
Network Text Editor (NTE)
A scalable shared text editor for the MBone

Mark Handley and Jon Crowcroft
USC hfomution Sciences Instit~~te and University College London

mjh@isi.edu, jon@cs.ucl.ac.uk

Abstract

JP Multicast, Lightweight Sessions and Application Level Framing
provide guidelines by which multimedia conferencing tools can be
designed, but they do not provide spec%c solutions. In this paper,
we use these design principles to guide the design of a multicast
basedsharededitor,andexaminetheconsequencesoftakingaloose
consistency approach to achieve good performance in the face of
network faihrres and losses.

1 Introduction

The IP multicast[l] service model and the design principle of Ap-
plication Level Framing[2] together hint at new ways in which dis-
tributed applications may be developed in many areas of network-
ing, They do not, however, give detailed guidance for application
developers, and there is a great deal of relatively unexplored terri-
tory, with just a few markers where people have successfully been
before, With this in mind, we set out to see where Ip multicast and
Application Level Framing (ALP) might lead the development of a
shared editor for the Internet Multicast Backbone @IBone).

The many-to-many model of IP multicast lends itselfreadily to dis-
tributed data applications, where everyone holds all the data and
multicasts changes to this data-set to the other participants. ALF
makes tbi~ approach powerful and ensures that it can perform well
because only the application has sufficient context to cope with the
consistency and reliability problems that can occur in a sufsciently
flexible manner.

These design principles can also lead to conflicting design goals.
In this section, we discuss these goals, and the infhtence of mul-
ticaot and ALE? In section 2 we present the basic building blocks
of a shared editor. In section 3 we explore the effects of taking a
particular path through these confiicting design goals and the limi-
tations this imposes on the data model of such an editor. Finally, in
oection 4 we speculate on how some of thesemechanisms might be
generalized for other applications.

Permloslon to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCOMM ‘97 Cannes, France
0 1997 ACM O-89791~905-X197/0009,...$3.50

1.1 Conflicting Gods

When designing a distributed data shared application such as a shared
editor, the following goals should be satisfied by the dataset distri-
bution mechanism:

Many users should be able to manipulate the same data ob-
ject over time.

Eventual consistency - the dataset should converge on one
dataset after a change (though it may be temporarily incon-
sistent while changes are propagating due to loss or network
faihlres).

Deterministic behaviour - if a user is allowed to modify a
data object, they expect it to stay modified.

FuUy intemctive - users usually don’t want to have to wait
for locks to be granted to be able to manipulate a data object,
as this leads to indeterministic delays due to loss or failures.

Unfortunately these goals are contradictory in a typical intemet en-
vironment with unpredictableloss and failures.

Different tools choosenot to satisfy one of these goals.

LBL!s shared whiteboard, wb[3], is the only multicast based
distributed data application in wide-scale use. It does not
allow different users to be able to manipulate the same object.

Dissemination applications suchas webpagemulticast [S] or
Usenet news feeds@l only have one data source per group,
and so avoid this conflict.

Traditional distributed applications makeuse of locking, and
suffer performance problems as a result.

Relaxing eventual consistency is not an option.

Thus if we are to achieve performance and allow different users to
modify the same object over tune, relaxing deterministic behaviour
seems to be worth exploring. By this we mean that under some
circumstances (that we can aim to occur rarely by careful design),
the system asserts a change that wasn’t what some subset of the
users expected. The hypothesis is that we can make this happen
rarely enough and provide sufhcient feedback to the users when it
does occur that it will not cause signiticantproblems.

Simply relaxing determinism does not necessarily result in usable
applications, and there are additional mechanisms and constraints
that are required before the problems caused by this design choice
can be said to have been overcome. In particular, achieving global
consistency with such a distriiuted data application is not trivial.

197

We will explore these problems in section 2 and propose solutions
that aim to minimize their frequency of occurrence and gracefully
deal with them when they do occur.

1.2 Design Principles and Background

IP r&/cast provides a service model by which a group of senders
and receivers can exchange data without the senders needing to
know who the receivers are, or the receivers needing to know a-
priori who the senders are. In addition to providing efficient data
distribution, this service model can lead to scalable and robust ap-
plications because the members of the group do not need come to
any agreement about who is actually in the group. This has led to
the evolution of the scalable lightweight sessiomM model for mul-
timedia conferencing, where there is no explicit group membership
mechanismother than joining the multicast groups and sendhtgpe
riod session messages to indicate membership.

When it comet to designing shared applications to co-exist with
these lightweight sessions, we would like similar scaling and mem-
bership properties - members of the group should be able to come
and go with minimal impact on the other group members.

IP multicast provides a transport mechanism that is unreliable and
non-ordered. We could attempt to provide an end-to-end reliable
transport layer over IP multicast for the application to use, but to
do so requires abandoning the lightweight sessions model because
such a generalpurposetransport layerrequires explicit membership
to achieve reliability,

The concept ofApplication LevelFraming[2] emerged due to a real-
ization that applications of this sort did not want a single transport
layer to perform everything for the application. The ALX design
principle suggests that data should be transmitted on the network in
units which are idempotent and thus can be utilixcd by the applica-
tion independently of other application data units. This is exactly
what is required for multicast based shared applications, so that
loose consistency may be maintained, and data can be presented
to the user as soon as it is available. Permitting this heterogeneity is
essential for applications to scale. The application can then handle
reliability and consistency issues as it sees appropriate depending
on the application context.

ALF applies to time as well as to space. In an ALP application,
data need not arrive in a strict order to be meaningful This allows
the application a large amount of leeway in deciding how to provide
reliability and consistency. Clearly in a shared application, changes
should be sent as soon as possible to provide immediate feedback
to the users, but network failures andpacketloss will ensurethat re-
ceivers end up with heterogeneous state. Such inconsistencies can
be resolved by retransmission, but can also be resolved using for-
ward error correction techniques, which can be much more ftexiile
and appropriate with ALP

In the current MBone, signiticant numbers of points in a distribu-
tion tree generate small amounts of loss, and these result in low
probabilities that a single packet reaches all the receivers in many
situations, In their experiments with 12 sites, Yajnik[8] tinds that
retransmission would have been necessary for between 38% and
72% of packets, and this would have been the case for around 95%
of packets sent to the much larger multicast video sessions observed
by Handley[9] if these had required a reliable multicast protocol.

