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Abstract. Privacy homomorphisms (PHs) are encryption transfor-
mations mapping a set of operations on cleartext to another set of
operations on ciphertext. If addition is one of the ciphertext operations,
then it has been shown that a PH is insecure against a chosen-cleartext
attack. Thus, a PH allowing full arithmetic on encrypted data can
be at best secure against known-cleartext attacks. We present one
such PH (none was known so far) which can be proven secure against
known-cleartext attacks, as long as the ciphertext space is much larger
than the cleartext space. Some applications to delegation of sensitive
computing and data and to e-gambling are briefly outlined.
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1 Introduction

The first general approach to encrypted data processing is due to the authors
of [10], when they introduced the notion of privacy homomorphism (PH from
now on). Basically, such homomorphisms are encryption functions Ek : T ′ −→ T
allowing a set F of operations on encrypted data without knowledge of the
decryption function Dk. Knowledge of Dk allows the result of the corresponding
set F ′ of cleartext operations to be retrieved. The availability of secure PHs
is central to the development of multilevel secure computation underlying such
applications as computing delegation, data delegation and e-gambling: the idea
is to encrypt data at a classified level, to process them at an unclassified level
and to decrypt the result at a classified level. By way of illustration, consider
the following example of PH, given in [10]
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Example 1. Let p and q be two large and secret primes (100 decimal digits
each). Let m = pq be public. Define the cleartext set as T ′ = Zm and the set of
cleartext operations as F ′ = {+m,−m,×m} consisting, respectively, of addition,
subtraction and multiplication modulo m. Let the ciphertext set be T = Zp×Zq.
Operations in the set F of ciphertext operations are the componentwise version
of those in F ′. Define the encryption key as k = (p, q) and the encryption
transformation as Ek(a) = [a mod p, a mod q]. Given k = (p, q), the Chinese
remainder theorem is used to compute Dk([b, c]). A technical detail is that when
the unclassified level computes on encrypted data, it cannot reduce partial results
to the secret moduli p and q; only reduction to the public modulus m is possible,
so that in fact the unclassified level operates on Zm×Zm; however, at decryption
time, knowledge of the key allows the classified level to map encrypted results
from Zm × Zm back to Zp × Zq prior to using the Chinese remainder theorem.

Unfortunately, it is shown in [3] that this PH can be broken —i. e., p and q
can be found— by a known-cleartext attack. •

Next follows a summary of the state of the art on PHs. If a PH preserves
order, then it is insecure against a ciphertext-only attack. If addition is one of
the ciphertext operations of a PH, then such a PH is insecure against a chosen-
cleartext attack ([1]). With the exception of the RSA algorithm —which pre-
serves only multiplication—, all examples given in [10] were broken by ciphertext-
only attacks or, at most, known-cleartext attacks (see [3]); the authors of [3]
invented R-additive PHs, which securely allow ciphertext addition at the cost of
restricting the number of ciphertexts that can be added together. In [2], a par-
tially homomorphic scheme for statistical computation on encrypted data was
proposed that consists of a two-layer encryption: data records are first encrypted
as sparse polynomials, and these are then encrypted as regular polynomials; while
the first layer is homomorphic, the second is not (yet the second layer is needed
because the PH in the first layer is insecure); therefore, encrypted data pro-
cessing is not feasible without a trusted device able to decrypt the second layer.
Lacking secure PHs that preserve more than one operation, subsequent attempts
at encrypted data processing have relied on ad-hoc solutions ([1,15]). In [4], we
presented a PH preserving addition and multiplication which was conjectured to
be computationally resistant against known-cleartext attacks. In [8,12], it was
wondered whether provably secure algebraic (i.e. additive and multiplicative)
privacy homomorphisms exist; this paper is meant to answer that question.

