81—7“1)1 —(2— 2)1+p
Node N

— 1+pN)zM_rm_l

i=1 pi
N-1

idle;
+(1-

( pN);Hp,’

N*l'S r

r _1_ [

N = ( pN)z:11+P’

The interval for node 1 is straightforward, it consists just of the
single point in time NOW . For node 2 we take the time when
the message containing the time interval is received in node 2 (r3)
and subtract the time the message was stored in node 1 after being
generated and before being sent (s1 — r1). The round trip time
minus the idle time rtt; — 4dle; is used as an upper bound for
the message delay (0 is used as the lower bound). Transforming
time values between the different clocks as described in section 5.2
results in the interval shown for node 2. Continuing this way with
subtracting total node storage time from message arrival time and
using the sum of round trip minus idle times as the upper bound for
the total message delay, and assuming rtto = 0, one will end up
with the interval shown for node N.

5.5 Implementation

The basic idea for implementing the algorithm is to incrementally
calculate the three sums in the formula shown for node IV in the
previous section as the message is passed along a chain of nodes.
The implementation assumes an asynchronous, reliable communi-
cation mechanism but can easily be extended to unreliable commu-
nication mechanisms.

The timed message can be represented in the following way using
C:

struct Message {
Time begin, end, received,
Tine lifetime_mn, lifetine_max, idletinme_mn;
[* .00

b

where begi n and end are the left and right ends of the interval,
recei ved is the time of arrival, | i fetime_mnand |life-
t i me_max are lower and upper bounds for the real-time passed
from generation of the time stamp to the arrival in the current node,
i dl eti me_m n is the accumulated idle time. Thatis, | i fe-
time_max, idletinme_min,and |ifetine_.m n are used to
incrementally calculate the three sums in the formula for node N
shown in the previous section. begi n, end, and r ecei ved don’t
need to be transferred between nodes, they are local variables but
are included into the message here for simplicity.

Ti me is an appropriate representation for points in time and time
differences. Computer clocks are discrete, so an integer type would
be appropriate. But care has to be taken because of the clock drift,
which may result in fractional values, so either a floating point type
must be used or the results have to be rounded such that the result-
ing integer interval always contains the floating point interval. Here
we assume floating point values.

The generator of a time—stamped message performs the following
actions:



Figure 4: Message flow graph

1 Generator:

2 Message M

3 M begin = Mend = Mrecei ved = NOW
4 Mlifetine_mn Mlifetime_max = 0;
5 Midletine_mn 0;

where NOW refers to the current value of the local clock. As
explained in the previous section the interval is initialized to
[NOW,NOW]. All other fields are set to zero.

A time stamped message is sent using the following actions:

1 Sender:

2 Message M /* locally generated or received */
3 Time idl eend = NOW

4

5 I F (idlebegin[receiver] == 0 OR

6 idleend - idlebegin[receiver] > max_idle)
7 THEN

8 send <sync> to receiver;

9 recei ve <ack> fromreceiver;
10 idl eend = NOW
11 i dl ebegi n[receiver] = idleend;
12 ENDI F
13
14 send <xmt(M idleend - Mreceived,
15 idleend - idlebegin[receiver],
16 | ocal _rho)> to receiver;

17 recei ve <ack(resend)> fromreceiver;
18 i dl ebegi n[receiver] = NOW

19

20 IF (resend == TRUE) THEN

21 idleend = NOW

22 send <xmt(M idleend - Mreceived,
23 idl eend - idlebegin[receiver],
24 | ocal _rho)> to receiver;

25 recei ve <ack> fromreceiver;

26 i dl ebegi n[recei ver] = NOW

27 ENDI F

The sender first checks if it does not know the time when the last
message was sent to the receiver (line 5) or if the idle time is too
large (line 6) to avoid large time stamp intervals as described in
section 5.3. If so, it sends a sync message and waits for an ack to
initialize i dl ebegi n[ recei ver]. Then the sender transmits
the message to the destination node along with the time the message
was stored in the current node (line 22) and the idle time (line 23)
according to its local time with maximum clock drift | ocal _r ho
and waits for an acknowledgment containing a parameter r esend.
If r esend is true then the message is sent again in order to enable
the receiver to measure round trip time.

