
A Distributed and Adaptive Signal Processing
Approach to Reducing Energy Consumption in

Sensor Networks
Jim Chou

Department of EECS
University of California at Berkeley

Berkeley, CA 94709
Email: jimchou@eecs.berkeley.edu

Dragan Petrovic
Department of EECS

University of California at Berkeley
Berkeley, CA 94709

Email: dragan@eecs.berkeley.edu

Kannan Ramchandran
Department of EECS

University of California at Berkeley
Berkeley, CA 94709

Email: kannanr@eecs.berkeley.edu

Abstract— We propose a novel approach to reducing energy
consumption in sensor networks using a distributed adaptive
signal processing framework and efficient algorithm 1. While the
topic of energy-aware routing to alleviate energy consumption
in sensor networks has received attention recently [1,2], in this
paper, we propose an orthogonal approach to previous methods.
Specifically, we propose a distributed way of continuously ex-
ploiting existing correlations in sensor data based on adaptive
signal processing and distributed source coding principles. Our
approach enables sensor nodes to blindly compress their read-
ings with respect to one another without the need for explicit
and energy-expensive inter-sensor communication to effect this
compression. Furthermore, the distributed algorithm used by
each sensor node is extremely low in complexity and easy to
implement (i.e., one modulo operation), while an adaptive filtering
framework is used at the data gathering unit to continuously
learn the relevant correlation structures in the sensor data. Our
simulations show the power of our proposed algorithms, revealing
their potential to effect significant energy savings (from 10%-
65%) for typical sensor data corresponding to a multitude of
sensor modalities.

I. INTRODUCTION

advances in wireless networking and embedded micropro-
cessor designs have enabled the creation of dense low-power
sensor networks. These sensor networks consist of nodes
endowed with a multitude of sensing modalities such as tem-
perature, pressure, light, magnetometer, infrared, audio, video,
etc. The nodes are typically of small physical dimensions
and operated by battery power, making energy consumption
a major concern. For example, failure of a set of nodes in
the sensor network due to energy depletion can lead to a
partition of the sensor network and loss of potentially critical
information. Motivated by this, there has been considerable
recent interest in the area of energy-aware routing for ad hoc
and sensor networks [1], [2], [3] and efficient information
processing [4], [5] to reduce the energy usage of sensor nodes.
For example, one method of conserving energy in a sensor
node is to aggregate packets along the sensor paths to reduce
header overhead. In this paper, we propose a new method of

1This work was supported in part by DARPA-F30602-00-2-0538, NSF-
CCR-0219722 and Intel.

conserving energy in sensor networks that is mutually exclu-
sive to the above approaches, and can be used in combination
with them to increase energy reduction.

Our approach is based on judiciously exploiting existing
sensor data correlations in a distributed manner. Correlations
in sensor data are brought about by the spatio-temporal
characteristics of the physical medium being sensed. Dense
sensor networks are particularly rich in correlations, where
spatially dense nodes are typically needed to acquire fine
spatial resolution in the data being sensed, and for fault
tolerance from individual node failures. Examples of corre-
lated sensors include temperature and humidity sensors in a
similar geographic region, or magnetometric sensors tracking
a moving vehicle. Another interesting example of correlated
sensor data involves audio field sensors (microphones) that
sense a common event such as a concert or whale cries.
Audio data is particularly interesting in that it is rich in spatial
correlation structure due to the presence of echoes, causing
multiple sensors to pick up attenuated and delayed versions
of a common sound origin.

We propose to remove the redundancy caused by these
inherent correlations in the sensor data through a distributed
compression algorithm which obviates the need for the sensors
to exchange their data among each other in order to strip their
common redundancy. Rather surprisingly, we will show that
compression can be effected in a fully blind manner without
the sensor nodes ever knowing what the other correlated sensor
nodes have measured. Our proposed paradigm is particularly
effective for sensor network architectures having two types of
nodes: sensing nodes and data-gathering nodes. The sensing
nodes gather data of a specific type and transmit this data
upon being queried. The data gathering node queries specific
sensors in order to gather information in which it is inter-
ested (see Fig. 1). We will assume the above architecture
(Fig. 1) for the rest of the paper and show that for such
an architecture, we can devise compression algorithms that
have very lightweight encoders, yet can achieve significant
savings. Note, that we target very lightweight encoders in
this paper because we assume that the sensors have limited

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

sensor node

sensor node

sensor node

sensor node

sensor node

sensor node

sensor node

sensor node

Data Gathering Node

query data

query

data

Fig. 1. An example sensor network: a computer acts as the data gathering
node, and queries various sensors to collect data

compute power, but the constructions introduced in this paper
can be easily strengthened given greater compute power at
the sensors. The savings are achieved by having the data
gathering node track the correlation structure among nodes
and then use this information to effect distributed sensor data
compression. The correlation structure is determined by using
an adaptive prediction algorithm. The sensors, however, do
not need to know the correlation structure; they need to know
only the number of bits that they should use for encoding
their measurements. As a result, each sensor node is required
to perform very few operations in order to encode its data.
The decoder, however, is considerably more complex, but it
resides on the data gathering node, which is not assumed
to be energy constrained. Preliminary results based on our
distributed compression and adaptive prediction algorithms
perform well in realistic scenarios, achieving 10-65% energy
savings for each sensor in typical cases. In addition, our
distributed compression architecture can be combined with
other energy saving methods such as packet/data aggregation
to achieve further gains.