1.1 Our Contribution

In this paper, we propose the first PH preserving both addition and multiplica-
tion that can be proven secure against known-cleartext attacks, as long as the
ciphertext space is much larger than the cleartext space. In Section 2 the ho-
momorphism is specified. In Section 3 a numerical example is given. Security is
proven in Section 4. Section 5 mentions some practical applications to delegation
of computing and data and to e-gambling. Section 6 is a conclusion.
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2 Specification of the New PH

The PH proposed in this paper can be described as follows:

– The public parameters are a positive integer d > 2 and a large integer m
(≈ 10200 or maybe larger). m should have many small divisors and at the
same time there should be many integers less than m that can be inverted
modulo m; the first condition can be satisfied by construction of m, and the
second condition can be satisfied by iterating until an m is found such that
φ(m) is close to 6m/(π2), which is the expected value of φ(m) for a random
m (see Lemma 5 below).

– The secret parameters are r ∈ Zm such that r−1 mod m exists and a small
divisor m′ > 1 of m such that s := logm′ m is a (secret) security parameter;
the influence of the sizes of m′ and m on security can be seen in Table 1
below. Thus, the secret key is k = (r,m′).

In this case the set of cleartext is T ′ = Zm′ . The set of ciphertext is T = (Zm)d.
The set F ′ of cleartext operations is formed basically by addition, subtraction
and multiplication in T ′. The set F of ciphertext operations contains the cor-
responding componentwise operations in T . The PH transformations can be
described as

Encryption. Randomly split a ∈ Zm′ into secret a.1, · · · , a.d such that a =∑d
j=1 a.j mod m′ and a.j ∈ Zm. Compute

Ek(a) = (a.1r mod m, a.2r
2 mod m, · · · , a.dr

d mod m) (1)

Decryption. Compute the scalar product of the j-th coordinate by r−j mod m
to retrieve a.j mod m. Compute

∑d
j=1 a.j mod m′ to get a.

As encrypted values are computed over (Zm)d at an unclassified level, the
use of r requires that the terms of the encrypted value having different r-degree
be handled separately —the r-degree of a term is the exponent of the power of
r contained in the term—. This is necessary for the classified level to be able to
multiply each term by r−1 the right number of times, before adding all terms
up over Zm′ .

The set F ′ of ciphertext operations consists of

Addition and subtraction. They are done componentwise, i. e. between
terms with the same degree.

Multiplication. It works like in the case of polynomials: all terms are cross-
multiplied in Zm, with a d1-th degree term by a d2-th degree term yielding
a d1 + d2-th degree term; finally, terms having the same degree are added
up.

Division. Cannot be carried out in general because the polynomials are a ring,
but not a field. A good solution is to leave and handle divisions in rational
format by considering the field of rational functions: the encrypted version
of a/b is Ek(a)/Ek(b).
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In addition to the operations in F ′, it is also possible to multiply all com-
ponents of a ciphertext vector Ek(a) by a cleartext constant c. If the resulting
ciphertext vector is decrypted, ac mod m′ is obtained. Whenever possible, this
operation should be preferred to multiplication of two ciphertexts, as ciphertext
multiplication is the only operation in F that increases the r-degree of the result.

Note 2. Unlike for the PH in Example 1, in our PH the cleartext space is un-
known to the unclassified level, because the parameter m′ is secret. This will be
useful to prove the security of our proposal. Notice that if the unclassified level
is told which is the ciphertext space, then it needs no knowledge on the cleartext
space to do encrypted computations. However, one of the troubles with Exam-
ple 1 was that the unclassified level cannot be revealed which is the ciphertext
space (giving away the ciphertext space Zp × Zq is equivalent to revealing the
secret key (p, q)); therefore, knowledge of the size m = pq of the cleartext space
(or another common multiple of p and q) was needed to reduce partial encrypted
results.

3 Numerical Example

This example is unrealistically small but it illustrates the computation of a
formula including two additions and one multiplication, namely (x1+x2+x3)x4.
Although d > 2 is recommended for security reasons (see Remark 9 below), we
will take d = 2 to keep computations brief and clear; thus, cleartexts will be split
in two parts during encryption. The public modulus is chosen to be m = 28.

