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Requirements (func. + security) I

functional

Data aggregation:

Sink
data transmission with a good balance between A
accuracy and energy efficiency to the sink

protection aims d;

Integrity/Authentication:

pair-wise data originator authentication or re-
recognition for sensed data to ensure that only
data from trusted sensors are considered for the
data aggregation process

Plausibility:
plausibility check at the sink node to validate
that the aggregated values are reasonable

Concealment: aggregation area:
Aggregated data need to be concealed end-to-  e.g. with aggregation function
end. Due to the aggregation during multi-hop snapshot

transmission, concealed end-to-end
transmission 1s not a trivial task.




Security Concepts®... I

Key pre-distribution
1) key managemant scheme for WSNSs (...) [EsGl02]
key rings for pairwise encryption...
2) topology aware group keying (TAGK) [weGiAco5]
subset of keys per routable region...
3) a lot more...
Integrity/Authentication
4) Time Efficient Stream Loss Tolerant Authentication (NnTESLA) [pe et al. 02]
robust and efficient broadcast authentication...
5) Lamport’s hash-chains, Merkle’s hash tree [Lam78] [Mer??]
chaining of hash functions...
6) Zero Common Knowledge (ZCK) (wewe03a]
extremely cost-efficient pairwise authentication (re-recognition)...
7) Identity Certified Authentication (IC) weweo3b]
shifting re-recognition to authentication...
8) more e.q. keyed hash chains, res. duckling, pub. key e.g. ECC?

*only for WSN (not for AdHoc)



Security Concepts®... I

Concealment

9) standard or “quasi”’-standard RC5 (TinySec), AES-CCS-64 (IEEE
802.15.4)

hop-by-hop encryption with different keying models
10) Concealed Data Aggregation (CDA) [Giwesco4]
E2E encryption in presence of aggregating intermediate nodes...

11) efficient aggregation of encrypted data (...) [CamyTs05]

E2E encryption with diff. key per node + ID-list
Plausibility
12) Secure Information Aggregation (SIA) [PrsoPe03]
plausibility evaluation at the access router...
13) energy-accuracy trade-off in WSNs (...) [BuGasr03]

Secure long-term Storage

14) tiny persistent encrypted data storage (tinyPEDS) [GiweMyo6]
distributed encrypted long-term storage within WSN...

*only for WSN (not for AdHoc)



Agenda

Requirements & Destination Platform

E2E encryption for reverse multicast traffic
“CDA: Concealed Data Aggregation”

Key Pre-Distribution for CDA
“Topology aware group keying”

Re-recognition and authentication
“Zero Common Knowledge”
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Reference Platform

W,

Sensor Node, e.g.

*  Crossbow’s MICA mote
* Speed: 4 MHz

* Flash 128Kbytes

« SRAM 4 Kbytes

«  EEPROM 4Kbytes

*  2xAA batteries

* Energy Ratio: Send/Receive/Compute/Sleep (100:100:10:1)...
 TinyOS (event driven), TinySec, TOSSIM, NesC

e Critical: Node lifetime and system lifetime:

Major Metric: WSN's lifetime... I
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"4 CDA: Concealed Data Aggregation
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CDA Problem to be solved...

 ...Merging data aggregation and E2E -
encryption

» data need to be aggregated on its way to the
sink node -> saves energy

» data aggregation function is context sensitive

Current proposals: data aggregation + hop-by-
hop encryption, e.g. RC5 (single group key)
Our proposal: data aggregation + end-to-end

encryption
PROS:

isr?:}elz T)I;ffb}; flce)nsummg encryption operations aggregation function “average”
= 1o lack of security at aggregating backbone of n sensor nodes

nodes...

= most flexible for aggregator node election
process over different epochs

E_:r__"hy |i;"ll"rn'u’-':|l.'iﬂl'| N Ec
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CDA...

additive and multiplicative PH
a+tb=D(E(a)+E, D))

a*b=D\(E(a)*E,(D))
with ,+,X) and

D:KxR->Q

a,b from Q, k from K

E.g. by PH from Domingo-Ferrer
aggregation functions

- average and movement detection
- N0 min/max => [WiOpt’03]

suits also for aggregator hierarchies

CDA: Concealed Data Aggregation

ot

Sink

AFDWH

A

“) y=E(a)+...+E(d)

E

S NN - R
E(/ | E(c) \E(d)
i)
b §° 0.c ) @,

aggregation function “average”
of n sensor nodes

Empowered by Innovation NEC
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PHs...(symmetric vs. asymmetric)

symmetric, e.g. by Domingo-Ferrer [1SC*02]

=> unsecure for major parameter settings...

asymmetric, €.g. by Okamota Uchiyama [EUROCRYPT 98]
=> provably secure but encryption and decryption 2 times slower than

ECDSA

Threat Analysis...

extended Dolev-Yao threat model...

passive and active attacks...