Two of the main challenges in designing a system as
described above include (1) devising a computationally inex-
pensive encoder that can support multiple compression rates
and (2) determining an adaptive correlation-tracking algorithm
that can continuously track the amount of correlation that
exists between the sensor nodes. We will look at the above
two issues in the following sections. In the next section, we
start by devising a computationally inexpensive compression
algorithm for the sensor nodes. In section 3, we will present the
correlation tracking algorithm. In section 4, we will integrate
the above components into a complete system. Simulation
results are given in section 5 and we conclude with some
remarks in section 6.

II. DISTRIBUTED COMPRESSION

The appeal of using distributed compression lies in the
fact that each sensor can compress its data without knowing
what the other sensors are measuring. In fact, the sensors do
not even need to know the correlation structure between its
data and that of the other sensors. As a result, an end-to-end
compression system that achieves a significant savings across
the network can be built, where the endpoints consist of the
sensor node and the data gathering node.

To build a distributed compression system, we propose
to use an asymmetric coding method among the sensors.
Specifically, we propose to build upon the architecture of
Fig. 2 which is designed for two nodes. In Fig. 2, there are two
nodes, each of which measures data using an Analog-to-Digital
(A/D) converter. One of the sensor nodes will either transmit
its data Y directly to the data gathering node or compress its
readings with respect to its own previous readings while the
other sensor node compresses its data X with respect to its
own previous readings and readings from other sensors and
then transmits the compressed data m to the data gathering
node. The decoder will then try to decode m to X , given
that Y is correlated to X . In the discrete alphabet case, it
can be shown that the compression performance of the above
architecture can match the case where Y is available to the
sensor node that is measuring X .

To extend the above architecture (Fig. 2) to n nodes we
will have one node send its data either uncoded (i.e., Y) or
compressed with respect to its past. The data gathering node
can decode this reading without receiving anything from the
other sensors. The other sensors can compress their data with
respect to Y , without even knowing their correlation structure
with respect to Y . The data gathering node will keep track of
the correlation structure and inform the sensors of the number
of bits that they shall use for encoding. In the compression
literature, Y is often referred to as side-information and the
above architectures are often referred to as compression with
side information [6].

To develop code constructions for distributed compression,
we will start by giving some background information on
source coding with side information and then introduce a code
construction that achieves good performance at a low encoding
cost.

A. Background on compression with side information

In 1973, Slepian and Wolf presented a suprising result to the
source coding (compression) community [6]. The result states
that if two discrete alphabet random variables X and Y are
correlated according to some arbitrary probability distribution
p(x, y), then X can be compressed without access to Y
without losing any compression performance with respect to
the case where X is compressed with access to Y . More
formally, without having access to Y , X can be compressed
using H(X|Y) bits where

H(X|Y) = −
∑

y

PY (y)
∑

x

PX(x|y)log2PX(x|y) (1)

The quantity, H(X|Y) is often interpreted as the “uncertainty”
remaining in the random variable X given the observation of
Y [7]. This is the same compression performance that would
be achieved if X were compressed while having access to
Y . To provide the intuition behind this result, we provide the
following example.

Example 1: Consider X and Y to be equiprobable 3-bit data
sets which are correlated in the following way: dH(X,Y) ≤ 1,

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

EncoderA/D

A/D

Decoder

Data

Data

X

Y

Y

X̂

Sensor Node

Sensor Node

Data Gathering Node

m

Fig. 2. Distributed compression: the encoder compresses X given that the
decoder has access to Y , which is correlated to X .

where dH(., .) denotes Hamming distance. When Y is known
both at the encoder and decoder, we can compress X to 2
bits, conveying the information about the uncertainty of X
given Y (i.e., the modulo-two sum of X and Y given by:
(000),(001),(010) and (100)). Now, if Y is known only at the
decoder, we can surprisingly still compress X to 2 bits. The
method of construction stems from the following argument: if
the decoder knows that X=000 or X=111, then it is wasteful
to spend any bits to differentiate between the two. In fact,
we can group X=000 and X=111 into one coset (it is exactly
the so-called principal coset of the length-3 repetition code).
In a similar fashion, we can partition the remaining space
of 3-bit binary codewords into 3 different cosets with each
coset containing the original codewords offset by a unique and
correctable error pattern. Since there are 4 cosets, we need to
spend only 2 bits to specify the coset in which X belongs. The
four cosets are given as

coset-1 = (000, 111), coset-2 = (001, 110),
coset-3 = (010, 101), coset-4 = (011, 110)

The decoder can recover X perfectly by decoding Y to the
closest (in hamming distance) codeword in the coset specified
by the encoder. Thus the encoder does not need to know the
realization of Y for optimal encoding.

The above results were established only for discrete random
variables. In 1976, Wyner and Ziv extended the results of [6]
to lossy distributed compression by proving that under certain
conditions [8], there are no performance degradations for lossy
compression with side information available at the decoder as
compared to lossy compression with side information available
at both the encoder and decoder.