Classified level.
Let r = 3 and m′ = 7 be the secret key. Let (x1, x2, x3, x4) =
(−0.1, 0.3, 0.1, 2). In order to suppress decimal positions, initial data are
multiplied by 10, which yields the fractions x1 = x̃1/10 = −1/10, x2 =
x̃2/10 = 3/10, x3 = x̃3/10 = 1/10 and x4 = x̃4/1 = 2/1. Numerators are
randomly and secretly split mod 7 and are transformed according to the
proposed PH. In this way, first and second r-degree terms are obtained

Ek(x̃1) = Ek(−1) = Ek(2, 4) = (6, 8)

Ek(x̃2) = Ek(3) = Ek(2, 1) = (6, 9)

Ek(x̃3) = Ek(1) = Ek(4, 4) = (12, 8)

Ek(x̃4) = Ek(2) = Ek(3, 6) = (9, 26)

Encrypted data are forwarded to the unclassified level, along with their de-
nominators: (1,1) for Ek(x̃4) and (10,10) for the rest of data.

Unclassified level.
First, do the additions by directly adding the numerators in the fractions,
since the denominator is 10 for all data

3∑
i=1

Ek(x̃i) = (6 + 6 + 12 mod 28, 8 + 9 + 8 mod 28) = (24, 25)
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The denominator of the sum is obviously (10,10). Then, multiply by Ek(x̃4)

(Ek(x̃1) + Ek(x̃2) + Ek(x̃3))Ek(x̃4) = (24, 25) × (9, 26)

= (0, 24 × 9 mod 28, 24 × 26 + 25 × 9 mod 28, 25 × 26 mod 28) = (0, 20, 9, 6)

In this way, the numerator of the result has terms up to the fourth r-degree.
The denominator of the product is 10 × 1 = 10 for all terms. Return both
numerator and denominator to the classified level.

Classified level.
Compute

(0 × r−1 mod m, 20 × r−2 mod m, 9 × r−3 mod m, 6 × r−4 mod m)

= (0 × 19 mod 28, 20 × 192 mod 28, 9 × 193 mod 28, 6 × 194 mod 28)

= (0, 24, 19, 26)

Now add all terms in the last step over Zm′ to obtain 6 mod 7 = 6. Thus, we
have (x̃1 + x̃2 + x̃3)x̃4 = 6 mod m′ = 6. Finally, divide 6 by the denominator
10 returned by the unclassified level, so that the final result is (x1 + x2 +
x3)x4 = 0.6.

4 Security of the New Privacy Homomorphism

Definition 3. A privacy homomorphism is said to be secure against a known-
cleartext attack if, for any fixed number n of known cleartext-ciphertext pairs, the
probability of successful decryption of a ciphertext for which the cleartext is un-
known can be made arbitrarily small by properly choosing the security parameters
of the homomorphism.

We will show in this section that the PH whose encryption function is given
by Expression (1) is secure. First, it will be shown that, for a fixed number n of
known cleartext-ciphertext pairs, the probability of randomly guessing the right
key can be made arbitrarily small. Second, it will be shown that there is only
a small probability that a ciphertext decrypts to the same cleartext using two
different keys. Combining both results, security will follow. We next recall three
known preliminary results:

Lemma 4. Assume that divisibility of an integer by different primes is inde-
pendent and that divisibility of randomly chosen integers by the same prime is
independent. Let B be a positive integer. If positive integers c1, · · · , cn are ran-
domly drawn from the interval (0, B), then

lim
B→∞

Pr{gcd(c1, c2, · · · , cn) = 1} ≈ 1
ζ(n)

(2)

where ζ(n) =
∑∞

t=1 t
−n is Riemann’s zeta function.
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Proof. Let B → ∞ and see [13], section 4.4. •
Lemma 5. If φ(m) is Euler’s totient function counting the number of integers
less than m that are coprime with m, then

φ(1) + · · · + φ(m) =
3m2

π2
+O(m logm) (3)

In particular, the average order of φ(m) is 6m/π2 ≈ 0.608m.

Proof. See [9], section 18.5. •
Lemma 6. Let d(n) be the number of divisors of a positive integer n, counting
1 and n. The average order of d(n) is log n.