Thus the use of some form of redundancy would appear to be very
desirable in designing reliable multicast applications.

1.3 Related Work

Most related work is in the areas of computer supported collabo-
rative work (CSCW) and replicated databases. In general, the ma-
jority of CSCW work has centered around preventing inconsisten-
cies from arising. We believe that temporary inconsistencies are
necessary to achieve good performance. Some work does explic-
itly ahow inconsistencies in the area of so-called “asynchronous”
collaboration. Haake and Haake [lO] use a versioning system to
manage parallel versions, but do not concentrate on subsequent re-
synchronisation. Munson and Dewanrll] focus on object merging,
but their techniques are applicable only to explicit complete merges
in an “‘asynchronous” environment rather than the “synchronous”
environment we are considering where divergence is usually un-
foreseen, and merges need to be timely, partial and opportunistic.

Techniquesfromthe areaof operationaltransformation[l2] aremore
applicable to synchronous systems. Such schemes use a model of
multiple streams and use a transformation matrix to transform mod-
els of remote changes before applying them locally based on the
context in which the change occmred. This is effectively a more
general approach than we take, but in its generality, it fails to re
solve trivial conflicts where one of two changes can be automati-
cally chosen so long as the users are made aware of the the issue,
even though this loses information. Thus we believe that (within
limits) unexpected changes due to conflict resolution are not sub-
stantially different than unexpectedchangesthat causeno conflict.

Although the world of replicated databases is driven by the imme
diaterequirement forprograms, rather than for humans, a very sim-
ilar set of properties are identhied there. The four so-called ACID
properties, which areusedto categorize transactions in a distributed
system am:

l Atomicity. Either all or none of the transactions operations
are performed. If a transaction is interrupted by faihue, then
its partial changes are undone.

l Consistency. A transaction takes the system from one inter-
nally self-consistent state to another.

0 Isolations An incomplete transaction can neverreveal its par-
tial changes or internal state to other transactions before com-
mit.

l DurabiIity. Once a transaction has committed, the system
must ensure that the results of its operations will never be
lost, independent of any subscquentfaihue.

Witb replicated transactions, there is an utmost requirement to sat-
isfy all four of these properties simultaneously. Typically, the sys-
tem is engineered to a scale that is affordable for a level of repli-
cation that gives rmfficient availability. The tradeoffs and scaling
properties for NTE are such that these are neither all necessaty,nor
feasible.

In general, although there is a significant body of work in the areas
of merging inconsistent data sets, no lightweight shared application
protocols have so far emerged. The closest work in the intemet
community is the work on Scalable Reliable Multicast (SRM)@]

198

from LBNL. In it3 current implementation, wb, this takes the more
restrictive approach of preventing inconsistencies from arising.

2 Design

To achieve resilience, we adopt a distributed, replicated data model,
with every participant holding a copy of the entire document being
shared. End-syntems or links can then faiI, but the remaining com-
municating sites’ still have sufficient data to continue if desired.
ATE use3 IP multicast to provide unreliable many-to-many com-
munication at near con3tant cost to the application, irrespective of
the number of receivers. Reliability mechanisms are then the re
sponsibiity of the application alone.

2.1 Application Data Units

NTE’s data model is determined by interactivity requirements -
many u3ers mu3t be able to work on the same document simuha-
neounly - and by the observation of usage modes, particularly the
need to be able to keep annotations separate from the primary text
being worked on.

The data model is hierarchical, based around blocks of text, each
consinting of a number of lines of text. Each block is independent
of other block3 - it can overlap them if required although this does
not aid readability. An example of block3 used for annotation, is
given in figure 1.

i i :
j :

, -0 ,?dl.y singing rution. &.a.+ i ~dOed SmilOY~,~~~,: ‘ij
:.::‘i,x:: ..~.~........... “:

: I ::::.
: .. ,::i:::

. . ,-* liidl*y l etar *atLug scmdaing SOUX
.:.>:,: ;. : $

. : : : ,..,. .,.,.,: : : : I . ,;.: : :
::::::,, ':$::

i

),,, y:;;y:, 'Q
I ,, ii . '.?&.. . . . iv..

i.,,) G!mf1.y punl-r&.rpf ,\, n~..w+s d#n'e rmtl.:~.;':'
:

:,,.'.,.
'iii8.::

Figure 1: An example of blocks of text used for annotation

Most ;innotations will not be modified by multiple users simulta-
JEOUS~Y, and this allows a number of users to be working simuha-
neously on the document in separate blocks. However, restricting
u3ers to simultaneous annotarion of documents would impose too
great a constraint on potential usage modes, and so each line of
text is al30 separate entity, allowing user3 to be working on separate
lines in the same block.

Taking this model further, and treating each character of a line as
independent is undesirable. Firstly, the amount of state that needs
to be kept for each 3eparate entity to ensure eventual consistency
is oignificant. In addition, line ADUs have the advantage that it is
unnecessary to receive all the individual changes to the line as a
user types - the most recent version of the line is sticient, giving
a large degree of redundancy in the face of packet loss. Lastly,
there are transmission failure modes with either line or character
ADUs that render no globally consistent ordering for the data. Due
to the nature of text editing, these are signScantly less likely to

‘In thh paper we use tbc term sire to indicate a. sit& instance of the 3pplication,
wherever it IO Iocatcd

occur with lines than with characters. We discuss this and also the
implications of simultaneous modification later, in the light of the
loose consistency model described below.

When a line is transmitted, it carries the id’s of the previous and
next lines and the id of the block it forms a part of. Although lines
and blocks are not completely independent, blocks can be moved
without modifying the lines contained in the block, and lines can be
created, deleted and edited independently of other lines or blocks.
There are however a number of desirable operations on lines that
camrot be carried out independently, and we shall discuss these and
their consequence3 in section 3.

