P1: GXI
Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

;:‘ Multimedia Tools and Applications, 19, 5-28, 2003
‘ (© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

JASMINE: A Java Tool for Multimedia
Collaboration on the Internet

SHERVIN SHIRMOHAMMADI shervin@mcrlab.uottawa.ca
Multimedia Communications Research Laboratory, School of Information Technology and Engineering,
University of Ottawa, Ottawa, Canada

ABDULMOTALEB EL SADDIK
Industrial Process and System Communications, Dept. of Electrical Eng. & Information Technology,
Darmstadt University of Technology, Darmstadt, Germany

NICOLAS D. GEORGANAS
Multimedia Communications Research Laboratory, School of Information Technology and Engineering,
University of Ottawa, Ottawa, Canada

RALF STEINMETZ

Industrial Process and System Communications, Dept. of Electrical Eng. & Information Technology,
Darmstadt University of Technology, Darmstadt, Germany; GMD IPSI, German National Research Center
for Information Technology, Darmstadt, Germany

Abstract. Although collaboration tools have existed for a long time [8], Internet-based multimedia collaboration
has recently received a lot of attention mainly due to easy accessibility of the Internet by ordinary users. The Java
platform and programming language has also introduced yet another level of easy access: platform-independent
computing. As a result, it is very attractive to use Java to design multimedia collaboration systems for the Internet.
Today there are many systems, which use Java for multimedia collaboration. However most of these systems
require the shared Java application to be re-written according to the collaboration system’s Application Program-
ming Interface (API)—a task which is sometimes difficult or even impossible. In this paper, we describe a practical
approach for transparent collaboration with Java. Our approach is transparent in that the Java application can be
shared as is with no modifications. The main idea behind our system is that user events occurring through the
interactions with the application can be caught, distributed, and reconstructed, hence allowing Java applications
to be shared transparently. Our architecture allows us to make the huge installed base of Java applications col-
laborative, without any modification to their original code. We also prove the feasibility of our architecture by
implementation of the JASMINE! prototype.

Au: Please
Keywords: provide
keywords.

1. Introduction

Since the advent of the Internet, the computing and communications industry has progressed Disk
very rapidly. Today, any user with a desktop computer can access and share multimedia followed
documents with others through the Internet. Furthermore, this accessibility is being ex-

tended beyond desktop computers and into Information Appliances: consumer devices that

bring together computing and communications in one box to ordinary users. Examples of

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

Disk
followed

6 SHIRMOHAMMADI ET AL.

these devices are Web TVs, Net Gaming devices, Internet Screen Phones, and Network
Computers. According to a report published by the International Data Corporation, some
five million such devices were used in 1998, with over forty million projected to be in use by
2001 [10]. In addition, all these devices will be interconnected through pervasive computing
technologies and systems such as JINI [11]. It seems certain that in the near future every
person, no matter where located geographically, will be equipped with some sort of net-
work computing capability, either by means of conventional desktop computing or through
information appliances. This not only means that geographically-distributed people will
be able to easily communicate, but also “collaborate”; i.e., share multimedia documents
and applications. Examples are joint editing, whiteboarding, joint browsing, and multi-user
presentations, used in a variety of applications such as conferencing, collaborative design,
training and telelearning.

A problem with many collaborative applications is their platform dependence lead-
ing to the fact that users communicating in heterogeneous environments are restricted in
their choice of a cooperative application. For example some users might choose UNIX-
workstations, while others might prefer Windows 95/98/NT or Macintosh. But with the
introduction of Java it became possible to overcome these problems. Consequently diverse
approaches emerged which used Java for developing collaborative systems, producing a
variety of toolkits and platforms [2, 4, 5, 15]. However, almost every system described in
the literature requires the use of an API, or tries to replace some core Java-components with
self-defined collaborative components.

