
Introducing Collaboration into an Application
Development Environment

Susanne Hupfer, Li-Te Cheng, Steven Ross, John Patterson
IBM Research

Collaborative User Experience Group
1 Rogers Street, Cambridge, MA

{Susanne_Hupfer, Li-Te_Cheng, Steven_Ross, John_Patterson}@us.ibm.com

ABSTRACT
We present contextual collaboration, an approach to building
collaborative systems that embeds collaborative capabilities into
core applications, and discuss its advantages. We describe the
Jazz collaborative application development environment that we
are using to explore this concept and discuss design guidelines
that have emerged from our experience.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – Computer-supported cooperative work,
Collaborative computing; D.2.6 [Software Engineering]:
Programming Environments– Programmer workbench, Integrated
environments, Interactive environments

General Terms
Design, Human Factors

Keywords
Computer-supported cooperative work, contextual collaboration,
integrated development environment, IDE, collaborative
development environment, CDE, software development

1. INTRODUCTION
To communicate and collaborate with one another, people
working together on a project may deploy general-purpose
collaborative systems that incorporate a set of multi-user tools
(e.g. workspaces with text editors, chat utilities, whiteboards, and
document repositories) [8, 9]. Alternately, they may simply
continue using the specialized, single-user tools of their trade (e.g.
spreadsheets, CAD tools, integrated development environments
for building software) and co-opt existing communication tools
such as email and instant messaging as their means of
collaboration [7]. In the former approach, collaborators need to
“go there” – to the team room or workplace – to work together on
shared artifacts. In the latter laissez-faire approach, people “stay
here” in their conventional tools – leaving them in order to do
limited, ad hoc collaboration – and the artifacts end up scattered
among participants’ email inboxes, file systems, and other tools.

A promising third approach is to bring the collaboration “into
context”: People continue to use their core applications, but
collaborative components and capabilities are embedded within
the tools. Thus, without leaving the application in which they
normally work, users can communicate and collaborate with their
colleagues about the project at hand. This approach is referred to
as contextual collaboration1 [6].

In this paper, we discuss contextual collaboration in more detail,
present its advantages, and reference related work. We then
introduce Jazz, a research project at IBM that embraces the
contextual collaboration approach by embedding a set of
collaborative features into the Eclipse application development
environment [5]. Next we reflect on the design guidelines for
contextual collaboration that we have learned through our
experience with Jazz; these are meant to serve as a starting point
for others who are interested in outfitting existing software with
collaborative capabilities. Finally, we summarize our experiences
with contextual collaboration and indicate future directions.

2. CONTEXTUAL COLLABORATION
The concept of contextual collaboration has been spearheaded by
industry and covered in the trade press, but has been largely
overlooked by the research community [6]. The phrase refers to
an approach to collaboration in which users are not forced to
leave their core applications to launch collaborative tools or visit
a collaboration platform; instead, collaborative capabilities are
simply available as components that extend standard applications.

Contextual collaboration has a number of advantages over other
methods of supporting collaboration. Perhaps the most significant
benefit is that it can reduce friction [1]. Embedding collaboration
seamlessly into host applications spares users the time and effort
of context switching to other tools whenever they need to
communicate or work together, allows them to remain focused on
the task at hand, and saves them the overhead of learning whole
new systems. One simple but powerful example of contextual
collaboration is the “Live Names” feature in IBM Lotus
Workplace. Names that appear anywhere in the system (e.g. in the
body of an email) serve as a launch point for looking up the
person’s contact information, saving it to an address book,
indicating if the person is online, and initiating a chat. “Smart
Tags” in Microsoft Office XP are a similar example; they could be
used to retrieve information from a shared repository, for instance.

1 The phrase was coined by Matt Cain, of Meta Group, to refer to

the union of business processes and collaboration services.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW ’04, November 6–10, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-810-5/04/0011…$5.00.

Booch and Brown have discussed the value of reducing friction in
the software development process, which is inherently
collaborative [1]. Integrated development environments (IDEs) –
where programmers carry out most of their work – have already
made limited strides toward this objective by incorporating tools
such as compilers, linkers, and debuggers. In some cases, IDEs
integrate source code control tools (e.g. CVS, Rational ClearCase)
as well; these serve as shared repositories for a software
development team’s code artifacts and also support structured
collaboration, allowing developers to share, edit, and merge files
in a coordinated way without leaving the IDE context. Booch and
Brown contend that additional mechanisms for team collaboration
should be brought into the development environment to further
reduce friction; they advocate full-fledged collaborative
development environments (CDEs) – virtual project spaces where
all stakeholders can exchange knowledge, converse, brainstorm,
and work together on a common task, e.g. a software deliverable.