2.2 Distributing the data model

The choice of a line as the ADU was in part due to the simple ob-
servation that most consecutive changes are made to a single line
because a user continues to type. Jf the whole line is sent for ev-
ery character typed, the additional overhead is not greats, the data
transfer is idempotent, and a great deal of “natural” redundancy is
available - so long as a user continues typing on the same line, lost
packets are unimportant However this is only the case if we take a
loose consistency approach with changes displayed as soon as the
arrive, irrespective of whether other sites have received them

Jnorderto beable tousethis ‘haturalredundancy”propcrty,itmust
be possible to identity whether a version of a line that just arrived is
more recent than the copy of it we have aheady. This is necessary
to cope with misordered packets from a single source, and to cope
with retransmitted information from hosts with out of date versions
of the data.

Jf we assume synchronized clocks at all sites, recognizing out of
date information is achieved by simply timestamping every object
with the time of its last modification. Copies of objects with out
of date timestamps can be ignored at a receiver with a later version
of the same data If we wish to take advantage of redundancy by
not requiring retransmission of many lost packets, a receiver must
not care if it receives ah the changes to a object as they happen;
rather it only needs to receive the t&l version of an object, although
receiving changes as they happen is desirabIe.

In practice, we can’t assume synchronixed clocks, but we can im-
plement our own clock synchronisation protocol in the application.

There are alternatives to this mechanism, including maintaining a
change log with each object, but they do not help greatly. Ei-
ther they require locking, or they suffer from the same merging of
changes problem that timcstamping suffers tiom without sign&
cantly helping solve the problem

2.3 Clock Synchronisation

Given that ah changes to a document are multicast and are times-
tamped, we have a simple mechanism for clock synchronisation
amongst the members of a group:

‘Forcxunple,thetypicalIETP~hasaroand40chanclersperlint.nmcnbe~
ereatcd (moditicd) the mean line length will therefore be 20 (40) characters. An NTB
packetnquirs4ObytcsofIPaudUDP headervldtbeNTEline headercomprises
bytestoeIlsmethat~lintisidrmpotenLThasfordocmnentmodificatioa,~eRdPn-
&my comprises aboatfO% of tke packet, for creation it comprises abont IS%, and
less stin for annotations which trnd to be very short. This only comprises rcdmuiancy
whenaascrisac~y~yping-for~loadingthis&taisnotndnndvlL

199

l if a site has not sent any data and receives data from another
site, it sets its application clock to the timestamp in the re
ceived message.

l if a site has not received any data, and needs to send data, it
sets its application clock to its own local clock time.

0 if a site receives a message with a timestamp greater than
its current application clock time, it increases its application
clock time to match that of the received message.

These rules ensure that all sites’ application clocks are synchro-
nized sufficiently accurately for ourpurposes.

Figure 2: Application based clock synchronisation

Figure 2 ilhMrates this process: source S2 sends the first message,
and Sl and S3 synchronize to the timestamp in this message. ‘JXvo
new sources (S4 and S5) then join, and before any of the original
sources send a message, S5 does so. As S4 has seen no message
(therefore has no data), it synchronizes to S5. The three original
uources have data therefore do not synchronize to S5. Later one of
the three original sources sends, and both S4 and S5 synchronizeto
the timestamp in the message.

To show this achieves the desired results, consider three sites A,
B, & C, with three application clocks tA9 tg, and tc, andpositive
transmission delays dAB, dAc, etc.

if A sends the iirst message, we have
ta =tA -dAB
tc=tA-dAc

if d,.g ever decreases when A sends, then J3 will increaseits clock
to match the new delay, and tA and tg become closer.

if dAB increases, B continues to use tB

Now consider a message sent k seconds later by C:

This message anrives at B with timestamp k + tA - dAc and it
arrive6 at time k + (tA - d,m) + dcB. A comparison is made
and only if dAc < dAB - dcB is the clock at B increased to be
k + t,j - dAc. Thus the clock at B can only get closer to the clock
at A when a message is received from C.

The process continue3 30 long as messages are sent.

As all messages are timestamped, clock synchronisation to less than
the minimum delay between each pair of active sites is provided
for free, and no explicit clock synchronisation protocol is required.
This assumes that all local clocks run at the same rate.

This is a reasonable first approximation for almost all of to&y’s
workstations, within the bounds that are detectable by human reac-
tion time. Should a clock drift by a few seconds, then it is possible
that a change made at one site may be reversed f?om another site
within the bounds of the clock drift. However in practice this does
not happen because the sites need to exchange data to create such
an e-vent, and this data exchange causes a clockre-synchronization
to the fastest clock.

There are algorithms that synchronizethe clocks much more accu-
rately than this, but for the purposes of consistency control, a nec-
essary feature is that clocks are never decreased, and the algorithm
given is simple and sufficient

Implementation of this algorithm reveals that there is a case where
clocks do not stabilize. This occurs when two sites with a clock tick
of length t are connected by a network with a transit delay of less
than t, as illustrated in figure 3. This can happen with some Unix
workstations with a 2Oms clockresolution connectedby alocal eth-
ernet. Under these circums tances, the receiver will synchronize to
the sender to a resolution of less than t. If the two clocks are not
in phase, then the receiver can be ahead of the sender for part of
each clock cycle. If their roles as sender and receiver are reversed
and the new sender now sends a packet at a point in the clock cycle
where its clock is ahead, the old sender then increments its clock
to match the new sender. If both sites send alternately, this can re-
sult in both clocks being incremented indefinitely. This can simply
be avoided if the clock tick interval is known, by simply ignoring
clock differences of less than the clock tick interval.

masaw santntgSl.c!ockZlnre~

acck at st

aakats?

ht3nd8dr8nxlm
‘---- olc!cckl,cfcekZ

Figure 3: Clock synchronisation failure due to clock granularity
being greater than transmission delay

200

2.4 Reliability Mechanisms

Due to the redundancy inherent in the data distribution model, NTE
will sometimes perform reasonably well with no mechanism for
ensuring reliability, However, there are also many situations where
this is not the case, and so we necdamcchanism to detect andrepair
the resulting inconsistencies.