The approach presented in this paper differs from other approaches in the way that we
neither propose a new API for developing collaborative systems nor try to replace core
components at run time. In fact a great variety of well-designed applets already exist on
the World Wide Web which were developed to be run as stand-alone and it would not be
acceptable or possible for many developers to re-implement or change these programs to
make them work in a collaborative way. In our architecture, we make use of the Java Events
Delegation Model [7] to extend the capabilities of Java applications in a way that stand-alone
applets can be used in a collaborative way. The delegation event model of JDK1.1 provides
a standard mechanism for a source component to generate an event and send it to a set of
listeners. Furthermore, the event model also allows sending of the event to an adapter, which
then works as an event listener for the source and as a source for the listener. Because the
handling of events is a crucial task in developing an application, this enhancement makes
the development of applets much more flexible and the control of the events much easier.

The practicality of our architecture is proven by an implementation. We have developed a
collaboration system, called JASMINE, which facilitates the creation of multimedia collab-
oration sessions and enables users to share Java applets and applications, which are either
pre-loaded or brought into the session live. The system also provides basic utilities for
session moderation and floor control. Our approach applies to both applets and applications
and hence these terms are sometimes used interchangeably in this document. The rest of the
paper is organized as follows: Section 2 discusses the system architecture, while Section 3
describes the implementation of JASMINE. Section 4 presents a performance evaluation of
our system, followed by discussion of related work in Section 5. Finally, Section 6 concludes
the paper and gives an outlook for future work.

P1: GXI
Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

JASMINE: A JAVA TOOL FOR MULTIMEDIA COLLABORATION 7

1) Interactions of user A
generate updates to the
shared application

update

3) Receivers update

Collaboration S .
application accordingly.

Technology

update
2) Updates are sent to

other users
Figure I. A generic collaboration system.

2. Architecture

Basically speaking, the core technology behind any collaboration tool is a mechanism
to enable a user to send updates to other users about the interactions that are made to a
shared application, as illustrated in figure 1. For example, when one user draws a line on a
whiteboard, the system informs the whiteboards of other users so that they also draw the
same line. The mechanisms to propagate these “updates” vary according to the design or
intended use of the system. Some systems send graphical display updates of the portion of
the screen that was changed; the receiver simply redraws that portion using the graphics
update. Some other systems send the system’s graphical events that were generated as a
result of a user’s interaction, the receivers then process the events as if generated locally;
hence reproducing the interaction at every user [3, 6]. Another approach is the use of object
tokens, whereby an update message is preceded by a token that defines the semantic of
that update message. By looking at the token, the receivers can determine what action to
perform; for example draw a line, erase an area, etc. [15].

All of these approaches can be implemented using a centralized or fully distributed
communication infrastructure. Furthermore, they can be implemented as real-time or near-
real-time systems. However, they all have one thing in common: they all must use reliable
communication, such as TCP or Reliable Multicast (RM), for their update messages. Al- Disk
though suitable for real-time video/audio data transfer, unreliable communication such as followed
UDP or regular multicasting is not suitable for the transfer of application update messages
since these applications, by nature, cannot afford to lose any update data.

To optimize the use of bandwidth and compensate for latency, we have to choose an
approach that sends as small amount of information as possible for the updates. Graphics
updates are therefore not suitable because of their bulkiness and heavy use of bandwidth.
Event updates and object tokens are better candidates. Object tokens are heavily based on
the specific application, and must in fact be hard-coded into the shared application—an

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

8 SHIRMOHAMMADI ET AL.

Shared [>

Applet Collaboration
P Framework

Figure 2. Tllustration of the main idea.

L
<« 2
(¢}
“» =
Ii
Commu- .
nication
module
<« 2
=
“» =
Ii

Figure 3. Overall system architecture of JASMINE.

approach, which is not transparent. This leaves us with Event updates, which are what we
use in our approach.

Figure 2 illustrates the overall concept, where our collaboration framework wraps around
an applet that is to be shared. The framework listens to all events occurring in the graphical
user interface of the applet and transmits these events to all other participants in order to
be reconstructed there. The framework captures both AWT-based and Swing-based events.
After capturing the event, it is sent to the communication module where the event is sent to
all other participants in the session (figure 3).

In the next sections we are going to discuss the architecture in more details, first the client
side, and then the communication module.