CDA: Concealed Data Aggregation

o

security
cryptoscheme

capture
resistance

overall
security

Hop-by-hop

(RC5, AES) / \ \

CDA —_ —_ —_

(sym. PH) =
CDA /7 / el =
(asym. PH)

s mj: ;nmatiun N EC
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" CDA: Concealed Data Aggregation

A symmetric and additive Reference PH...

Settings:
1) integer d=2
2) large integer g.

/* g should have i) many small divisors and at the same time there should be i) many
integers less than g that can be inverted modulo g.*/

3) secret key: k=(r,g’).

/*reZ_is chosen such that i) r’ mod g exists, ii) log,g is an integer with small g".
- set of cleartext: Z,

- set of ciphertext: (Z,)°. */

Encryption: Randomly split cleartext ang, into a secret a1,...,adeZg, such that

1) a=3%.,a; mod g'and a;eZ,.

2) E,(a)=(a,r mod g, a,r? modg, ..., a;r* mod g).
Decryption: Compute the j-th coordinate by

1) /- mod g to retrieve a; mod g.

2) In order to obtain a compute

Dy(E,(a) = 3%, a;mod g’

Addition:

1) The ciphertext operation + is done componentwi

10
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" CDA: Concealed Data Aggregation

oot

Example:

CDA for “average” with reference PH

e.g. public parameters: d=2, g=28 Sink
key: =3, g'=7 A 1=D((13,20))/5

Sensor nodes:
S1: B (1)=Bs7(d4)=(12.8) s
S2: E(37(2)=E5.5(7,2)=(21,18) | (13,20)
S3: Eg7(1)=E(3(6,2)=(18,18)
S4: E37)(0)=E;37(6,2)=(9.8)
S5: Egy7(1)=E31(3,12)= (9,24)

Aggregator node:
(12+21+18+9+9 mod 28,
8+18+18+8+24 mod 28) =(13,20)
Sink node:
D3 ,(13.20) = (13x19 mod 28, 20x19% mod 28) mod 7 ~ "ed: plaintext
=(23,24) mod 7 =5 green: ciphertext

finally 5/5=1 (five nodes have been involved)

Empowered _l:ly Innovation NEC
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é‘"‘? CDA: Performance and Demonstrator...

Demonstrator (Movement Detection)
* 3 sensor nodes sensing sound

* Visual interfaces at A and R

Performance...
encrypt [cc] | add [cc] | decrypt [cc]
at Si at A at R
RC5 236 4 236
DF d=2 1951 1452 2330
DF d=3 3481 2178 3136
DF d=4 4277 2904 3942

But...
% CDA beats H-by-H with >6-9 sensor
nodes per aggregator node

¢ CDA ensures flexible aggregator node election

T— ==

=~Empowered by Innovation
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Pre Key-distribution for CDA...

.4

“Topology Aware Group Keying”

Uninitialized O %OQ%O OO %%%

No keys QOQ QOUG OO OO OOOOO ]

Kl H=y 1 QO OO%%OOOCSD%D 9 OOO. ®, .p§0 .

K1 H=2 e~  Pre-Configuration

K1 H=3 O .
K2 H=1 %%Q%ooo « same key pool and key Id-list at
K2 H=2 &

K2 H=3 P each node (manufacturer)
K3 H=1

K3 H=2 Roll Out

K3 H=3

K4 H=1 « randomly but equally

K4 H=2 . . . . .

K4 H=3 distributed with sink in the

No Keys (after
cleansing)

13

centre
Bootstrapping
* Subset of key-pool per RR
» Each node stores 0/1 key
Cleansing

* nodes that have not been
reachable delete key pool

reowssasy oo INIEC



Pre Key-distribution for CDA...

(o7

Per RR 3-5 keys, per epoch one

7 nearly same size

8 RRs,

WSN
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Robustness CDA vs. H-b-H...

...indicated by number of alive pathes from sensor nodes to sink node

._V_‘L“
4

cda
RCE-2-keys
RCE-3-keys
RCE-b-keys

CDA

Fraction of alive nodes with aggregation path

) connectedinetwork

isconnegted network

0 1 1 || 1 1‘—\ L

=

»

0 50 100 150 200 260

112,711, 0,B86579

dead nodes .

Glomosim: one RR with 318 nodes, static radio range,
20 neighbors, 10 min simulation time...

15
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"Cd Security (Capture resistance)...

Average number of captured nodes per distance i that ensure a particular level of gain for
the attacker with a probability higher §0%.

Siain el an Allacker

= Gain P[G(c)<G(c+1)]

T

|i=3" ________
T “unaware’ attacker

= St PGl r(c-1)

=T ————
N —

it — -

“smart’ attacker

Gain [G(c)]

(11) r-(c-1)

r

GC ac 100 120 S40 160 182

captured nodes .

parameters: 1=10, 5 keys, P(i,])=i/10 => unaware 50 (vs. 4) nodes, smart 12

E_:r__"hy |i;"ll"rn'u’-':|l.'iﬂl'| N Ec
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Conclusion/Next Steps...