The results established by [6] and [8] are theoretical results,
however, and as a result do not provide intuition as to how one
might achieve the predicted theoretical bounds practically. In
1999, Pradhan and Ramchandran [9] prescribed practical con-
structions for distributed compression in an attempt to achieve
the bounds predicted by [6] and [8]. The resulting codes
perform well, but cannot be directly used for sensor networks
because they are not designed to support different compression
rates. To achieve distributed compression in a sensor network,
it is desirable to have one underlying codebook that is not
changed among the sensors but can also support multiple
compression rates. The reason for needing a codebook that
supports multiple compression rates is that the compression
rate is directly dependent on the amount of correlation in the

0 2 4 6 8 10 12 14

0 4 8 12

.

.

.

.

.

.

2∆ 2∆

0 2 3 4 5 6 7 8 9 10 11 12 1413 151

1 3 5 7 9 11 13 15

0 1 0 1

10

∆

4∆ 4∆ 4∆ 4∆

2 6 10 14 1 5 9 13 3 7 11 15

r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r

Fig. 3. A tree-based contruction for compression with side information. The
root of the tree contains 24 values, and two partitions of the root quantizer
are shown.

data, which might be time-varying. Motivated by the above,
we have devised a tree-based distributed compression code
that can provide variable-rate compression without the need
for changing the underlying codebook.

B. Code construction

In this section we propose a codebook construction that will
allow an encoder to encode a random variable X given that
the decoder has access to a correlated random variable Y .
This construction can then be applied to a sensor network as
shown in Fig. 2. The main design goal of our code construc-
tion is to support multiple compression rates, in addition to
being computationally inexpensive. In support of our goal of
minimizing the computations for each sensor node, we will
not be looking into code constructions that use complicated
error correction codes. Error correction codes, can however, be
easily incorporated into our construction but will lead to more
complexity for each sensor node. Our uncoded code construc-
tion is as follows. We start with a root codebook that contains
2n representative values on the real axis. We then partition
the root codebook into two subsets consisting of the even-
indexed representations and the odd-indexed representations.
We represent these two sub-codebooks as children nodes of
the root codebook. We further partition each of these nodes
into sub-codebooks and represent them as children nodes in
the second level of the tree structure. This process is repeated
n times, resulting in an n-level tree structure that contains
2n leaf nodes, each of which represents a subcodebook that
contains one of the original 2n values. An example partition is
given in Fig. 3, where we use n = 4 and show only 2 levels of
the partition. Note from this tree-based codebook construction
that if the spacing between representative values is denoted by
∆, then each of the subcodebooks at level-i in the tree will
contain representative values that are spaced apart by 2i∆. In
a sensor network, a reading will typically be represented as
one of the 2n values in the root codebook assuming that the
sensor uses an n-bit A/D converter. Instead of transmitting n-
bits to represent the sensor reading, as would be traditionally
done, we can transmit i < n bits if there is side-information,

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Y , that is no further than 2i−1∆ away from X available at the
decoder. The encoder need only transmit the i bits that specify
the subcodebook that X belongs to at level-i, and the decoder
will decode Y to the closest value in the subcodebook that the
encoder specified. Because Y is no further than 2i−1∆ from
the representation of X , the decoder will always decode Y to
X . Below, we describe the functionality of the encoder and
decoder in detail.

1) Encoder: The encoder will receive a request from the
data gathering node requesting that it encode its readings using
i bits. The first thing that the encoder does is find the closest
representation of the data from the 2n values in the root
codebook (this is typically done by the A/D converter). Next,
the encoder determines the subcodebook that X belongs to
at level-i. The path through the tree to this subcodebook will
specify the bits that are transferred to the data gathering node.
The mapping from X to the bits that specify the subcodebook
at level i can be done through the following deterministic
mapping:

f(X) = index(X) mod 2i (2)

where f(X) represents the bits to be transmitted to the decoder
and index() is a mapping from values in the root codebook to
their respective indices. For a given X and i, f(X) will be an
i-bit value which the data gathering node will use to traverse
the tree.

2) Decoder: The decoder (at the data gathering node) will
receive the i-bit value, f(X), from the encoder and will
traverse the tree starting with the least-significant-bit (LSB)
of f(X) to determine the appropriate subcodebook, S to use.
The decoder will then decode the side-information, Y , to the
closest value in S:

X̂ = argminri∈S ||Y − ri|| (3)

where ri represents the ith codeword in S. Assuming that Y
is less than 2i−1∆ away from X , where ∆ is the spacing in
the root codebook, then the decoder will be able to decode
Y to the exact value of X , and recover X perfectly. The
following example will elucidate the encoding/decoding
operations.

Example 2: Consider the 4-level tree codebook of Fig. 4.
Assume that the data is represented by the value r9 = 0.9
in the root codebook and the data gathering node asks the
sensor to encode X using 2 bits. The index of r9 is 9, so
f(X) = 9 mod 4 = 1. Thus, the encoder will send the two
bits, 01, to the data gathering node (see Fig. 4). The data
gathering node will receive 01 and descend the tree using
the least-significant bit first (i.e., 1 and then 0) to determine
the subcodebook to decode the side-information with. In the
example, we assume that the side-information, Y , is 0.8, and
we will decode Y in the subcodebook located at 1, 0 in the
tree to find the closest codeword. This codeword is r9 which
is exactly the value representing X . Thus, we have used 2 bits
to convey the value of X instead of using the 4 bits that would
have been needed if we had not done any encoding.

0 2 4 6 8 10 12 14

0 4 8 12

.

.

.

.

.

.