2.1. Client side

The JASMINE client can be seen as a component adapter. Every event occurring at the
graphical user interface of the application is sent to this adapter, which then sends the
events to the collaboration server (JASMINE-Server). The client is a Java application,

P1: GXI
Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

JASMINE: A JAVA TOOL FOR MULTIMEDIA COLLABORATION 9

which consists of the following components:

Collaboration Manager
Component Adapter
Listener Adapter
Event Adapter

These components are discussed next.

2.1.1. Collaboration Manager. The Collaboration Manager is the main component on the
client side and provides the user with a graphical interface offering options such as joining
the session, starting and sharing applications/applets and chatting with other participants.
The collaboration manager is also responsible for dispatching external events coming from
the communication module and forwarding them to the component adapter, as well as re-
ceiving internal events from the component adapter and sending them to the communication
module.

2.1.2. Components Adapter. The Component Adapter maintains a list of the GUI-
components of all applications and applets. This list is created with the help of the java.awt.
Container class, which allows us to get references of all applet components [7]. With the
help of the main window of an application, a list of the GUI components in the applica-
tion can directly be created. Therefore, the main window of an application loaded by the
Collaboration Manager is registered by the Component Adapter. However, Java applets do
not use stand-alone windows. They are an extension of the class java.applet.Applet and
thus of java.awt.Panel. Hence, applets can be easily placed into a window, which can then
be registered as the main window for the applet. All these registrations are done at the
Component Adapter. An example syntax of the registration by the Component Adapter is

shown in figure 4.
After the registration is done a list of all Swing and/or AWT-components within the

loaded application/applet is created. This task is done in the same order on each client, so
that a component has the same reference identification at all clients. These references are
used to point to specific components, which are the source of the events generated internally
and the recipient of the events generated externally. With the help of the references, the
recipient of an incoming event is located and the event is reconstructed on each client, as if
it occurred locally.

2.1.3. Listener Adapter. The Listener Adapter implements several AWT listeners, which
listen to MouseEvent and KeyEvent for all AWT-components except of java.awt.Scrollbar,
Jjava.awt.Choice and java.awt.List. For these components the Listener Adapter listens to
AdjustmentEvent, ItemEvent and ActionEvent. When an event occurs on the GUI of the
application, the Listener Adapter catches it, converts it to an external event, and forwards
it to the Collaboration Manager. The Collaboration Manager in turn sends this event to the
communication module, which propagates the event to all other participants.

2.14. Event Adapter. The Event Adapter works opposite to the Listener Adapter: it con-
verts incoming external events to AWT events, which can then be processed locally.

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

10 SHIRMOHAMMADI ET AL.

Class cl = Class.forName(className);

// If it is an applet, instantiate and locate
// it in a Frame

myApplet = (Applet)cl.newInstance();

myApplet.init();

myWindow = new Frame(“Titel”);
myWindow.add(“Center”, myApplet);

// Otherwise (if it is an instance of Window) just
// instantiate it

myWindow = (Window)cl.newInstance();

//' Register this Frame as main Frame
// by Components Adapter
ComponentsAdapter.addContainer(myWindow);

Figure 4. Excerpt of the instantiation method.

2.1.5. Data flow. Let us summarize the client side’s architecture through the following
data flow diagram. Figure 5 shows the overall event circulation of the system.

There are two main data paths in the system: the first path is labeled with numbers 1, 2
and 3. This path is used to send the internal AWT events to the communication module,
and it works as follows: any Event occurred in a Java-application is caught by the Listener
Adapter. The Listener Adapter first tests whether the event is an external or an internal
event. It then sends only the internal events, which were not received from other clients, to
the Collaboration Manager, which in turn sends the events to the communication module.

Via the second data path shown in figure 5 with numbers 4, 5, 6 and 7, the external AWT
events received from the communication module are captured by the Collaboration Manager
and the Component Adapter in order to reconstruct the event locally. After receiving the
remote event, the Component Adapter extracts the information about its target component
and sends this information together with the events to the Event Adapter. The Event Adapter
converts the event to normal AWT events and sends them to the application, which then
reacts to the event in the same manner as it would to a local user’s interaction with the
application’s GUI.