The receiver of a message performs the following actions:

1 Receiver:

2 I F (receive <sync> from sender) THEN

3 rttbegi n[ sender] = NOW

4 send <ack> to sender;

5 ELSEI F (receive <xmt(M lifetinme, idletine,
6 rho)> from sender)

7

8

THEN
Time rttend = NOW

9 I F (rttbegi n[sender] == 0) THEN
10 rttbegi n[ sender] = NOW
11 send <ack(TRUE)> to sender;
12 ELSE
13 Mlifetine_max += lifetime/ (1 - rho);
14 Mlifetime_mn +=lifetime/(1 + rho);
15 Midletine_mn +=idletime/ (1 + rho);
16 M begin = rttend
17 - Mlifetine_max*(1 + | ocal _rho)
18 + Midletine_min*(1 - |ocal _rho)
19 - (rttend - rttbegin[sender]);
20 Mend = rttend
21 - Mlifetime_mn*(1 - local _rho);
22 Mlifetime_max += (rttend
23 - rttbegin[sender])*(1 - local _rho);
24 rttbegi n[ sender] = NOW
25 send <ack(FALSE)> to sender;
26 ENDI F
27 ENDIF

The receiver waits for a sync or xmi t message from a sender. If
it receives a sync, it just initializes r t t begi n[ sender] and
returns an ack to the sender.

If it receives an xmmi t message the receiver first checks if it does
not know the time when the last message arrived from this sender
(line 9) and just initializes rt t begi n[ sender] and returns an
ack( TRUE) to the sender asking it to resend the message in this
case.

If the sender knows r t t begi n[ sender ] it can update the fields
of the message according to the formula in the previous section
and can calculate M begi n and M end. Note that the received
M |i f eti me_max does not yet include the last rtt value, so it has
to be explicitly subtracted (line 19) without time transformation,
since it has been measured using local time of the receiver. Only
afterwards M | i f et i me_nax is updated to include the last rtt
value (line 23) transformed to UTC. Finally the receiver sends an
ack back to the sender.

The checks for idl ebegin[receiver] and rttbe-
gi n[ sender] in sender and receiver respectively enable both
the sender and receiver to independently run garbage collection
algorithms to keep the setsi dl ebegi nand rtt begi n small as
described in section 5.3.
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Figure 5: Accuracy depending on age and number of hops

5.6 Interval Arithmetic

Using the algorithm described in the previous sections, we are now
able to answer the questions posed in the introduction using a spe-
cial interval arithmetic, which is based upon [5]. For instance to
determine if [t1, t2] happened before [ts, t4] the following formula
can be used:

YES ta < i3
[t1,t2] < [t3, ta] = NO ta < t1
MAYBE otherwise

To determine whether [t1, 2] and [ts, t4] happened within a certain
real-time span X the following formula is used:

[[t1,t2] — [t3,ta]] < X

YES max(ts,t2) — min(ts, t1) < X(1 — p)
= NO ma.x(tg, tl) — min(t4, tz) > X(]. + p)
MAYBE otherwise

Note that the real-time interval X has to be transformed to local
time first by multiplying by 1 & p, since the time stamp intervals
are relative to local time.

The real-time “distance” between two time stamp intervals can be
estimated using the following formula:

|[t1, 2] — [t3, #4]| < (max(ts, t2) — min(ts, 1))/(1 — p)

Again the calculated local time difference has to be transformed to
real-time by dividing by 1 — p.

When comparing points in time (for example a locally generated
t) against time stamp intervals received from other devices, the

time stamp ¢, is transformed into the interval [t, ¢, ] and used with
the above formulas.