2∆ 2∆

0 2 3 4 5 6 7 8 9 10 11 12 1413 151

1 3 5 7 9 11 13 15

0 1 0 1

10

4∆ 4∆ 4∆

2 6 10 14 1 5 9 13 3 7 11 15

r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r

0.0

∆=0.1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

X = 0.9

Y = 0.8

0.1 0.5 0.9 1.3

4∆=0.4

Fig. 4. An example for the tree based codebook. The encoder is asked to
encode X using 2 bits, so it transmits 01 to the decoder. The decoder will
use the bits 01 in ascending order from the LSB to determine the path to the
subcodebook to use to decode Y with.

III. CORRELATION TRACKING

In the above encoding/decoding operations we assume that
the decoder for sensor j has available to it at time k some
side-information Y

(j)
k that is correlated to the sensor reading,

X
(j)
k . In practice, we choose to use a linear predictive model

where Y
(j)
k is a linear combination of values that are available

at the decoder:

Y
(j)
k =

M∑

l=1

αlX
(j)
k−l +

j−1∑

i=1

βiX
(i)
k (4)

where X
(j)
k−l represents past readings for sensor j and X

(i)
k

represents present sensor readings from sensor i 2. The vari-
ables αl and βi are weighting coefficients. We can then think
of Y

(j)
k as a linear prediction of X

(j)
k based on past values

(i.e., X(j)
k−l; l = 1, ...,M) and other sensor readings that have

already been decoded at the data gathering node (i.e., X(i)
k ;

i = 1, ..., j−1, where i indexes the sensor and j−1 represents
the number of readings from other sensors that have already
been decoded). We choose to use a linear predictive model
because it is not only analytically tractable but also optimal in
the limiting case where the readings can be modeled as i.i.d.
Gaussian random variables.

In order to leverage the inter-node correlations, we require
that one of the sensors always sends its data either uncoded
or compressed with respect to its own past data. Furthermore,
we number the sensors in the order that they are queried. For
example, at each time instant, one of the sensors will send
its reading, X(1)

k , either uncoded or coded with respect to its
own past. The reading for sensor 2 can then be decoded with
respect to

Y
(2)
k =

M∑

l=1

αlX
(2)
k−l + β1X

(1)
k (5)

2Note that for simplicity, our above prediction model is based on a finite
number of past values and a single present value for each of the other sensor
readings that have been decoded. This model can be generalized to the case
where past values of other sensors are also included in the prediction.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Each X
(i)
k that is decoded can then be used to form predictions

for other sensor readings according to (4). The prediction,
Y

(j)
k , determines the number of bits needed to represent X(j)

k .
In the extreme case that Y

(j)
k perfectly predicts X

(j)
k (i.e.,

Y
(j)
k = X

(j)
k), then zero bits are needed to represent X

(j)
k

because it is perfectly predictable at the decoder. Thus, the
main objective of the decoder is to derive a good estimate
of X

(j)
k for sensor j, j = 1, ..., L, where L represents the

number of sensors. In more quantitative terms, we would like
for the decoder to be able to find the αl; l = 1, ...,M and βi;
i = 1, ..., j− 1 that minimize the mean squared error between
Y

(j)
k and X

(j)
k .

To find the αl and βi that minimize the mean squared
prediction error, let us start by representing the prediction error
as a random variable, Nj = Y

(j)
k −X

(j)
k . We can then rewrite

the mean squared error as:

E[N2
j] = E[(X(j)

k −
(∑M

l=1 αlX
(j)
k−l +

∑j−1
i=1 βiX

(i)
k

)
)2]

= E[X(j)2
k] − 2

∑M
l=1 αlE[X(j)

k X
(j)
k−l]−

2
∑N

i=1 βiE[X(j)
k X

(i)
k] + 2

∑M
l=1

∑j−1
i=1 αlβiE[X(j)

k−lX
(i)
k]

+
∑M

l,h=1 αlαhE[X(j)
k−lX

(j)
k−h] +

∑j−1
i,h=1 βiβhE[X(i)

k X
(h)
k]

Now, if we assume that X(j)
k and X

(i)
k are pairwise jointly

wide sense stationary [10] for i = 1, ..., j − 1, then we can
re-write the mean squared error as:

E[N2
j] = rxjxj (0) − 2�PT

j
�Γj + �ΓT

j R
j
zz
�Γj (6)

where

�Γj =

α1
α2
...
αM

β1
β2
...

βj−1

, �Pj =

rxjxj (1)
rxjxj (2)

...
rxjxj (M)
rxjx1(0)
rxjx2(0)

...
rxjxj−1(0)

and we use the notation rxjxi(l) = E[Xj
kX

i
k+l]. With this

notation, we can express Rj
zz as:

Rj
zz =

[
Rxjxj Rxjxi

RT
xjxi Rxixi

]

where Rxjxj is given as:

rxjxj (0) rxjxj (1) . rxjxj (M − 1)
rxjxj (1) rxjxj (0) . rxjxj (M − 2)

...
rxjxj (M − 1) rxjxj (M − 2) . rxjxj (0)

 ,

and Rxjxi and Rxixi are given as:

Rxjxi =

rxjx1(1) rxjx2(1) ... rxjxj−1(1)
rxjx1(2) rxjx2(2) ... rxjxj−1(2)

...
rxjx1(M) rxjx2(M) ... rxjxj−1(M)

and

Rxixi =

rx1x1(0) rx1x2(0) ... rx1xj−1(0)
rx2x1(0) rx2x2(0) ... rx2xj−1(0)