2.2. Communication module

The communication module’s main purpose is to receive events from the collaboration
manager and propagate them to all participants in the session. It abstracts the network and

P1: GXI
Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

JASMINE: A JAVA TOOL FOR MULTIMEDIA COLLABORATION 11

/

Java

»| Application
@ Window
v
\Bviemis Listeners
Adapter Adapter
Components . @ Collaboration
Adapter - Manager
\ JASMINE Client /
@ ©)
JASMINE
Com. Module

Figure 5. Events circulation.

communication functionalities from the client side so that the client side need not worry
about how the events are actually transmitted over the network. This module is separated
from the rest of the system because it can be implemented in many different ways based
on the communication environment. As mentioned earlier, reliability is a non-negotiable
requirement for collaborative applications since loosing even one event can potentially
disrupt the collaboration session. This means that the communication module must be
implemented by either reliable multicast (RM) or TCP.

Each of these approaches has certain advantages and disadvantages. The obvious dis-
advantage of the one-to-one TCP linking approach is scalability: the more users there are,
the more network connections are required. What’s worse is that the number of connec-
tions increases non-linearly with increasing number of users. However, using a client-server
approach can substantially decrease the number of network connections. Each client estab-
lishes a TCP connection only to the server as opposed to each and every other client. The
server then becomes responsible for sending messages between users. The main disadvan-
tage of a server-based approach is the additional delay caused by the server’s processing of
the incoming events, which sometimes makes the server the bottleneck of the system.

There are many advantages in using RM for the implementation of the communication
module. RM technology uses substantially less bandwidth and produces lower delays than a
TCP-client-server based approach. But the disadvantages of the RM approach are practical
ones, not theoretical ones. All RM technologies available are based on UDP multicast.
Multicast support in today’s Internet is far from acceptable and in fact today’s Internet
leaves a lot to be desired when it comes to multicasting. The Mbone tries to compensate
this lack of adequate support, but even then a great portion of a multicast session’s traffic
are “tunneled” through the non-multicast portions of the Internet. In addition, joining and
maintaining Mbone connectivity is not a trivial task; one cannot expect ordinary users to
easily connect to the Mbone. Furthermore, RM technology is still maturing and standards

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

12 SHIRMOHAMMADI ET AL.

are still being made. As a result there are many incompatible RM implementations today
but mostly for research/experimentation purposes [14].

With JASMINE, our main goal is to create a system that can be accessed by the most
number of people and in fact that’s why we chose the Java technology. From practical
stand-point, it makes little sense to implement the communication module in such a way
that most ordinary Internet users won’t be able to use it, or will have to go through a
great deal of connection set-up just to use our system. We therefore decided to implement
the communication module with a TCP-client-server design. As we will see later in the
performance evaluation section, the performance of this design is quite adequate for small
to medium-sized group collaboration sessions.

2.2.1. JASMINE server. JASMINE uses a multithreaded server, where the main server
launches a sub-server for each user joining the session. The sub-server is responsible for
processing only the update messages or requests coming in from its own client. Once the
sub-server receives the update message, it will send it to all other clients in the session
(figure 6). This will create a fast system response, at the expense of more resources utilized
due to sub-server threads. However, usually only one client at a time can control and interact
with an application (due to floor control as we will see), and most threads will simply be
waiting and won’t consume too much resources.

The server’s main job is to propagate the incoming events from a user to all other users. But
italso provides other services, which are necessary for maintaining a collaboration session. It
provides services for session moderation and management, floor control, and data exchange.
Data exchange is of particular importance for multimedia sessions as we will see next.

2.2.2. Advanced multimedia applications. As discussed in the literature, a pure transparent
collaboration system is not sufficient for multimedia applications [15]. This fact is due to

client list

clientl
client2

Main
Server

client N

Client 2

Figure 6. JASMINE'’s client-server architecture.

P1: GXI
Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

JASMINE: A JAVA TOOL FOR MULTIMEDIA COLLABORATION 13

specific services that are required by multimedia applications such as synchronization,
quality of service, etc. For example, think of a collaboration session where a video applet is
being played. When one user presses the pause button, simply capturing the “pause event’
and sending it to all other clients is not sufficient because when other clients receive the
pause event and apply it to their video player, at each client the video player will pause on a
different frame and clients will not be synchronized. Hence there is a need to send control
messages between clients, such as “pause on frame number 57 to maintain consistency
among all users. The JASMINE server provides a high-level API that can be used for
this type of advanced requirements. However, an application must specifically use the API
to take advantage of these functionalities, hence the transparent feature of the system is
somewhat diminished.