Proof. See [9], section 18.2. •
The first result concerning the security of the new privacy homomorphism

against known-cleartext attacks regards the subset of keys consistent with the
known cleartext-ciphertext pairs:

Theorem 7. Consider a PH whose encryption function is given by Expression
(1). Let n be the number of random cleartext-ciphertext pairs known by the crypt-
analyst. If the r-degree of all ciphertexts is greater than 1, then the size of the
subset of keys consistent with the known pairs grows exponentially with s − n
and has an expected value of at least max(6(m′)s−n/π2, 1), where s = logm′ m.
Cleartext-ciphertext pairs derived from the n known pairs using the homomorphic
properties do not compromise the security of the PH.

Proof. Denote by d the maximal r-degree of ciphertexts in known message pairs.
Let the n known random message pairs consist of cleartexts ai and ciphertexts
(bi1, · · · , bid), for i = 1, · · · , n. The following construction shows that if n is not
too large, then there exist several keys (r̂, m̂′) consistent with the n known pairs

1. Randomly pick r̂ such that r̂−1 mod m exists. Clearly, all numbers coprime
to m are eligible; thus, there are φ(m) candidates.

2. For i = 1, · · · , n compute âi1, · · · , âid such that âij = bij r̂
−j mod m.

3. Find m̂′ such that it divides m and verifies

âi1 + · · · + âid = ai mod m̂′

for i = 1, · · · , n. A possibility (perhaps not unique) is to take

m̂′ = gcd
1≤i≤n

(
d∑

j=1

âij − ai,m)

where, to keep the notation short, we have defined gcd1≤i≤n(ci,m) :=
gcd(c1, c2, · · · , cn,m). If m̂′ ≤ max1≤i≤n(ai) is obtained, then go to Step 1.
Otherwise a key (r̂, m̂′) consistent with the known pairs has been obtained
and the procedure is finished.
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The probability of coming up with a good m̂′ at Step 3 of the above construction
can be lower-bounded as

Pr( gcd
1≤i≤n

(
d∑

j=1

âij − ai,m) > max
1≤i≤n

(ai)) ≥ Pr( gcd
1≤i≤n

(
d∑

j=1

âij − ai,m) ≥ m′)

≥ Pr( gcd
1≤i≤n

(
d∑

j=1

âij − ai,m) = m′)

= Pr(A)Pr[ gcd
1≤i≤n

(

∑d
j=1 âij − ai

m′ ,m/m′) = 1|A]

≈ (
1
m′ )

n 1
ζ(n+ 1)

≈ 1
(m′)n

(4)

where the last approximation is valid if n is not too small (say ≥ 10) and the
ζ approximation is obtained from Lemma 4. A is the event “m′ divides m and
all

∑d
j=1 âij − ai, i = 1, · · · , n”; clearly, by assumption m′ divides m, and the

probability that m′ divides a random integer (such as
∑d

j=1 âij − ai) is 1/m′;
thus, Pr(A) = (1/m′)n. Let us check that Lemma 4 can be used:

1. In the last gcd computation, m/m′ is random (because m is) and the
rest of numbers can be viewed as being randomly drawn from the interval
(0, dm/m′), since they depend on a random number r̂.

2. dm/m′ is large since m′ is a small divisor of m.

Now the above construction can be run for φ(m) different values of r̂. This means
that the expected number of keys (r̂, m̂′) consistent with the known pairs is at
least

max(
φ(m)
(m′)n

, 1) ≈ max(
6
π2

m

(m′)n
, 1) = max(

6
π2

(m′)s−n, 1)

where the approximation is obtained from Lemma 5. Finally, to prove the last
assertion of the theorem, imagine that two known pairs are added, subtracted or
multiplied by the cryptanalyst to generate a new cleartext-ciphertext pair. If this
new pair is input to the gcd computation at Step 3, it is easy to see that the gcd
value remains unchanged. Thus only genuine randomly split cleartext-ciphertext
known pairs are to be taken into account. •
Note 8. m′ must be considered as a secret parameter for the above proof of
Theorem 7 to be correct. Otherwise, consistent keys would be only those having
the form (r̂,m′) and their number would be much smaller. Even if it is assumed
that the enemy cryptanalyst can compute all divisors m̂′ of m, she cannot decide
which divisor is actually being used; the only clue is that m̂′ > max1≤i≤n(ai),
as reflected in Derivation (4).