A second benefit of contextual collaboration is that context can be
used to enhance collaborative work. Consider the ad hoc
collaboration that occurs when workers email or chat about a
document they are constructing. If the conversation contains
particularly useful information, a participant is likely to archive
the email or save the chat transcript. But consider what happens
when one later wants to retrieve the discussion. Was it an email
or a chat? Who saved it, and where? Even if transcripts and emails
can be located and rummaged through, the work they reference
may not be obvious, because the discussions are completely
decoupled from the work artifacts. Churchill et al. have described
an Anchored Conversations tool that allows text-based chats to be
“anchored into” the documents that are the basis of the work [4].
These contextual chats are accessible to participants from pushpin
icons in the document’s text – allowing users to easily locate and
revisit discussions and leave messages – and also from a
searchable chat database. When a user accepts a chat invitation,
the associated document is automatically delivered, opened, and
focused on the chat location – everyone is “on the same page.”
This example illustrates that contextual collaboration can enhance
teamwork by establishing a shared, persistent context and by
easing the collection and retrieval of collaborative artifacts.

Contextual collaboration can also better inform collaborative
work. Consider what happens when a user initiates an anchored
chat: All participants immediately know what work is being
discussed; there is no need to tell them where to navigate or to
paste in relevant text. Similarly, one can imagine a financial
analyst initiating a chat with colleagues from within a cell of a
spreadsheet; even if they are not in the same application, they can
automatically be informed of the context of the call. If co-workers
are using core applications that have been outfitted with
contextual collaboration, those applications will know about each
user’s current actions – e.g. editing a certain file, debugging code,
or chatting with co-workers – and can furnish that information.
Better awareness of colleagues’ context can forestall duplication
of effort, inform whether or not to interrupt someone, and so on.

Finally, contextual collaboration lends itself to reuse of
collaborative components. Instead of being entwined in a
monolithic collaborative platform, collaborative capabilities (e.g.
presence awareness, chat, application sharing) should be designed
as independent, reusable components, with well-defined APIs,
that can be embedded and used in any core application.

3. JAZZ: A COLLABORATIVE
DEVELOPMENT ENVIRONMENT
We are gaining experience with contextual collaboration through
Jazz, a research project at IBM focused on embedding
collaborative capabilities into an application development
environment. Booch and Brown posit that a rich collaborative
development environment emerges from the collection of many
apparently simple collaborative components that support
coordination, collaboration, and community building – the
essential "Three Cs" of CDEs [1]. They further contend that IDEs
augmented with team-centric features are superior to those merely
enhanced with some collaborative support. Sawyer and Guinan
have studied software development and reported on the positive
impact of team-level social processes on product quality and team
performance [10]. Our objective with Jazz is to build a CDE that
embodies the “Three C’s,” promotes interactions among a close-
knit team of developers, and captures the team’s artifacts to
provide a useful knowledge base and context for communication.

Jazz is based on the metaphor of an “open office” for software
development, in which a small, core team of developers works in
close proximity at their workstations, with a shared space
available for collaborating at whiteboards, sharing materials, or
having meetings [2, 9]. Team awareness is a significant
characteristic of this environment: Even while concentrating on
their own work, developers have a peripheral sense of the work,
activities, and discussions going on around them. Communication
is another vital aspect of the open office: Team members shout out
questions or information to the team as a whole, or call colleagues
over to their workstation to consult on matters.

4. DESIGN GUIDELINES FOR
CONTEXTUAL COLLABORATION
The initial design step for contextual collaboration is to choose an
extensible infrastructure as the basis for one’s work. The
implementation approach we have taken with Jazz is to extend the
Eclipse Java development tools (JDT) that implement a Java IDE
[2, 5]. Eclipse has been designed especially for extensibility; it
has a means for defining new functionality (plug-ins) and a
contribution mechanism for adding new capabilities to plug-ins
(extension points) [5]. Furthermore, it is an open source project,
so in cases where the JDT was not extensible enough for our
purposes, we were able to dig into the source code and leverage
internal APIs. In this section, we will review some additional
design guidelines that have emerged from our work on Jazz.