3. Implementation

Figure 7 illustrates a sample screenshot of a typical JASMINE session. It shows the client’s

Collaboration Manager and some shared applets and applications, including Web browsing, Disk

running in the session. followed
In this section we will present our implementation. We start by introducing the Collabo-

ration Browser.

[BissunEch B e e] =il
AE fre B DrawTest (Shervin) =l 3
{ - EREE T O . ‘
URL:]hﬁp Hhwrwew javasoft.comiappletsfidki1 . 1/demoiDrawTestindex.ht @ ’ D O ’—\!QS \\l}
Message : l OK||
Shervin: Hi, how is everyone’ A
ES3 URL (Shervin) e

[own | [ooa |

Site: [httpZhwww yahoo com

3¢ 01¢ ¢ F[points 7]
issi £y Yahoo! oy Know when friends ar [[N
! Permission] e (T Kgtnen fends [T BEIE
‘ Back Reload Forward Stop

Sitez | hitp 1wvww2 merlab uottawa cal-jauvane/H263DecoderDK 1/

i

4

Shop - Auc

5 WhitoBoard (Sherv... PHIS] B : H263 Video Decoder 1.6

H.263 Video Decoder 1.6 (JDK 1.1 Version)

:
Best
S

sponuoneaty IBM

Novell.

=< | open |

T it Phutocian... futCorel P .
Document done...
Ty

hittp:/vevawe.novell.com

Figure 7. A sample JASMINE session.

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

14 SHIRMOHAMMADI ET AL.

I Batk ‘ | Reload || Forwr H Stop I

m&l hitp:iiwean javasott.comiappletsidka idemoiDrawTestindex html

Draw Test (1.1)

The source.

FEofc o ml.F'UintS i

Ihttp:iwww.javasoft.com/appletsjdk/i. 1/demoDrawTest DrawTest.java

Figure 8. JASMINE collaboration browser.

3.1. Collaboration browser

Figure 8 shows the screen shot of the collaboration browser. As mentioned before the
shared applets and applications are collaboration-unaware applications developed using
the standard Java technology. These applications can be loaded dynamically, after a client
joins a session, or can be downloaded on the fly during the session by typing in the URL
of the desired applet. In the first case a specific number of preloaded applications/applets
that a user can invoke must be stored in a configuration file before the start of the ses-
sion and are loaded by the JASMINE-Client at the start-up stage. In the second case,
participants can just type the URL of the applet they want to bring into the environ-
ment to share. JASMINE then fetches the applet and inserts it into each client’s session.
There is no limit as to the number of simultaneous applets/applications running in the
session.

We have successfully tested our system on a number of applets implemented in JDK
1.1, using normal AWT or Swing components. We did however encounter a limitation for
Frames, Dialogs and FileDialogs. These components, when created within the application
at run time, cannot be used collaboratively since they are not registered by the Component
Adapter explicitly. In other words, collaboration is only possible for the first level windows.
To overcome this problem, we developed a collaboration class loader, incorporated in
JASMINE as the collaboration browser. The development of such a class loader gives
the browser the capability of tracking all components it loads and hence it is able to control
Frames, Dialogs and FileDialogs created within the shared applet at run time.

3.2. Configuration file

Information about locally available applications and applets, which can be used in a collab-
orative way, are read from a configuration file. The configuration file, which is organized

P1: GXI
Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

JASMINE: A JAVA TOOL FOR MULTIMEDIA COLLABORATION 15

#Application entries
application.l.name=myTestApplication
application. 1.class=kom.develop.apps.MyApp
Applet entries

applet.1.name=myTestApplet
applet.1.class=kom.develop.applets.TestApplet
URL entries

url.1.name= TestUrl

url.1.address=http://desiered.server/test.html

Figure 9. Excerpt from a configuration file.

as a properties file, contains the names of the applications/applets, which will be presented
in the menu and the full names of their main class or URL. The entries have the following
syntax:

application.[n].name = [name]

application.[n].class = [class]

where:

n: number of the application in the list.

name: a suitable name for the application to be shown in the menu.
class: full name of the main class.