6. ACCURACY

In order to get an impression of the accuracy of the synchronization
algorithm we did some measurements on a cluster of 800 MHz Pen-
tium Il Linux PCs connected by 100 Mbit/s Ethernet using TCP
and assuming p = 1075, This has to be considered as a best case
scenario, since sensor networks typically use a networking tech-
nology providing a bandwidth well below 1 Mbit/s and embedded
processors with no more than 10 MIPS. However, since the algo-
rithm is neither especially CPU intensive nor network bandwidth
intensive, the measurements should give a good impression of the
algorithm’s possible accuracy.

Synchronization inaccuracies show up as (increasing) time stamp
intervals and stem from two different sources: first, the age of a
time stamp (due to the clock drift), and second, the number of hops
a time stamp has been passed along (due to using round trip time
as an estimation for message delay).

Therefore we did two measurements, the first of which measures
time stamp interval length depending on the age of a time stamp.
Since the error resulting from age is additive over the nodes, we
generate a zero length time stamp interval in node 1, store it for X
seconds and send it to node 2, which prints out the length of the
received time stamp interval. We repeat this 1000 times and cal-
culate the average. Figure 5 shows the results?, indicating a linear
increase of inaccuracy with age.

The second measurement determines time stamp interval length de-
pending on the number of hops a time stamp has been passed along.
We generate a zero length time stamp interval in node 1 and pass it
on to node 2, 3, ..., 7, which all print out the length of the received
time stamp interval. \We repeat this 1000 times and calculate the
averages. Figure 5 shows the results®, indicating a linear increase

2The exact interval lengths are 195, 585, 982, 1378, 1775, 2170,
2609, 2992, 3369, 3764us.

3The exact interval lengths are 0, 201, 400, 562, 752, 926, 1113,



of inaccuracy with the number of hops.

Since the two types of inaccuracies are additive one can interpret
the measurements as follows: Passing a time stamp along no more
than 5 hops with an age of no more than 500 seconds one can ex-
pect an inaccuracy of no more than 3ms in the examined setting,
which is a reasonable value compared to existing clock synchro-
nization algorithms. What this means is that the algorithm will be
able to give an exact answer (as opposed to MAYBE) when com-
paring time stamps representing points in time with more than 6ms
in between, since then the resulting time stamp intervals (3ms each)
cannot overlap. With less than 6ms in between the algorithm might
still give an exact answer, but MAY BE answers are likely.

7. IMPROVEMENTS

There are several ways to improve the accuracy of the algorithm
(i.e., reduce the probability of MAYBE results), which are worth
further investigation.

One idea to avoid MAYBE results when comparing time stamps
originating from the same node is to keep a history of time stamps
instead of only one time stamp. Instead of updating the single time
stamp upon receipt, the receiving node appends the updated time
stamp together with a unique node identification 4 and its p; value
to the time stamp history or reuses a time stamp from the history if
there already is an entry for this node in the history. If comparing
time stamps results in MAYBE then the histories of the compared
stamps are searched for common nodes and the comparison is re-
peated using the time stamps of these common nodes, transforming
time values if necessary, using the p values stored in the history.
This is likely to give a “better” answer, since inaccuracy increases
with age and hop count of the time stamps. For the same reason the
accuracy of calculated real-time spans can be improved by using
“younger” time stamps from the history in the same way whenever
possible.

A different and more general idea is to replace MAYBE results
with a probability depending on the layout of the compared time
stamp intervals, i.e., the algorithm would then answer X < Y with
probability p instead of Xmaybe < Y. To implement this we
have to find out probability distributions for the time instants over
the time stamp intervals.