...
rxj−1x1(0) rxj−1x2(0) ... rxj−1xj−1(0)

To find the set of coefficients (represented by �Γj) that mini-
mize the mean squared error, we differentiate (6) with respect
to �Γj to obtain:

∂E[N2
j]

∂�Γj

= −2�Pj + 2Rj
zz
�Γj (7)

Setting the above equal to zero and solving for the optimal �Γj ,
which we denote by �Γj,opt, we arrive at the standard Wiener
estimate [10]:

�Γj,opt = R−1,j
zz

�Pj (8)

If our assumption of stationarity holds, then the data gathering
node can request for uncoded data from all of the sensors
for the first K rounds of requests and calculate the Wiener
estimate (8) once from these K rounds of samples. The set
of coefficients determined from the Wiener estimate can then
be used to form the side information for each future round
of request. In practice, however, the statistics of the data may
be time varying and as a result, the coefficient vector, �Γj ,
must be continuously adjusted to minimize the mean-squared
error. One method of doing this is to move �Γj in the opposite
direction of the gradient of the objective function (i.e., the
mean squared error) for each new sample received during
round k + 1:

�Γ(k+1)
j = �Γ(k)

j − µ∇(k)
j (9)

where ∇(k)
j is given by (7) and µ represents the amount to

descend opposite to the gradient. The goal of this approach is
to descend to the global minima of the objective function. We
are assured that such a minima exists because the objective
function is convex. In fact, it has been shown, that if µ is
chosen correctly then (9) will converge to the optimal solution
[10]. In the following subsection we will show how (9) can
be calculated in practice and how to incorporate adaptive
prediction with the distributed source code discussed in the
previous section.

A. Parameter estimation

From (7) and (9), we know that the coefficient vector should
be updated as:

�Γ(k+1)
j = �Γ(k)

j − 1
2
µ(−2�Pj + 2Rj

zz
�Γ(k)

j). (10)

In practice, however, the data gathering node will not have
knowledge of �Pj and Rj

zz and will therefore need an efficient
method for estimating �Pj and Rj

zz . One standard estimate is

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

to use �Pj = X
(j)
k

�Zk,j and Rzz = �Zk,j
�ZT

k,j where

�Zk,j =

X
(j)
k−1

X
(j)
k−2
...

X
(j)
k−M

X
(1)
k

X
(2)
k

...

X
(j−1)
k

so that (10) becomes

�Γ(k+1)
j = �Γ(k)

j − µ�Zk,j(−X
(j)
k + �ZT

k,j
�Γ(k)

j) (11)

= �Γ(k)
j + µ�Zk,jNk,j

where the second equality follows from the fact that Y (j)
k =

�ZT
k,j

�Γ(k)
j and Nk,j = X

(j)
k − Y

(j)
k . The equation described

by (12) is well known in the adaptive filtering literature as
the Least-Mean-Squares (LMS) algorithm and the steps in
calculating the LMS solution is summarized below:

1. Y
(j)
k = �Γ(k)T

j
�Zk,j

2. Nk,j = X
(j)
k − Y

(j)
k

3. �Γ(k+1)
j = �Γ(k)

j + µ�Zk,jNk,j

To use the LMS algorithm, the data gathering node will start
by querying all of the sensors for uncoded data for the first
K rounds of requests. The value of K should be chosen to be
large enough to allow the LMS algorithm to converge. After
K rounds of requests have been completed, the data gathering
node can then ask for coded values from the sensor nodes
and decode the coded value for sensor j with respect to its
corresponding side information, Y (j)

k = �ΓT
j
�Z

(j)
k,j . The value

of �Γj will continue to be updated to adjust to changes in
the statistics of the data. More specifically, for each round of
request and each value reported by a sensor, the decoder will
decode Y

(j)
k to the closest codeword in the subcodebook, S,

specified by the corresponding sensor

X̂k
(j)

= argminri∈S ||Y (j)
k − ri|| (12)

From section II-B, we know that X̂k
(j)

will always equal X(j)
k

as long as the sensor node encodes X
(j)
k using i bits so that

2i−1∆ > |Nk,j |. If |Nk,j | > 2i−1∆, however, then a decoding
error will occur. We can use Chebyshev’s inequality [11] to
bound this probability of error:

P [|Nk,j | > 2i−1∆] ≤
σ2

Nj

(2i−1∆)2
(13)

where Nk,j is drawn from a distribution with zero mean and
variance σ2

Nj
. Thus, to insure that P [|Nk,j | > 2i−1∆] is less

than some probability of error, Pe, we can choose
σ2

Nj

(2i−1∆)2 =
Pe. The value of i that will insure this probability of error is
then given as

i =
1
2
log2(

σ2
Nj

∆2Pe
) + 1 (14)

Thus, for a given Pe, the data gathering node should ask for
i-bits from each sensor according to (14). Note that it is not
necessary to be over-conservative when choosing Pe because
Chebyshev’s inequality is a loose bound.