An example configuration file is illustrated in figure 9.

Before starting the session, applets and applications that are thought to be useful can be
placed in this configuration file. Additional applets and applications can be brought into the
session live as needed.

3.3. Floor control

A collaborative system must address many issues such as synchronization, latecomers,
management or moderation, floor control, and awareness [15]. Among these, floor control
is perhaps the most primary issue without which a collaborative session won’t function
properly. In short, floor control ensures that only one person at a time controls the shared
application. Without floor control, there will be collisions of events, which leads to unwanted
results in the shared application.

In JASMINE, floor control is achieved by means of locking. Each application has a
corresponding semaphore on the server. When a user wants to interact with the shared
application, the system first locks the application by locking a semaphore. At this point, any
other users trying to interact with the application will be denied access. When the first user
is finished, the system releases the semaphore and others can take control of the application.

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

16 SHIRMOHAMMADI ET AL.

public void mouseDragged(MouseEvent e) {
//user is dragging the mouse, so ask for control
if (getControl()==true) {
// do whatever must be done for a mouse drag
releaseControl();
}
else displayMessage(“Access Denied!”);

}

Figure 10. Intuitive floor control.

For a specific shared application, most developers prefer an “intuitive” implementation
of the floor control capability; i.e., as soon as the user tries to interact with the application,
the client automatically asks for floor control and allows or disallows its user to interact.
After the user is finished, the client releases the lock automatically. Figure 10 shows sample
Java code that demonstrates how the floor control is used in an intuitive way. This approach
is in contrast to the “direct” approach, where a client must specifically ask for control, for
example by pressing a “control-request” button.

Just how intuitive the approach in figure 10 really is depends on the system response. If
there is a small delay between the time the user tries to interact and the time when something
actually happens on the screen, the application is intuitive. If however that delay is large,
the application becomes “unnatural”. So the Floor Control Delay (FCD) is an interesting
parameter that we must also evaluate.

34. Moderation

Although floor control addresses the issue of event collisions, it works on a first-come-
first-serve basis. This in turn leads to the possibility of a participant to abuse or disrupt the
session by feeding unwanted events into the session. There is therefore a need to have a
moderator in order for a session to be more productive, for example, a teacher moderating a
distance learning session. The moderator is usually the person who calls for a collaborative
session and starts the server. In JASMINE we have two types of sessions: moderated, and
non-moderated. The server can be started by specifying a login name and password for the
moderator. Once the session starts, the moderator can login at any time and take control
of the session. When the session is moderated, no one can send any events to the server.
A participant wishing to do so must ask for permission from the moderator as shown in
figure 11(a). The moderator will subsequently receive a message indicating the participant’s
request to interact (figure 11(b)) which the moderator can allow or refuse. Upon moderator’s
acceptance of the user’s request, the user will receive a green light, which indicates that he or
she can now send events to the session (figure 11(c)). The moderator can also dynamically
“cut off” a user’s permission to interact if needed (figure 11(d)). In JASMINE, we allow
only one user at a time to have permission to send events, although this number can be
increased based on the application.

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

JASMINE: A JAVA TOOL FOR MULTIMEDIA COLLABORATION 17

@Permissiun Request ! (abed)

LoGmnt | Refwe |

shenin @

Figure 11. Moderation capabilities in JASMINE.

4. Performance evaluation

JASMINE can be considered a real-time tool in the sense that its updating response time, in a
network environment capable of supporting real-time applications, is within the acceptable
parameters of human quality of service for desktop collaboration, as we shall see. But as with
any TCP based multiuser system, there is an upper-bound to the number of simultaneous
users before those parameters are violated. This “maximum users” limit depends on the re-
sources utilized by the system, such as processing power, graphics power, memory, network
bandwidth and network delay, as well as the design of the communication part of the system.