Note 9 (On the value of d). It is recommended that d > 2. The shortcomings of
d = 1 and d = 2 are examined below:
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d = 1: Notice that random cleartext splitting is central to the proof of Theo-
rem 7. Imagine that no splitting is done (i. e., d = 1) and that one cleartext-
ciphertext pair (a, b) is known. Then b = ar mod m and r is revealed.

d = 2: It will be shown that, if d = 2, knowledge ofm′ allows to determine r, that
is, knowledge of a part of the secret key k allows to determine the rest of k.
Then for message 0, one has Ek(0) = (ar, a′r2), where a = −a′ mod m′; now
notice that a′r2/ar mod m′ yields r mod m′. But how can the enemy crypt-
analyst get Ek(0)? Assume that four cleartext-ciphertext pairs are known
to her, namely B1 = Ek(a1), B2 = Ek(a2), B3 = Ek(a3) and B4 = Ek(a4).
There is a high probability that two pairs of coprime numbers exist among
the cleartexts; assume gcd(a1, a2) = 1 and gcd(a3, a4) = 1. Then u, v, u′, v′

exist such that B5 := Ek(1) = uB1 + vB2 (equivalently 1 = ua1 + va2)
and B6 := Ek(1) = u′B3 + v′B4 (equivalently 1 = u′a3 + v′a4). Then
B5 − B6 = Ek(0). Notice that the above attack does not work without
knowledge of m′, so d = 2 is not necessarily insecure; still it is not recom-
mended.

Note 10. Instead of using the average approximation from Lemma 5, one might
think of using the Rosser-Schoenfeld lower bound on φ(m)/m ([11], p. 72) in
the proof of Theorem 7. However, being based on a smooth function of m, this
bound is often too conservative and can lead to a serious underestimation of the
size of the subset of consistent keys. Due to this drawback and the probabilistic
nature of the proof, it seems more realistic and natural to use the expected value
of φ(m).

The second result concerning the security of the proposed PH regards the
behaviour of keys:

Theorem 11. The expected probability that any two keys (r1,m′
1) and (r2,m′

2)
decipher a random ciphertext to the same cleartext is O((logm)/m). Therefore,
this probability can be made arbitrarily small by increasing m.

Proof. Let the two keys be (r1,m′
1) and (r2,m′

2). Let (b1, b2, · · · , bd) be a ran-
domly chosen ciphertext. Assume that both keys decrypt to the same cleartext
a. Then from the specification of the PH (Section 2):

a = P (r−1
1 ) mod m′

1 = b1r
−1
1 + b2r

−2
1 + · · · + bdr

−d
1 mod m′

1

= P (r−1
2 ) mod m′

2 = b1r
−1
2 + b2r

−2
2 + · · · + bdr

−d
2 mod m′

2 (5)

where the inverses are modulo m. Three cases must be considered:

– If r1 = r2 = r then m′
1 �= m′

2 since both keys are assumed to be different.
In that case, Equation (5) holds only if both m′

1 and m′
2 divide a− P (r−1).

Assuming that a is such that m′
1 is a divisor, from Lemma 6 the expected

probability that m′
2 is also a divisor is (logm)/m.
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– If m′
1 = m′

2 = m then r1 �= r2 since both keys are assumed different. In that
case, Equation (5) holds only if m divides P (r−1

1 )−P (r−1
2 ). From Lemma 6,

this happens with an expected probability

log |P (r−1
1 ) − P (r−1

2 )|
|P (r−1

1 ) − P (r−1
2 )| = O((logm)/m) (6)