Consider for example the two overlapping time stamp intervals Sy
and Sz with t1 < t3 < t2 < t4 shown in figure 6, for which the
algorithm would answer MAY BE when asked whether S; < S». If
we know probability distributions p1 (¢) and p2(t), such that p; (C;)
is the probability that the exact point in time represented by S; is
C;, we can calculate the probability p for S1 < S» by “iterating”
over the possible C; values and summing up the probabilities for
Ci1 < Cs:

“oo) ([ pa(arag) a (@
[ ro ([ )

For uniform distributions p; (t)* this evaluates to

1273ps.
“pi(t) = 1/(t2 — t1) for t € [t1,t2] and O otherwise; pa(t) like-
wise

Figure 6: Overlapping time stamp intervals

ts —t1
to —t1

ta(ts —ts) — (t3 — t3)/2
(t2 — t1)(t4 - tS)
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Assuming for example t; = 0,t2 = t4 = 2, and t3 = 1 we can
calculate the probability for S; < S» as 0.75. However, assuming
a uniform distribution usually is an oversimplification, since due to
the characteristics of the algorithm® the probability in the middle
of the interval is much larger than at the ends. It remains an open
task to determine good probability distributions. Furthermore it has
to be investigated for which cases knowing a probability instead of
MAY BE is advantageous for applications.

8. RELATED WORK

There has been much work on physical clock synchronization in the
past [3, 13, 16, 17]. However, most of the proposed synchroniza-
tion algorithms, including the well known Network Time Protocol
[15], rely on a network that is not partitioned and where it is al-
ways possible to produce good estimations for the message delay.
As pointed out in section 3, this is not the case for sparse ad hoc
networks. Furthermore, some of the algorithms do not have the
correctness property pointed out in section 5, possibly resulting in
claiming false properties on a set of time stamps.

The offline algorithms presented in [6, 9] allow offline time syn-
chronization, i.e., after the distributed computation is finished or
after a certain amount of data has been collected. However, these
offline algorithms assume a constant message delay and that the
actual clock drift is a linear function in time and therefore only
produce approximations.

Elson and Estrin present a technique called post—facto synchroniza-
tion [10], which is also based upon unsynchronized local clocks but
limits synchronization to the transmit range of the mobile comput-
ing nodes and is (as the authors claim) “inappropriate for applica-
tions that need to communicate a time stamp over long distances or
time”, which is the focus of our algorithm.

Global infrastructures like GPS provide an accurate time base.
However, GPS is not suitable for use in a large class of smart de-
vices due to its high power consumption and the required line of
sight to the GPS satellites.

Logical time algorithms such as [12, 14] provide a solution for
causal ordering of events, but they require that causal dependencies
between event generating entities manifest themselves in a network
message exchange between these entities. This assumption does
not hold here, since we are talking about causal relationships in the
real world.

5We use 0 and rt¢ as lower and upper bounds for the message delay.
It is much more likely that the actual message delay is about rtt/2
than 0 or rtt.



9. CONCLUSION AND OUTLOOK

We pointed out the problem of physical time synchronization in
sparse ad hoc networks giving two reasons why classical clock syn-
chronization algorithms fail in this environment.

We then presented a synchronization algorithm suitable for a cer-
tain class of applications of sparse ad hoc networks, which trans-
forms time stamps exchanged between nodes inside messages to
the local time of the receiver instead of adjusting the clocks. The
algorithm has a low resource and message overhead and therefore
is well suited for resource restricted distributed sensor networks.

There are several prototype implementations of the algorithm. We
are currently working on an event distribution service with tem-
poral delivery order of time stamped events for ad hoc networks,
which is based on the presented algorithm. We intend to use
this service for time dependent sensor fusion in the Smart-Its
project[4].

Further research will focus on working out the improvements
sketched in section 7. Another interesting point is how to select the
initial time stamp interval that represents the point in time when an
external event has been sensed. In the description of the algorithm
we assumed that the event we want to time stamp happens “inside”
the computing device and therefore we started with a zero length
interval [NOW, NOW]. However, often a “real world” event is
sensed by an external sensor, which itself is connected to the com-
puting device. Furthermore, the detection of the event in the com-
puting device might be indeterministically delayed due to software.
In such cases one should already start with a non—zero time inter-
val that contains the point in time the event was sensed. There is
no obvious way to determine this interval except calculating it from
the properties of the technology that is used. Last but not least, we
will have to examine and evaluate different strategies for handling
connections to large numbers of peers as pointed out at the end of
section 5.3.
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