From (14), we can see that the data gathering node must
maintain an estimate of the variance of the prediction error,
σ2

Nj
, for each sensor in order to determine the number of

bits to request from each sensor. The data gathering node can
initialize σ2

Nj
as:

σ2
Nj

=
1

K − 1

K∑

i=1

N2
k,j (15)

during the first K rounds of requests. To update σ2
Nj

, the data
gathering node can form the following filtered estimate:

σ2
Nj ,new = (1 − γ)σ2

Nj ,old + γN2
k,j (16)

where σ2
Nj ,old is the previous estimate of σ2

Nj
and γ is a

“forgetting factor” [10]. We choose to use a filtered estimate
to adapt to changes in statistics.

B. Decoding error

As mentioned above, it is always possible for the data
gathering node to make a decoding error if the magnitude
of the correlation noise, |Nk,j |, is larger than 2i−1∆ where i
is the number of bits used to encode the sensor reading for
sensor j at time k. We propose two approaches for dealing
with such errors. One method is to use error detection codes
and the other method entails using error correction codes.

To use error detection, each sensor node can transmit a
cyclic redundancy check (CRC) [12] for every m readings
that it transmits. The data gathering node will decode the
m readings using the tree-structured codebook as above and
compare its own calculation of the CRC (based on the m
readings it decodes) to the CRC transmitted by the sensor. If
an error is detected (i.e, the CRC does not match), then the
data gathering node can either drop the m readings or ask for a
retransmission of the m readings. Whether the data gathering
node drops the m readings or asks for a retransmission is
application dependent, and we do not address this issue in
this paper. Furthermore, by using Chebyshev’s inequality (13),
the data gathering node can make the probability of decoding
error as small as it desires which translates directly into a
lower probability of data drops or retransmissions.

The other method of guarding against decoding error is to
use error-correction codes. We propose using a non-binary
error correction code such as an (M,K) Reed-Solomon code
[13] that can operate on K sensor readings and generate
M − K parity check symbols. These M − K parity check
symbols can be transmitted to the data gathering node along
with the K encoded sensor readings. The data gathering
node will decode the K sensor readings using the tree-based
structure mentioned above and upon receiving the M − K
parity check symbols, it can correct for any errors that occurred
in the K sensor readings. If more than M−K

2 errors exist in
the K sensor readings, then the Reed-Solomon decoder will

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

declare that the errors can not be corrected and in this case,
the data must be either dropped or retransmitted.

IV. QUERYING AND REPORTING ALGORITHM

In this section, we combine the concepts of the previous
sections to formulate the algorithms to be used by the data
gathering node and by the sensor node.

A. Data gathering node algorithm

The data gathering node will, in general make N rounds of
queries to the sensor nodes. In the first K rounds of queries,
the data gathering node will ask the sensors to send their data
uncoded. The reason for this is that the data gathering node
needs to determine the correlation structure between sensor
readings before asking for compressed readings. Thus, the
data gathering node will use the first K rounds of readings
for calculating the correlation structure in accordance with
Sec. III. After K rounds of readings, the data gathering node
will have an estimate of the prediction coefficients to be used
for each sensor (see (10)). Note that K should be chosen
large enough to allow for the LMS algorithm to converge.
For each round after K, one node will be asked to send its
reading “uncompressed” with respect to the other sensors
3. The data gathering node will alternate the requests for
“uncompressed” data among the nodes to insure that no single
node is asked to expend more energy than the others. Upon
receiving a transmission from a sensor, the data gathering
node will decode it (if it is a compressed reading) with
respect to a linear estimate of the data for that sensor (see
(4)). After each round of requests, the correlation parameters
of each sensor (see (10) and (16)) are updated. Pseudocode
for the data gathering node is given below.

Pseudocode for data gathering node:

Initialization:
for (i = 0; i < K; i + +)

for (j = 0; j < num sensors; j + +)
Ask sensor j for its uncoded reading

for each pair of sensors i,j
update correlation parameters using Eqs. (16) and
(10).

Main Loop:
for (k = K; k < N ; k + +)

Request a sensor for uncoded reading
for each remaining sensor

determine number of bits, i, to request for using
Eq.(14).
Request for i bits

Decode data for each sensor.
Update correlation parameters for each sensor.

3Note that the sensor may still send its data compressed with respect to its
own past

The decoding is done in accordance with Sec. II-B and the
correlation parameters are estimated according to Eq. (10) and
(16).

B. Sensor node algorithm

The algorithm incorporated into each sensor node is
considerably simpler than the algorithm incorporated into the
data gathering node. The sensor node will simply listen for
requests from the data gathering node. The data gathering
node will specify to the sensor the number of bits that it
requests the sensor to encode the data with. Each sensor
will be equipped with an A/D converter that represents the
data using n-bits. Upon receiving a request from the data
gathering node, the sensor will encode the n-bit value from
the A/D converter using i-bits, where i is specified by the
data gathering node. This i-bit value is sent back to the data
gathering node. Pseudocode for the sensor node is given below.

Pseudocode for sensor nodes:

For each request
Extract i from the request
Get X[n] from A/D converter
Transmit n mod 2i

In the above algorithm, we denote X[n] as the value
returned from the A/D converter and n as the index to this
value. Note that the only extra operation with respect to an
uncoded system is for the sensor nodes to perform a modulo
operation. This makes it extremely cheap for a sensor node to
encode its data.