4.1 Add Collaboration Unobtrusively
Given the core application being equipped with collaboration, an
initial step is to determine what collaborative capabilities to
provide, and how they will appear and function in the context of
that application. One guiding principle is to reduce friction, not
increase it, so the new features should be unobtrusive and avoid
interfering with the host application’s expected look and
functionality. Accordingly, the features should not commandeer
much space from the application, and should conform to its user
interface metaphors as much as possible.

Our Jazz-enhanced IDE adheres to these points. Jazz is designed
to support small, informal teams; anyone can create a team and
add or remove members. The Jazz UI elements abide by Eclipse’s
user interface metaphor of views and perspectives. A view is an

embedded, but moveable, window, and perspectives represent an
entire screen of views (e.g. the Java development perspective).
Extensions like Jazz can build upon existing views and also define
new views.

The most visible enhancement to Eclipse is the Jazz Band (Fig.
1a), a view that acts as a shared buddy list, displaying the teams
the user belongs to and their members. Members are represented
by images, decorated by status icons at the bottom right indicating
whether the person is online, away, or busy; any changes to the
state immediately show up on all team members’ Jazz Bands. In
the event the Jazz Band takes up too much space for a user’s taste,
it can be resized to be much thinner. The Jazz Band also serves as
the launching point for a variety of interactions; right-clicking a
teammate’s image pops up a menu that allows one to initiate a text
chat, voice-over-IP, or screen sharing session (Fig. 1b). We have
reduced friction by making these interactions easily available from
the IDE, without requiring any additional setup overhead (e.g.
setting up servers or configuring IP addresses).

The Jazz Band is the only element we have added to Eclipse that
appropriates space from the IDE. In the event a collaborative
activity needs more space than we are willing to take from the
IDE, we pop it up; for example chat sessions open in their own
windows rather than being shoehorned into the IDE. In those rare
cases when an interaction requires even more space and demands
a user’s full attention, we leave the Java perspective and open the
collaboration in its own perspective. For instance, when team

members start a screen sharing session, we take them to a special
screen sharing perspective in Eclipse (though the Java perspective
remains just a button-click away). As we’ll see shortly, however,
wherever possible we have managed to insinuate collaboration
into the IDE’s user interface in more subtle ways to minimize
friction; we have been able to achieve this largely due to the
extensibility of the Eclipse IDE and its UI elements.

4.2 Insinuate Collaboration into the Context
In addition to the people-awareness afforded by the Jazz Band,
Jazz also provides resource-awareness via extensions to the IDE’s
Package Explorer. Files in the explorer (Fig. 1c) are decorated
with colored icons to signify what teammates are currently doing
with the resources (e.g. green indicates a file is currently open and
being edited, yellow signals that a file has been modified locally
but not checked back into the source control repository, and black
denotes that a file has been checked back in). Hovering over the
resource brings up a tooltip displaying who is responsible for the
changes (Fig. 1c). These decorators and tooltips appear in the
context where the developer regularly manages files and represent
a low-friction way to inform a user in real time about the activities
of other teammates on shared resources.

Another way we have insinuated collaboration into the context is
through anchored chats. A developer can highlight a region of
code in the editor, right-click, and initiate a chat about it; when
the discussion ends, a transcript can be saved and will appear as a

Figure 1. a) Jazz Band showing teams, members, and status icons, b) menu offering communication options, c) decorators
and tooltips on resources, d) anchored chat marker, e) code modification indicator, f) team member’s status message

 b

 c

 f

 d

 e

 a

marker in the left margin next to the relevant code (Fig. 1d).
Teammates can later review the chat by clicking on the marker.
Individuals can annotate code using the same technique. Other
markers (Fig. 1e) are used to signal that a team member has
modified a particular area of code; hovering over the marker
shows the difference between the local code and the remote code
on the teammate’s desktop. These various markers are a subtle
way of letting developers know where the attention of other team
members is focused in the codebase and what areas of code are
being discussed. Armed with this resource-awareness, developers
can better coordinate their efforts and avoid conflicts.

Eclipse’s extensibility and openness allowed us to achieve much
of this resource-centered awareness. For example, we were able
to define an Eclipse extension for file decorators and an extension
for the “file differencing” feature to customize our Jazz UI. In
other cases, the ability to dig into the open source code proved
necessary; where Eclipse did not provide certain extensions we
would have liked, we were able to locate public APIs in the
source code that provided the desired functionality. At the other
end of the integration spectrum, if one is attempting to retrofit
collaboration into a closed application that does not support
extensions or revising and recompiling the original code, the only
way to insinuate collaboration into the application may be through
the use of aspect-oriented programming [3].