Inconsistencies may result !?om:

0

0

0

l

2A.l

Simple packetloss not corrected by subsequent changes bar-
titularly where the last change to a line has been lost, or
where data was loaded from a file)

Temporary (usually bidirectional) loss of large numbers of
modifications due to network partition.

Late joining of a conference.

Effectively simultaneous changes to the same object.

Inconsistency Discovery

Unlike the mechanisms used in SRM [3] and INRIA’s whiteboard
[14], inconsistencies due to simple packet loss cannot be discovered
simply from the absenceof a packet as we wish most such changes
to be rep&d by redundancy, and therefore do not need to see every
packet at a receiver.

Instead we use a mechanism that ensures inconsistencies are re-
solved, irrespective of the number of packets lost. There are three
pruts to this inconsistency discovery scheme.

Two mechanisms are based on the session messages each instance
of the application sends periodicallys to indicate conference mem-
bership, To detect inconsistencies, each session message carries
two extra piece3 of information - the timestamp of the most recent
mod&&ion seen, and a checksum of all the data. J.f the thnestamp
given by another site is later than the latest change a receiver has
seen, the receiver can request all changes from the missing interval
without knowing what that data actually was. This may not GlI in
sufficient information to ensure consistency, and so the checksum
ir; a last resort to discover that a problem has occurred. This is fol-
lowed by an exchange of checksums to discover which blocks the
differences are in, and then a summary of the line timestamps in the
inconsistent block

The third mechanismis designed to prevent the above mechanisms
t?om needing to be used where possible. We have a concept of the
current site - this is the site which has most recently been activeP
The current site periodically multicasts out a summary packet giv-
ing thetimestamps andIDs of all themostrecently changedobjects.
If a receiver has a different version of one of these objects then it is
entitled to either request the newer version from the current site, or
to send its newer version.

The current site may change at the endof eachretransmissionround
(see section 2.5.1) each time a new user modities the document;
however the rate that these summary packets are sent is a constant

?hcse m.don messages arc sent by each site with a rate that is dependent on the
(olalnnmberof~ilesinIheconfennce,~,chatthctotalsessionmcssa~eratciswnslult
and low,

IIf more than one site is active, any of those sites canbe chosenas cmmntsitc. If
two &es both think they am the current site, the one with the lowest P address stops
sending.

whilst any users are modifying the document - a new current site
simply takes over from the previous one. Once a document be-
comes quiet, the rate of sending summary packets is backed off
exponentially to a low constaut rate.

Au alternative to sending explicit summary packets Corn the current-
site might be for session and data packets to have an additional ob-
ject ID and its modification timcstamp added to them, and for all
sites to take turns to report the state of the most recently modified
objects in a distributed manner. The choice of sending summary
messages Corn the current-site rather than using a distributed ap-
proach was made because, with our architecture, the current-site
alsoregulates theretransmissionprocess (scction25.1) and so it is
more natural for it to list the status of its data set. Typically the cur-
rent sitehasthemostupto-datedataasit has beenmostrecently ac-
tive. Jf the current site has out-of-date data for any reason, this also
ensures it is updated fastest, which is in keeping with it also being
the most active site. If we had adopted a symmetric retransmission
architecture such as SRM, distriiuted summaries would probably
have been more suitable.

2.5 Scalable Retransmissions

When a receiver discovers there is an inconsistency between its data
and that of another site, it cannotjust send a message to resolve the
inconsistency immediately because there is a high probability that
its message would be synchronized with identical messages from
other receivers and cause a NACK implosion. Instead we require
a mechanism to ensure that approximately one site sends the mes-
sage. If this message is an update, it should be multicast as this may
update other sites with out of date information. If this a message is
a retransmission request, it should also be multicast, as then the re-
ception of the request can be used at other sites to suppress their
retransmissionrequests.

SRM[3]usesamechanismbywhichretransmissionrcquestsarede-
layed by arandomperiod of time partially dependent on the round-
trip time between the receiver and the original source. Requests are
then multicast and serve to suppress further duplicate requests from
other sites. To work most effectively, this requires all participants
to calculate a delay (round trip tune) matrix to all other sites, and
this is doneusingtimestamps in the session messages.

As it has no redundancy mechanism, SRM’s wb implementation is
more dependent on its retransmission mechanism than NTR is, and
thus it requires its retransmission scheme to be extremely timely.
NTE does not wish its retransmission scheme to be so timely, as it
expects most of its loss to be repaired by the next few characters
typed. This results in very signiticantly fewer packet exchanges
becausein a large conference on the current &Bone, the probabil-
ity of at least one receiver losing a particular packet can be very
high. Thus what werequire is a retransmission schemethat ensures
that genuine inconsistencies arc resolved in a bounded length of
time, but that temporary inconsistencies due to loss which will be
repaired anyway do not often trigger the retransmission scheme.

SRM can be tailored for redundancy by adding a “dead time” to
the retransmission timer to allow a window during which the next
change could arrive. If we used SRMs randomized time based
scheme, then we would probably opt for not sending summary mes-
sages but instead adding ID/timestamp pairs to the session mes-
sages as described above. These would then tend to spread the re-

201

Sender chooses a random key, and a mask
appropriate for the size of the conference.
Receivers also choose a random key.

Round 2

Round 3

Round 4

Round 5

Round 7 - Rece’wr 2 matdw key

Recaiver 2 can now request a retransmission

Figure 4: Sliding Key Triggered Retransmission Requests

trannmission requests more evenly.

At the time NTE was designedandimplemented, SRMs mechanism
had not been described in detail, and we used a different sender
driven retransmission request scheme. For many purposes we be
lieve SRM is superior, but there are uses for which NTE’s sender-
controlled scheme is desirable.