V. SIMULATION RESULTS

In this section we provide simulation results. The simula-
tions were performed for measurements on light, temperature
and humidity. We wanted to measure not only the energy
savings (due to bit transmissions) but also our correlation
tracking algorithm and the robustness of our algorithm to er-
rors. We implemented both the data gathering node algorithm
and the sensor node algorithm described in Sec. IV. In our
first set of simulations, we ran the data gathering algorithm
on one machine and the sensor node algorithms on a set
of different machines. The sensor node machines simulated
the measurement of data by reading from a file, previously
recorded readings from actual sensors. The data measured
by the sensors were for light, humidity and temperature. We
assumed a 12 bit A/D converter with a dynamic range of
[−128, 128] in our simulations and further assumed a star
topology where the data gathering node queried 5 sensor nodes
directly.

A. Correlation tracking

The first simulation that we ran was to test our correlation
tracking algorithm (see Sec. III). We modeled the data received

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

20

40

60

80

100

120

140
Prediction Noise and Tollerable Noise

Time

P
re

d
ic

ti
o
n
 E

rr
o
r

Fig. 5. Tolerable noise vs. prediction noise for 18,000 samples of humidity.
The tolerable noise is the amount of noise that can exist between the prediction
of a sensor reading and the actual sensor reading without inducing a decoding
error.

by sensor j as:

Y
(j)
k =

4∑

l=1

αlX
(j)
k−l + X

(m)
k (17)

where m �= j. In other words the prediction of the reading
for sensor j is derived from its own past values and one other
sensor. To test the correlation tracking algorithm, we measured
the tolerable noise that the correlation tracking algorithm
calculates at each time instant. The tolerable noise is the
amount of noise that can exist between the prediction of a
sensor reading and the actual sensor reading without inducing
a decoding error. Tolerable noise is calculated by using (14),
and noting that the tolerable noise will be given as 2i−1∆
where i is the number of bits that are requested from the sensor
and ∆ is the spacing of values in the A/D converter. We set
the bound on probability of decoding error to be less than 1 in
100 and simulated the data gathering algorithm and the sensor
node algorithms over 18,000 samples of light, temperature and
humidity for each sensor (a total of 90,000 samples). A plot
of the tolerable noise vs. actual prediction noise is given in
Fig. 5. where the top graph represents the tolerable noise and
the bottom graph represents the actual prediction noise.

From the plot it can be seen that the tolerable noise is much
larger than the actual prediction noise. The reason for this
is that we were conservative in choosing the parameters for
estimating the number of bits to request from the sensors. The
tolerable noise can be lowered to achieve higher efficiency but
this also leads to a higher probability of decoding error. For
the simulations that we ran, zero decoding errors were made
for 90,000 samples of humidity, temperature and light.

One other thing to note from the plot is that there are
many spikes in the tolerable noise. These spikes occur be-

cause we chose an aggressive weighting factor for calculating
(16). These spikes can be reduced by weighting the current
distortion less in the estimation of the overall distortion (see
(16)), but this will lead to slower responses to variations in
distortion and will therefore introduce more decoding errors
for noisy data.

B. Energy savings

The next set of simulations were run to measure the amount
of energy savings that the sensor nodes achieved. The energy
savings were calculated to be the total reduction in energy
that resulted from transmission and reception. Note that for
reception, energy expenditure is actually not reduced but
increased because the sensor nodes need to receive the extra
bits that specify the number of bits to encode each sensor
reading with. For an n-bit A/D converter, an extra log(n)
bits need to be received each time the data gathering node
informs a sensor of the number of bits needed for encoding.
We assume that the energy used to transmit a bit is equivalent
to the energy used to receive a bit. To reduce the extra energy
needed for reception, we simulated the data gathering node to
only specify the number of encoding bits periodically. In our
simulations, we chose for this period to be 100 samples for
each sensor node. The 5 sensor nodes were alternately queried
to send back readings that were compressed only with respect
to its own past readings so that compressed readings from
other sensors could be decoded with respect to these readings.
The overall average savings in energy is given in Table 1. To

Data Set Temperature Humidity Light
Ave Energy Savings 66.6% 44.9% 11.7%

TABLE I

AVERAGE ENERGY SAVINGS OVER AN UNCODED SYSTEM FOR SENSOR

NODES MEASURING TEMPERATURE, HUMIDITY AND LIGHT

assess the performance of our algorithm, we choose to use the
work of [14] as a benchmark for comparison. The work of
[14] is also based on a distributed coding framework but the
prediction algorithm uses a filtered estimate for the prediction
coefficients instead of using a gradient descent algorithm such
as LMS to determine the prediction coefficients. Furthermore,
in [14] the prediction algorithm only uses one measurement
from a neighboring sensor to form the prediction estimate.
Thus, in order to perform a fair comparison, we changed the
model of (17) to only use one measurement from another
sensor to form the prediction estimate and surprisingly was
able to achieve roughly the same performance as given in Table
1. The results for humidity are approximately 24% better than
the results cited in [14] for the same data set. Similarly, the
results for temperature and light are approximately 16% and
3% better respectively than the results cited in [14] for the
respective data sets. Thus, it is clear that the LMS algorithm
is better suited for tracking correlations than the methods given
in [14].

One can achieve even larger energy savings than the savings
cited above by using a less conservative estimate of the bits

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

needed for encoding (see (Eq. 14)). This will, however, lead to
more decoding errors. In our simulations we chose a bound on
the probability of decoding error that resulted in 0 decoding
errors over 90,000 samples for each of the data sets. In the
following subsection, we will evaluate the robustness of our
algorithm to errors.