4.3 Insinuate Context into the Collaboration
Once collaboration has been integrated into the context of a core
application in unobtrusive ways, the next level of integration can
be considered – insinuating context into the collaborative features.
Consider the Jazz Band: If we hover over a person’s image, we
see a tooltip that displays their status message (Fig. 1f). Since
Eclipse has access to a range of contextual information about a
user’s current activity in the IDE – e.g. the active project,
perspective, editor, and file – developers can optionally reveal this
real-time information in their status messages by using macros.
Jazz also knows when various interactions – chats, screen shares,
or VoIP communications – are occurring and can display that
information; e.g. the decorators on the upper left of the “Bryan”
and “Isaac” portraits in Fig. 1 indicate that those team members
are currently in a screen sharing session. Contextual indicators in
the Jazz UI are helpful in keeping team members aware of who is
working on what, who is communicating, and where the action is,
and they can use the indicators to decide when to contact others.

We have also been able to insinuate contextual information into
our chats. When a user selects code and initiates a conversation,
that code is automatically pulled into the chat window, with the
proper Java formatting. Chats have been enabled to provide auto-
completion and hyperlinking of team member names when
entered as chat text, and right-clicking on a name brings up a
menu that serves as a launching point for other possible
interactions, e.g. a screen share with that person. Code fragments
that are pasted or typed into the chat are also recognized and
formatted properly, and filenames that are entered can act as
hyperlinks taking one directly back to code modules in the editor.

5. CONCLUSIONS
We have discussed a number of benefits to the contextual
collaboration approach: reducing friction, enhancing and
informing collaboration, and encouraging reuse of components.
Based on our experiences with building Jazz, we have presented

general design guidelines for contextual collaboration that are
intended to maximize its advantages.

Jazz has taken a number of steps to utilize contextual information.
The project is currently exploring additional ways to support
contextual collaboration, including a shared, searchable team
space that logs all team events and artifacts (chat transcripts, code
merges, alerts, documents, messages or questions for the team).
Another research focus is interruption management: The ease of
online communication raises concerns that users will be
interrupted too often, but the embedding of collaboration tools in
the working environment gives us the opportunity to provide a
unified mechanism for managing a variety of interruption sources.
Work is underway to use the contextual information available in
Jazz to support more sophisticated interruption management
schemes and thus further reduce the friction. Contextual
collaboration has the potential to improve both the working
experience and the experience of working together. Our
continuing research on the Jazz project will be focused on
enhancing and measuring the benefits of this approach.

6. REFERENCES
[1] Booch, G. and Brown, A.W. Collaborative Development

Environments, in Advances in Computers Vol. 59, Academic
Press, Aug. 2003.

[2] Cheng, L., Hupfer, S., Ross, S., and Patterson, J. Jazzing Up
Eclipse with Collaborative Tools. In Proc. of 2003 OOPSLA
Workshop on Eclipse Technology eXchange (Anaheim, CA,
Oct. 27, 2003). ACM, New York, 2003, 45-49.

[3] Cheng, L., Rohall, S.L., Patterson, J., Ross, S. and Hupfer, S.
Retrofitting Collaboration into UIs with Aspects. In Proc. of
ACM 2004 Conf. on Computer Supported Cooperative Work
(Chicago, Nov. 6-10, 2004). ACM, New York, 2004.

[4] Churchill, E.F., Trevor, J., Bly, S., Nelson, L., and Cubranic,
D. Anchored Conversations: Chatting in the Context of a
Document. In Proc. of SIGCHI Conference on Human
Factors in Computing Systems (The Hague, Netherlands,
April 1-6, 2000). ACM, New York, 2000, 454-461.

[5] Eclipse.org, http://www.eclipse.org

[6] Fontana, John. Collaborative Software Ages Slowly. In
Network World Fusion, January 6, 2003.

[7] Greif, I. and Millen, D.R. Communication Trends and the
On-Demand Organization. IBM Research, 2003.

[8] Ozzie, R. and O’Kelly, P. Communication, Collaboration,
and Technology: Back to the Future. Groove Networks,2003.

[9] Roseman, M. and Greenberg, S. TeamRooms: Network
Places for Collaboration. In Proc. of ACM 1996 Conference
on Computer Supported Cooperative Work (Boston, MA,
Nov. 16-20, 1996). ACM, New York, 1996, 325-333.

[10] Sawyer, S. and Guinan, P. Software Development: Processes
and Performance. IBM Systems Journal, 37, 4 (1998), 552-
569.