25.1 Sliding Key ‘lkiggered Retransmissions

When a instance of NTJI sends a summary packet, it starts upon the
process of sending a sequence of keys. When a receiver matches a
key sent by the sender, it can immediately send its retransmission
request (which can be many objects if necessary) along with the key
that was matched. On receiving this request, the sender then starts
the retransmission of the missing data.

The sender generates a random integer (key) when it creates its
summary message. Upon receipt of the summary message, there
ceiver also generates a random key. Then the sender sends its key
along with a key mask which indicates the bits in the sendeis key
that must be matched in order for the receiver to send a retrans-
mission request. This key/mask pair is sent several times, and if
no retransmission request is forthcoming, the bits indicated by the
mask are reduced by one, and the key/new-maskpair is sent again.
If no retransmission request is forthcoming by the thne themaskin-
dicates no bits need to be matched, then the process is started again
with a new random key, a new summary report, and possibly a new
current site. If no change has occurred since the previous summary
report, the rate of sending sliding keys is reduced to half the rate for
the previous round until it reaches a preset lower rate limit This
process is ilhrstrated in figure4.

This is loosely based on a scheme[l3] devised by Wakeman for
wnges tion control in muhicast based adaptive video.

Delay (aeconcts.) . II

‘0 2L
a ” 60

Receivers with loss (%)
70 z

Figure 5: Expected delay before a retransmission request
(KIT=25oms)

As the sessionmessages give areasonableapproximation of the sire
of the conference at the point when we generate the summary mes-
sage,the sliding key can be started close to the point where it would
be expected to elicit the first responseif all receivers need a retrans-
mission. The delay then before receiving a retransmission request
scales O(Zog(n)) where n is the number of participants. This is
shown in figure 5. For a typical 1000 way conference, where only
onereceiverrequires a retransmission, with each key/maskpair sent
twice per round and an estimated worst case lUT of 25Oms, this

202

results in 4 (small) packets per second and a maximum delay of
5 seconds before requesting retransmission. If the conference was
smaller, or more sites had suffered loss, this time would bereduced.

Simulation results and real world experience show that the mean
number of responses is not dependent on number of receivers suf-
fering loss or session size, and it is typically around 1.4 to 1.5. How-
ever, loss mres do affect the number of responses, because sliding
key messages start to be lost, and so several receivers that would
match the same key do not always all see the same transmission
of that key, and key retransmission stops once one receiver has re
sponded. This actually serves to decrease the number of responses
by a small amount as shown in figure 6.

o. of Receivers with
Mean lose rate (%) “‘” “J (

Figure 6: Simulated number of retransmission requests with two
transmissions of each sliding key mask

3 Limitations of the Data Model

We have described a data model and a distribution model which are
oriented towards building a scalable distriiuted shared text editor.
However, these models impose a set of limitations on the functlon-
al&y of the shared editor, or on the way this fimtionality is impk-
mented,

Whilst a data model based on blocks and lines allows different
blocks or lines to be modified simuhaneously without any problem,
the lock-free distribution model and the choice of a tie as ADU
mean that it is possible for more two or more users to attempt to
modify the same line effectively simultaneously.

In addition, network partitions can result in more complex incon-
sistencies arising. We show below that careful design choices can
result in all such more complex inconsistencies becoming equiv-
alent to a deteckable case of effectively simultaneous insertion of
lines into the same place, and that this can be resolved.

Deletion of Lines of Text

Deleted lines need to be maintained in the data structures, with a
marker that they are no longer visible. If they were not stored as
actual objects, then they may be reasserted by sites which have
missed seeing the deletion event. Deleted line ID’s and deletion

times must be transmitted to and stored at all sites (including sites
joining after the deletion event) to preventtitentionalre-assertion
after sites that saw the deletion have left the conference.

If an entire block of text has been deleted, sites only need hold the
ID and deletion time of the block- the holding of information about
lines within the blockis unnecessary.

The most signi&nt design decision here concerns the effects of
network partitioning - if a user at a site in one partition deletes a
line, and subsequently another user in the other partition modifies
the line, we have two choices when the partition is resolved:

l Rely only on modification time (i.e. treat deletion as just
another modification that can be changed later)

l Make deletion irreversible so that deletion always prevails
over modification.

Treating deletion as modification leads to a number of scenarios
where it is ditlicult to achieve eventual consistency.

We took the decision that deletion is irreversible, as this provides
a mechanismthat is irrespective of causal ordering in a partitioned
network, and this causal ordering independenceprovides a mecha-
nism which we can utilize to achieve eventual global consistency.

To achieve inconsistency detection, there is one further require-
ment; deleted lines must not only be kept at all sites to prevent
reassertion of the line from other sites, but they must also be kept
in their original placein the list of lines at each site. For example, a
line preceding a deleted line must still be transmitted with its “next
line” field indicating the deleted line. This ensures shmiltaneous
insertion is a detectable situation.

JlfktivelySimultaneous5 Changesto the Same Line

NTH is designed for use in multhnedia conferences where there
are additional channels of communication between users. Thus
two users attempting to modify the same line will normally see the
changemade by the later site being substituted for the change made
by the earlier site. If such changes do not involve adding a line
break to the middle of a line, then no lasting confusion should re-
main, and the loser will be notified of what is happening. Typically,
at this point the users will talk to each other and decide who should
actually make the change.

It should be noted that although there are circumstances when one
site does not even see the change made by the other site (for ex-
ample, Site 1 does not see Change 2 in figure 7), the user interface
should signal that another user is attempting to modify the line, so
that both users do realize exactly what is happening.

Ifoneoftheusersaddsalinebreaktothemlddleofaline,thlscould
be mapped into a truncation of the existing line, and the creation of
anewlineaftertheexistinglinewith theremainderofihe text. The
overlapping request, if it happens after the line break insertion, but
before the receipt of the message (see figure 8) will then re-assert
theprevious line. This will be confusing for users, as suddenly text
has been duplicated.