– If m′
1 �= m′

2 and r1 �= r2, Equation (5) implies that there exists an integer a
such that m′

1 divides P (r−1
1 )−a and m′

2 divides P (r−1
2 )−a. Using Lemma 6,

the probability of such an event can be upper bounded by

max
0≤a≤min(m′

1,m′
2)−1

(
log |P (r−1

1 ) − a|
|P (r−1

1 ) − a| ,
log |P (r−1

2 ) − a|
|P (r−1

2 ) − a| ) = O((logm)/m) (7)

Thus in all cases the expected probability of obtaining the same cleartext from
decryption of the same ciphertext using two different keys is O((logm)/m) •
Note 12. It should be noted that the security provided by the proposed scheme
is based on the fact that the subset of keys consistent with the known pairs is
kept large and any two different keys yield different cleartexts from the same
ciphertext with a high probability. Further, in the proof of Corollary 13 it is
assumed that an infinitely powerful cryptanalyst can enumerate the subset of
consistent keys, but no easy way to do this is obvious. In computational terms,
even if there exists only one consistent key (probability of random key guessing
equal to 1 for infinite computing power), this does not mean that such a key is
easy to find.

Corollary 13. If leakage of n cleartext-ciphertext pairs is to be tolerated, then
the probability of success for a known-cleartext attack with unlimited computing
power can be made arbitrarily small by a proper choice of the security parameter
s = logm′ m.

Proof. Assume that the cryptanalyst has enough computing power to enumerate
the subset of keys consistent with the known pairs. From Theorems 7 and 11 it
is clear that the best attacking strategy is randomly guessing the key, which has
a probability of success at most equal to

{
π2(m′)n−s/6 if s > n
1 if s ≤ n

For any ε > 0, there exists a value of s that makes this probability smaller than
ε. •

Table 1 illustrates the dependency between parameters with several example
choices. There are at least two scenarios for parameter design:

– If n, m′ and the probability of random key guessing are specified as require-
ments, then suitable values for s and m must be determined.
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– If m′ and m are fixed in advance (i.e. the PH is fixed), then the probability of
random key guessing can be computed for each number n of known cleartext-
ciphertext pairs. If more and more random pairs are leaked over time, then
a proactive key renewal scheme should be enforced by the classified level in
order to keep the probability of random key guessing smaller than an alarm
threshold set beforehand.

Table 1. Some example parameter choices for the proposed privacy homomorphism
(l(x) = �log10x� is the length of x in decimal digits).

Prob. rand.
n s l(m′) l(m) key guessing

5 5 20 100 1
5 6 20 120 ≈ 1.64 × 10−20

10 11 20 220 ≈ 1.64 × 10−20

50 50 5 250 1
50 51 5 255 ≈ 1.64 × 10−5

50 53 5 265 ≈ 1.64 × 10−15

5 Applications to Delegation of Computing and Data and
to E-gambling

Delegation of computing and data is a major field of application for PHs. When
the computations to be performed on encrypted data are of an arithmetical
nature, then the PH presented in this paper is especially useful. We next sketch
some practical scenarios where delegation problems appear.

A computing delegation problem happens whenever a (small) company wants
to use external computing facilities to do some calculations on corporate confi-
dential data. A very common variant of this situation is a medical research team
using a (insecure) university mainframe for processing confidential healthcare
records. The reason for using external facilities may be the complexity of the
calculations but also the huge volume of the data set. Clearly, computation on
confidential data can be delegated to an unclassified facility (denoted by data
handler) if data are kept in encrypted form during computations. The data owner
is only left the task of decrypting the final result of computation.