C. Robustness to errors

There are two types of errors that can occur in our frame-
work. The first type of error is a packet loss. The second type
of error is an actual decoding error which results from the
code not being able to correct for the prediction noise. We
will consider each type of error in the following subsections.

1) Packet loss: A packet loss may occur if a measurement
is lost due to a malfunction of the sensor or if there is a
transmission loss. In such a case, it appears that this loss
should affect the prediction estimates that depend on this
measurement (see (17)). This is not true, however, because
the prediction algorithm may replace this measurement with
a previous measurement from the same sensor to form the
prediction estimate. In fact, we tested a few scenarios in which
the packet drop rate was approximately 10% and we were
able to achieve the same compression rate with zero decoding
errors. Thus, our algorithm has the additional feature that it
is robust to packet loss.

2) Decoding error: The other type of error is a decoding
error. Recall, in Sec. III-B, we mentioned that it is possible to
make a decoding error if the actual prediction noise between
the prediction estimate and the sensor reading exceeds the
tolerable noise specified by the data gathering node. One can
bound this probability of decoding error by using Chebyshev’s
inequality to specify the number of bits needed for encoding
(see (14)). But Chebyshev’s inequality is a loose bound, as
can be seen from Fig. 5 and as a result, it is difficult to
determine the minimal number of bits that need to be sent
by each sensor without inducing a decoding error. We can
therefore see that there is a delicate trade-off between energy
savings and decoding error.

To achieve both large energy savings and robustness, the
data gathering node can use an aggressive estimate of the
number of bits that is needed from each sensor and each sensor
can apply an error detection code or error correction code
to its readings so that the data gathering node can handle
decoding errors appropriately. The other alternative is for
the data gathering node to over-estimate the number of bits
needed for encoding to decrease the decoding error. This is
the approach we took in our simulations (we chose a bound
such that the decoding error was 0), but the downside to this
approach is that there is a corresponding decrease in energy
savings for the sensor nodes.

VI. CONCLUSION

We have proposed a method of reducing energy consump-
tion in sensor networks by using distributed compression and
adaptive prediction. Distributed compression leverages the fact
that there exist inherent correlations between sensor readings

and hence sensor readings can be compressed with respect to
past sensor readings and sensor readings measured by other
nodes. We proposed a novel method for allowing nodes to
compress their readings to different levels without having the
nodes know what the other nodes are measuring. Adaptive
prediction is used to track the correlation structure of the
sensor network, and ultimately determined the number of bits
needed to be spent by the sensor nodes. This approach appears
to be promising, as preliminary results show that an average
energy savings per sensor node of 10 − 65% can be achieved
using our algorithm.

The energy savings achieved through our simulations are a
conservative estimate of what can be achieved in practice. In
practice, one can use richer models at the data gathering node
to describe the correlation structure in the sensor network. We
chose to use a simple predictive model in our simulations to
demonstrate the power of our approach. In addition, our algo-
rithm can be combined with other energy-saving approaches
such as data aggregation to achieve additional gains. Future
work remains in exploring more robust codes for the sensor
nodes and better predictive models for the data gathering node
along with incorporating our algorithm with energy-saving
routing algorithms.

ACKNOWLEDGMENT

The authors would like to thank Ion Stoica, Rahul Shah and
Jan Rabaey for some stimulating conversations.

REFERENCES

[1] C. Toh, “Maximum battery life routing to support ubiquitous mobile
computing in wireless ad hoc networks,” IEEE Communications Maga-
zine, pp. 138–147, June 2001.

[2] R. Shah and J. Rabaey, “Energy aware routing for low energy ad hoc
sensor networks,” Proc. of IEEE WCNC, Mar 2002.

[3] D. E. C. Intanagonwiwat, R. Govindan, “Directed diffusion: A scalable
and robust communication paradigm for sensor networks,” Proc. of IEEE
MobiCom, Aug 2000.

[4] G. Pottie and W. Kaiser, “Wireless sensor networks,” Communications
of the ACM, 2000.

[5] M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven
sensor querying and routing for ad hoc heterogeneous sensor networks,”
IEEE Journal of High Performance Computing Applications, To Appear
2002.

[6] D. Slepian and J. K. Wolf, “Noiseless encoding of correlated information
sources,” IEEE Trans. on Inform. Theory, vol. IT-19, pp. 471–480, July
1973.

[7] T. M. Cover and J. A. Thomas, Elements of Information theory. New
York: Wiley, 1991.

[8] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. on Inform. Theory,
vol. IT-22, pp. 1–10, January 1976.

[9] S. S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes: Design and construction,” Proceedings of the Data Comres-
sion Conference (DCC), March 1999.

[10] S. Haykin, Adaptive Filter Theory. Upper Saddle River: Prentice Hall,
1996.

[11] H. Stark and J. Woods, Probability, Random Processes and Estimation
Theory for Engineers. Englewood Cliffs: Prentice Hall, 1994.

[12] T. Ramabadran and S. Gaitonde, “A tutorial on crc computations,” IEEE
Micro, vol. 45, pp. 62–74, Aug 1988.

[13] R. Blahut, Theory and Practice of Data Transmission Codes, 1995.
[14] J. Chou, D. Petrovic, and K. Ramchandran, “Tracking and exploiting

correlations in dense sensor networks,” Proceedings of the Asilomar
Conference on Signals, Systems and Computers, November 2002.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