203

site 1 Siie 2

change 1 i : ,

:
:
* change2

: :
change3 :

a

:

:

: ,

i

i

Changes 1 and 3 prevail. Chan 5 2 Is seen briefly at sRe 2, then disappears,
SNe 1 naver sees Change 2 - it s a!ready too old when K arrives at site I. P

Figure 7: Two uEers attempting to simultaneously modify the same
line

6lb 1 St92 I dlMGe1 : : : : dlange2
:
:

$4
:
:

:
:

dmnae 1 msulto In a tine bdno sriu in tlio. WLwhnn a modBed rn0 and * new me.
dmn-e 2 mod;fieo tie orlginallii’e. -
In p L pie schsme. the new line from c&nge I and the mcdfiad ollginal fmm
dwn~e2 rum&. ThisIsmodl~kely ~4th anefworkption. butwu!dalso occur
due lo timpIe tmnsmlss?on delays.

Figure 8: Undesirable behaviour due to simultaneously splitting a
line and modifying it.

However, if deletion is an irreversible operation (Le., deletion over-
rides modification), then deleting the line to be split and inserting
two new lines in its place prevents this undesirable behaviour at the
expenseof additional state. Thesedeletion andinsertion operations
can be atomic. We shah show later that simultaneous insertion of
lines IB also detectable,

In the case of simultaneous modification due to transmission delay
it is eaoy to inform users of the problem, but we cannot do so in the
case of simultaneous modification due to networkpartitioning.

If only single lines have been modified, there is no real problem, as
the later change will be asserted, and although this may not be what
the user whose changejust got replaced actually wants, at least the
document ends up in a consistent state.

It is possible to keep a local copy of the state of any line we have
modifhzd at the time we last mod&d it in order to be able to re
assert the sttite if the conflict resolution was not what we actu-
ally wanted. However, it is easy to envisage ways to defeat such
a ECheme if it were to be performed automatically, so such a re
assertion Ghould only be performed with explicit consent from the
uner for each step, and should not be the primary consistency mech-
anism.

Moving of sections of text

There are two ways to view the moving of a chunk of text:

l Deletion and then insertion of the contents of the deleted text

l changing the bordering lines neighbouts (sending modifi-
cations of the top and bottom lines of text specilying new
neighbours)

Deletion and then reinsertion is wasteful of bandwidth and causes
extra state to have to be held (and sent) for the deleted lines. We are
sure however that no-one can have already changed the new lines,
and so the original lines cannot be reasserted.

Modifying the context information of the bordering lines and just
resending this information has the possrble advantage that some-
one modifying the moved text in its old position due to temporary
partitioning sees her changes reflected in the new positioning after
the partitioning has been resolved. However, it is possible that one
or more of the bordering lines are mod&d in a partitioned site after
the move has occurred, and that the resolution of the partition then
undoes or partially undoes the move, resulting in a block where
no-one knows the correct line ordering.

Allowing the possible situation of no-one knowing the correct line
ordering is extremely undesirable, and so we treat moving as dele-
tion and subsequent reinsertion, despite the additional overheads
this entails.

Garbage Collection and Check-pointing

Irreversible deletion allows for check-pointing of blocks and for
garbage collection of deleted lines by deleting a block, and then re-
asserting the same data as a new block and new lines. For the mini-
mal cost of keeping a deleted block, we no longer need to store the
deleted lines that used to be in the block. In addition, it means that
in any subsequently resolved network partitioning, changes made
iu the other partition will not be asserted. This has to be imple-
mented carefully, as the users in the other partition may not wish
to see their changes simply discarded, but there are times when it is
desirableto assertthecurrentstate. Ifbothpartitions checkpointthe
sameblock,thentheblockwill beduplicatedatthetime ofpartition
resolution, which then allows user intervention.

Effectively Siiultaneous Insertion of Line3

Effectively shuultaneous modification of a single line always re-
sults in a block that is internally consistent and the document in a
gIobalIy consistent state. We’ve shown that irreversible deletion al-
lows combinations of moving, deletion, line splitting and so forth
to be performed, with the side-effect that some circumstances can
result in effectively simultaneous insertion of lines.

l3Rctively simultaneous insertion of lines not only results in a doc-
ument that is not internally consistent (we have two copies of essen-
tially the same lines) but also a document is not globally consistent
either (different sites can have different views of the document).
This occurs because two or more lines each have the same neigh-
bouring lines. It can be detected at all sites, because a set of lines is
received that should fit in the same place in a block as a set of lines
we already have.

204

Figure 9: Known consistency,unknown state, and known inconsistency

men a mod&d line arrives, we may have seen the line it says is
its previous line, the line it says is its following line, neither or both.
It also may be the start or end of a block

. .

. . ..m..mm.s. Uneo added In lhe o!hrpatilion.

1
r.........: :;

.I,
Redo” o,[nmns[*w

.,,.. .,..,..,.,,..:

Figure 10: Simultaneous Insertion is a Detectable Situation

Thus we may temporarily not know whether we have mconsisten-
ties such as those shown in figure 9. If we have unknown consis-
tency, we should not display the received line until we reach a state
of known consistency or known inconsistency. Figure 10 shows in
more detail detectable inconsistency causedby shnuhaneous inser-
tion.

Figures 11 and 12 ihustrate why deleted lines must be kept in place
in the data structures to make inconsistency detectable.

As a result of these rules, inconsistencies such as shown in figures
10 and 12 can only occur when alternative new lines were inserted
effectively simultaneously. Thus the question comes down to which
of the two sets of lines to keep and which to delete. We must also
ensure that the block is globally consistent including rheposifion of
the deleted lines or we may not be able to detect further inconsis-

lineneo added In oUmrptition

Figure 11: Simuhaneous Deletion andInsertion - no inconsistency

tencies at all sites. However, we do not care about the order within
a set of consecutive deleted lines, so instead of deleting one of the
two alternative sets of lines, we must actually delete both alternative
sets of lines and reinsert one of them again before global consis-
tency can be restored to the block

Although the decision to perform the deletion can be made locally,
the decision as to which alternative to choose cannot be easily be
made consistently and locally in a manner that is likely to choose
the better option. We could use arbitrary criteria based upon the
data itself (hut not on its modification time), although this seems
undesirable.