Data delegation differs from computing delegation in that the party interested
in the result of computations is not the data owner, but the data handler. Data
delegation problems appear in the interaction between public administrations
at several levels. For example, municipalities cooperate with national statistical
offices in statistical data collection. In return, municipalities would like to be able
to analyze the whole collected data set (pooled from all municipalities). But only
national statistical offices are usually authorized to hold nation-wide individual
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census data. A similar problem occurs in any federal-like structure (European
Union, U.S.A., Germany, etc.). Member states cooperate with federal agencies in
collecting data from individuals, companies, etc. In return, states would like to be
able to analyze data at a federal level. A secure solution in both scenarios above is
for the organization owning the whole data set to perform (probably for free) the
analyses requested by the cooperating organizations. But then the data owning
organization becomes a bottleneck and is forced to waste time and resources in
uninteresting tasks. A better solution would be for the data owner to delegate
data in a secure way and reduce its role in subsequent analyses to a minimum.
Delegation of data can be performed by releasing them in encrypted form. The
cooperating organization plays the role of the data handler in that it can compute
on encrypted data and submit the results of computations to the data owner for
decryption; in this way, the data owner is only left the (mechanical) job of
decrypting and returning the final result. A prototype using the PH proposed
here to implement such a scheme for delegation of sensitive statistical data has
been sketched ([6]), completed and patented[7]; because of patent reasons, no
public description of the proposed PH and its security properties had so far
been offered.

In [5], availability of secure data delegation is assumed for increasing the
multi-application capacity of smart cards. The basic idea is that if a very
resource-demanding application is to be run on card-stored data then the card
exports these data in encrypted form and the application is run on an external
computing server.

Data delegation has stronger security requirements than computing delega-
tion. In computing delegation the data handler only sees ciphertext. However,
in data delegation the data owner decrypts the final result of computations and
returns it as cleartext to the data handler. This means that in data delegation
each time the data owner returns one decrypted result to the data handler, the
data handler learns one new cleartext-ciphertext pair (or two if what is returned
is an unreduced fraction). Therefore, the data owner should take care that the
number n of returned decrypted results is not too large to become unsafe (given
the security parameter s of the homomorphism, see Corollary 13). Once the
safety limit has been reached, no more decrypted results should be returned by
the data owner, unless he decides to change the key of the homomorphism and
reencrypt all delegated data under the new key.

E-gambling, and more specifically electronic poker, is another recent appli-
cation of the PH proposed in this paper. Cards chosen by players are homomor-
phically encrypted and they are manipulated in encrypted form. In e-poker, PH
card encryption plays a role analogous to turning cards upside down in physi-
cal poker; computing on encrypted cards is analogous to manipulating reversed
cards in the physical world. A protocol describing this application of the PH pre-
sented here is patent pending ([14]), so no further details on it can be disclosed
here.
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6 Conclusion

The features of the proposed homomorphism can be summarized as follows

– Addition, subtraction, multiplication and division can be carried out on en-
crypted data at an unclassified level.

– The proposed homomorphism is the first one to allow full arithmetic
while being secure against known-cleartext attacks. Security against known-
cleartext attacks can be proven provided that cleartext splitting is always
used when encrypting (recommended splitting factor d > 2) and the cipher-
text space is much larger than the cleartext space. Pairs that are derived
from random pairs using the homomorphic properties do not compromise
the security of the PH.

– Encryption and decryption transformations can be implemented efficiently,
because they only require modular multiplications. Note that no exponenti-
ation is needed, because the powers of r can be precomputed. Unlike expo-
nential ciphers, the proposed PH can be fast even if the ciphertext space is
very large.

– A ciphertext with r-degree d is about

d
logm
logm′ = d logm′ m = ds

times longer than the corresponding cleartext. Although this is a storage
penalty, a choice of d = 3 at the time of encryption should be affordable
while remaining secure. For a given r-degree, the ciphertext expansion grows
linearly with the security parameter s.

– Multiplication of two ciphertexts is the only operation that increases the
r-degree of the resulting ciphertext. A good strategy is to use multiplication
by cleartext constants instead of multiplication of two ciphertexts whenever
possible.

– The equality predicate is not preserved, and thus comparisons for equality
cannot be done at an unclassified level based on encrypted data. A given
cleartext can have many ciphertext versions for two reasons: A) random
splitting during encryption; B) the unclassified level computes over (Zm)d

and only the classified level can perform a reduction to Zm′ during decryp-
tion.

Acknowledgments. Thanks go to Stefan Brands and Josep Rifà for useful
talks and comments.
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