146
e

Conclusion

« CDA much more robust and flexible for
reverse multicast traffic than H-by-H enc.

 better overall security
« Currently: CDA with PH supporting

aggregation functions “average”
“detect moving obstacle”

17
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Conclusion/Next Steps...

Next Steps

« CDA supporting min/max operation e.g.
OPES (done WiOpt'05)

« CDA on asymmetric PH e.g. EIGamal on
elliptic curve points (in prep. ACM SASN)

« tinyPEDS - tiny persistent encrypted data
storage (in prep. Infocom)

« FP6 STREP UbiSec&Sens — fully fledged
security architecture

18




ZCK (1)... |

* Two people meet and want to
authenticate

* There 1s no supporting infrastructure
like passport system

» Establish a step-by-step trust
relationship based on personal
experience

» These people want to be able to
recognize each other again

— suitable for
= sensor networks
= P2P networks,

= secure routin

uting,

e ——— e

] c~ Nt a

'_ ; ““re;:.r by Innovation N Ec
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7ZCK (2)... |

* Based on Lamport’s hash chain:
- 2 hash chains x,,;, = h(x,)
- one generated at A, the other at B
- anchors x, are “private keys” per communication pair
- final elements x, are “public keys”

« Public key 1s bound to service (not device) at first
meeting

* A needs to store B’s public key which 1s then associated
to previous experience —=._. =

. _i:_ :_by ;,nu-.ratiun NEC

20




IC (1)... |

« Similarity: same functionality as a MAC scheme using a
symmetric key determined by an asymmetric key-exchange
protocol

* Provides: “proof of identity” for ZCK authentication
protocol
— Exchange a key that in turn is used for authentication in the
ZCK protocol

* Assumes: some infrastructure, devices with moderate
computing power, and loose time synchronization

reowssasy oo INIEC
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IC (2)... |

.. : : : interval time key-chain
* Divide time into intervals let a set of keys ~ Y

be valid for only one time interval I,
» Alice holds secret anchor x, and public
key PK=X,.1)+ ;-

* Public key 1s signed by CA attime @ 1, —
interval ¢ to compute certificate
<t, PK>,

* Alice sends Bob her certificate.

* At current time c she proofs knowledge
of corresponding keys of the key-chain. I

 Same for Bob

Er_ern:tr_ed by Innovation N EC
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( 0: A—>£»( \Qello .
1: A<-R 0
2: A>R L .id e PR
(with PKA=x4, . ))
3: A<-B B verifies CA sign f d,r, PK >
(with PKP=x, ,,)
4: A verifies CA sign
5: A determines tA *
B determines t,° **
6: A-=>B] A chooses k-chain (FE) A
with FEA fin. el. (withk A=x4, 1 0)
7: A<-B| B chooses k-chain (nFEB)kc +1B
with FEB fin. el. (withk , P=x5,. ; wp1)
8: A-> pens key k.
. B: hi(kA_, )= PKA \
10: A<-B| B opens key kB
11: A hifk® o PKY
: A=>B A opens key k.
13: B hkA )= kA /
14: A and B store
FEA and FEB
N_for ZCK AL

> certificate exchange

- compute time differences

. ZCK key exchange

* with d A= i-u and d A= i-v

*%*

with d B=j-u and d B= j-v

}

time differences
[#Interval]

*** 1=2d B+/-{0,1}

X m=2d A+/-{0,1}
23

knowledge proof
of corresponding keys
- (next slide)




IC (4)...

Hash Chain Hash Chain
Alice Bob
Private: Private:
X4 .

B opens some secret
- fitting to PKB
(Step 12) kA, integrity proof of FEA | | plus integrity proof of FEB

(Step 8) kAc_+1 fitting to PKA '
: M-t (k’B.., (Step 10)
- d,? de{ | i
X d A A :
Public: 2n-1) *aadp _Publlg
PKA = X2(n-1y+1 J k * X2(n-1)+1 =PK®

Empowered _l:ly Innovation NEC
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6‘"‘? Links...

BMB+F IPonAir (2001-2004)

“Next Generation Wireless Internet”
Koordinator: Prof. M. Zitterbart

Partner: 15

http://www.iponair.de

EU IST IP: Daidalos I + 11 (2004-2008)
“Designing Advanced Network Interfaces for the Delivery and

Administration Of Location independent, Optimised Personal Services”
Koordinator: Ricardo Pascoto

Partner: 46

http://ist-daidalos.org

EU IST STREP: UbiSec&Sens (2006-2009)

“Ubiqituous Sensing and Security in the European Homeland”
Koordinator: Dirk Westhoff ﬁ
Partner: 8

25
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4 Q&A...
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