The choice of which alternative set of lines to retain can be made
automatically (by the “current site”) or it can be made clear to the
users that there is a problem that requires resolution. Centralizing
the decision in this way allows easier selection of policies based on
the duration of partition, size of changes, etc. In a short partition
with few changes, and automatic solution is preferable. In a long
partition, it is more likely that a user should be involved. Either
way, if more than one site attempts to resolve the conflict, the cycle
is simply repeated again.

To ilhtstrate this process, assume a consistent dataset comprising

205

. ..m...m.... Unes added In ourpatit!on

Limo added In otherpattifon

m Une deleted in ourpa~Gtion

Figure 12: Simultaneous Deletion and Insertion resulting in incon-
sistency

doubly linked list
Lo = (11,. . 0, &7&),

and that a partition then occurs, After some changes, two new con-
sistent states LA and Lg result:

LA=(Il,...,In,al,...,ap,1,tl,..., &n)

LB=(~l,...,~n,bl,...,~q,tntl,...,~m)

At partition resolution, this is a detectableinconsistency as there are
two paths from 1, to 1,+r. The inconsistency is resolved by dele
tion of the loop with consecutive deleted objects forming a single
set-element, and reinsertion of one of the alternatives:

Lc = (11 ,...,ln,{m c...r%hr...,bq)r

Cl I..., cr,L+1 ,...I La)

where (cl,cr)E((al....,a,),(bl,..., 6,))

Should this mistakenly be performed by more than one site, the
process will be repeated as the new inconsistency is detected

Any additional partitions that may have separated from LA or LB
during the original partition can also be remerged. For example,
Lo m;iy have partitioned from LA during the original partition:

LD =(li,,..,In,al,...,az,dl ,..., daraz+y ,..., ap,

lntl, .*.,bn)

where 1 5 x < (3 + y) ,< p

On remerging, the resultant dataset becomes:

LB = (11 ,...,L,{w ,..., ap,h ,..., &,a ,..., cr,

4,da}.el,...,et,Zn+t ,..., In)

where

(el,...,et) E {(al ,...,ap),(blt...,bQ),

(a1 ,...,a=,& ,..., &,urty ,..., ap)}

Jn practise, it is rare that this mechanismis required.

Inconsistency Avoidance Mechanisms

To summa&e the limitations necessary to ensure eventual consis-
tency after the resolution networkpartitioning:

Deletion must always override modification, irrespective of
the timing of the two operations.

Deleted items must be transmitted to and stored at all sites to
prevent m-assertion.

Deleted lines must be kept in their original place in a block,
and must remain referenced by their neighbouring lines - this
is a precondition for simuItaneous insertion detection.

Moving of text mustbeperformed by deleting all the original
lines containing the text to be moved and inserting the same
text as new lines, thus preserving the original line ordering.

If all the above are performed, line ordering within a block is
only changed by adding new lines. This makes shnultaneous
insertion of lines during a networkpartition a detectable and
resolvable situation.

These restrictions will ensure that eventual consistency is achiev-
able, even in the face of continuing modification during a network
partitioning. However, they are not always sufficient to ensure that
the contents of the document eventually converge on what all of
the users actually wish it to be. Although this could be achieved
by locking of blocks to ensure that only one person can mod@ the
a block at a time, we believe this restriction is often unnecessary
and would restrict usage of the editor. Indeed, under many chcum-
stances, the usage patterns of the editor are likely to be such that
large scale shmrltaneous editing of a block during a networkparti-
tioning will not happen because the vocal discussion needed to do
so will not be possrble. If users are concerned about simultaneous
editing of a block during a network partition, they should check-
point the block to ensure no unseen changes can be made to it. For
paranoid users, this check-pointing procedure could be automated,
although we do not believe this is normally desirable or necessary.

4 Conclusions

ICE, its data model, and its underlying protocol were ah designed
to solve one specitic task - that of shared text editing. We used
general design principles - those of IP multicast, light-weight ses-
sions, and application level framing as starting points. However, the
application data model is intended only for text The data distriiu-
tion model uses the redundancy achieved through treating a line as
an ADU combined with the fact that most successive modifications
are to the same line to avoid the need for most retransmissions.

However, the restrictions the data distribution model impose on a
data structure consisting of a ordered doubly linked list of applica-
tion data units can perhaps be generalized somewhat. The imposi-
tion of a strict ordering of ADUs, combined with marking deleted
ADUs whilst leavingthemin position in the ordering, allows the de-
tection of inconsistencies causedby networkpartitioning in a loose
consistency application.

The stacking order of blocks in NTE is a local issue so that over-
lapping blocks can be edited. In a shared drawing tool, stacking
order is a global issue, allowing the overlaying of one object over

206

another to produce a more complicated object Jn such a tool, each
drawing object (circle, polygon, rectangle, line, etc) is the drawing
equivalent of a line of text. The concept of a block does not exist as
such, but there is a strict ordering (analogous to line ordering in a
block) which is imposed by the stacking order. Thus, the same set
of constraints that apply to lines of blocks in NIX should also be
applied to the stacking order of drawing objects. We believe many
ohared applications have similar requirements.

The retransmission mechanism used in NIX is novel, and its re
quirements are perhaps atypical of shared applications because of
the wi3h to exploit redundancy. For many applications, SRM is a
more appropriate choice of retransmission mechanism, as, given a
otream of packets with sequence numbers, it is likely to be more
timely, However, for applications where retransmission is a rela-
tively rare phenomena due to redundancy or other relaxed consis-
tency requirements, or where we desire a sender controlled system,
NIP3 retransmission schemehas somepossiblebenefits. Although
wedonotusethepropertyinNIH,slidingkeyschemescanbeused
to ration retransmission request3 - this might be useful where the
reverue path Born receiver3 to senders is bandwidth limited. Jn ad-
dition, for multicast networks that only support oneto-many multi-
caet with a unicast back channel such as some satellite networks, a
sender initiated retransmission request scheme is requited.

LessonN Learned

So many parts of the NIX design are interwoven that the task of
extracting lessons learned is made more diEcult.

We note that the general design principles of ALF and Lightweight
Sessions 3eem to point towards solutions that are distributed fault-
tolerant and robust because they tend to enhance the designer’s
awareness of the potential failure modes more than is the case with
more traditional layered designs.

There are clearly many mechanisms for discovering that data is
misohtg and atranging for its retransmission in a manner that does
not result in request or response implosions. This paper presents
one ouch method; SRM presents another very different method;
both have a similar architectural view of the world consisting of
distributed data applications. To a tirst approximation it does not
matter which mechanism is chosen, but secondary issues such as
desired delay and minor architectural constraints such as NE’s de
oire to update active sites faster than inactive sites may have an ef-
fect of the solution chosen.

The use of redundancy in reliable multicast applications appears
to be very desirable to achieve good performance and scalability
when network conditions result in signiGcant spatially uncorrelated
packet 103s. Although very effective mechanisms exist for using
packet-level forward error correction[l6], these are best suited to
bulk transfer applications rather than interactive shared applica-
tions, In the latter, application level redundancy provides a very ef-
fective technique for reducing the load on the retransmission mech-
anism3 andhencereducingnetworkload. Themechanismdescriied
in this paper is very simple (although its side effects are less so),
and much more subtle variations can be envisaged that reduce this
redundancy load and still provide effective protection against the
sorts of uncorrelated loss described in [9],

The most difficult part of the NIE design turned out not to be re

liable multicast, but the consistency control mechanism The ap-
proachpresented here, of constraints on the data representation and
manipulation operations, can be general&d to other applications.
We believe that this does achieve eventual consistency, but have no
formal proof of this. However, we do believe that a relaxed con-
sistency approach similar to the one we have taken is essential to
achieve good scalability and performance in the face of real-world
unreliable network conditions. Clearly this is an area for future
work

5 Future Work

The consistency mechanisms implemented in NIE can be general-
ized as described above, and combined with more traditional deter-
ministic mechanisms and SRM in a single reliablemulticast frame-
work for building shared applications. The goal is that different ap-
plications and indeed different objects within the same application
can require different reliability modes at different times by relaxing
different constraints from section 1.1.

One area that NTH does not address adequately is the issue of con-
gestion control. Although NTH maintains a bandwidth budget, and
shapes it’s transmissions within this budget, no current mechanism
allows us to set this budget effectively andNTH operates with a de-
fault budget of SKbps. We are investigating mechanisms to allow
better congestion control mechanisms within the extended frame-
work to allow higher bandwidths to beused safely when conditions
dlOVf.

References

Dl

PI

I31

[41

PI

161

I?1

S.Deering and DCheriton. “Multicast routing in datagram
internetworks and extended LANs.” ACM Transactions on
Computer Systems, pp. 85-111, May 1990.

D.D. Clark, D.L. Temtenhouse,“Architectural Considerations
for a New Generation of Protocols”, Prcc ACM SIGCOMM
‘90, Philadelphia, Pa, 1990.

S. Floyd, V Jacobson, S. McCarme, C-G. Liu, L. Zhang, “A
Reliable Multicast Framework for Light-weight Sessions and
Application Level Framing”, Proc ACM SIGCOMM 1995,
Cambridge, Ma.

S. Casner, S. Deering, “First IHTF Internet Audiocast”, ACM
Computer Communication Review, Vol. 22, No. 3, pp. 92-97,
July 1992.

J. Cooperstock and S. Kotsopoulos, “‘Why use a fishing line
when you have a net? an adaptive multicast data distribution
protocol,” in Proc. of Usenix Wmter Conference, 1996.

IL LidI, J. Osborne, J. Malcolm: Tkinking Corn the Firehose:
Multicast USHNHT News”, Proc USENIX Wmter 1994, San
Francisco, Ca., Jan. 17-21,1994.

V. Jacobson, ‘Multimedia Conferenchtg on the Internet”, lu-
torial Notes -ACM Sigcomm 94, London, Sept 1994.

207

[8] M. Yajnik, J, Kurose, D. Towsley, “Packet Loss Correlation
in the MBone Multicast Network” Proc IHHH Global Internet
Conf. , London, Nov. 1996.

[9] M. Handiey, “An Examination of Mbone Performance”,
ht@//buttle.lcs.mit.edu/ mJwmbone.ps

[lo] A. Haake, J. Haake, ‘Take Cover: Exploiting Version Man-
agement in Collaborative Systems”, in Proc. InterCHI’93,
Amsterdam, Netherlands, 1993.

[ll] J, Munson, R Dewan, “A Flexible Object Merging Frame
work”, hoc. ACM CSCW ‘94, Chapel Hill, North Carolina,
1994.

[12] C. Hllis, S. Gibbs, “Concurrency Control in a Groupware Sys-
tem”, in Proc. ACM SIGMOD ‘89, Seattle, Wa, 1989

[13] J, Bolot, LW&eman, TXbrletti, “Scalable feedback control
for multicast video distribution in the Internet”, Proc ACM
SIGCOMM 1994, London, UK

[14] W. Dabbous, B. Kiss, “A Reliable Multicast Protocol for a
White Board Application”, RR-2100, INRIA, SophiaAntipo-
lis, France, Nov. 1993.

[U] M,R Macedonia, DE Bmtzman, ‘MBone Provides Audio
and Video Across the Internet”, IEHH Computer, VoL27 No.4,
April 1994, pp. 30-36.

[16] J, Nonnemuacher, E. Biersack, D. Towsley, “ Parity-Based
Loss Recovery for Reliable Multicast Transmission”, Proc
ACM SIGCOMM 1997, Canne, Fr.

208