Depending on the quality desired, the application level end-to-end delay between two
users should be less than 1000 milliseconds, with 200 milliseconds recommended for tightly-
synchronized tasks [13]. However, these numbers are valid only if the shared application
is used in conjunction with some type of media that provide a sense of presence such as
video and audio. The reason is that if audio or video or both are present, users have a
sense of “awareness” of each other, which in turn requires the shared application to respond
within a time that maintains that awareness. For example, imagine three engineers who are
collaboratively designing a bridge in a live session. One of them highlights a section of the
bridge and says: “I think this part should be redesigned”. If they are using real-time audio
conferencing (end-to-end audio delay of 100 msec), then the delay of the shared application
must comply with the above numbers in order for the other two engineers to receive the
audio message and the event update in such a way as to maintain the real-time quality of

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

18 SHIRMOHAMMADI ET AL.

the session. This is usually the case in controlled IP environments such as local networks
or corporate IP networks.

In the case of typical Internet connections, where audio and video delays are not con-
trollable, or in the absence of audio or video, restrict delay parameters make little sense
because the users have no time-wise perception of one another. In such instances, when a
user receives an update message, the user has no way of knowing when an actual action
occurred. So, even a delay of 5 seconds or more might be acceptable depending on the
nature of the application under such circumstances.

Our performance evaluations are done for a controllable environment, where real-time
characteristics are required and can be supported.

4.1. Parameters of interest

The most common parameter that measures the quality of a collaborative application is
the Client-to-Client Delay (CCD). CCD tries to measure the average time it takes for an
update message to reach other users. It includes all layers between the two clients, including
application, transport, networking, and physical layer delays. However, at the application
level, it only measures the time it takes for a sender to send or a receiver to receive the
update at the application layer. It does not include the delay caused by what the application
does with the update because that is application-dependent. For example, when a line is
drawn in a shared whiteboard, CCD measures the average delay from the time the sender
application assembles and sends the update message until the time the receiver receives
the message and extracts the data from it, just before it makes a graphics call to actually
draw the line. Hence, for an overall delay, one must also add the average on-the-screen
drawing time, referred to as Rendering Delay, which really depends on the capabilities of
the graphics, memory and processing power of various client machines and therefore not
constant for all clients. As another example, if one user opens an image in a whiteboard,
what we measure is how long it takes for the “open-image” message to reach all clients.
We don’t measure how long it takes for the receivers to actually download the image from
a given URL and show it on their screen, because we can’t control those delays and they
are not related to the collaboration system shown in figure 1.

As mentioned earlier, the server processing time per packet increases with increasing
number of simultaneous users. This is due to one-to-one TCP connection-oriented nature of
the system; the server needs to send the update info to each client one by one. This Server
Processing Delay (SPD) adds to the overall end-to-end delay of the system and must be
taken into account when calculating maximum number of users supported by the system.

As mentioned in Section 3.3, Another interesting parameter is the Floor Control Delay
(FCD). This is the average time for a user to take control or be denied taking control of an
application and measures how intuitive a system is. A system with a smaller FCD is more
“natural” and behaves more naturally than a system with a larger FCD.

4.2. Testing and results

We tested CCD, SPD, and FCD of JASMINE over both local area network (LAN) and tele-
phone modem access. During the testing, all machines were running their usual background

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

JASMINE: A JAVA TOOL FOR MULTIMEDIA COLLABORATION 19

100 Mbps 100 Mbps Ethernet

Hub

Pentium II Pentium II
333 Mhz 333 Mhz

Pentium II Pentium II
333 Mhz 333 Mhz

Figure 12. Network configuration for LAN tests.

processes related to the network and the operating system. The testing configuration is shown
in figure 12. All machines were running JDK 1.2 on Windows NT 4.0 Workstation. In ad-
dition, two 133 MHz Pentium machine running Windows 95 were used to dial-in into the
LAN with 28.8 kbps modems over phone lines. The result of the tests are shown next.

4.2.1. CCD test. For the CCD test, we had a “sender” applet send an event to a “receiver”
applet. Upon receiving the event, the receiver applet extracts all necessary data from the
packet, reassembles the event, and sends the event back to the sender. The sender does the
same thing and resends the event, and so on. This is repeated for a given duration, which
was 10 minutes in our tests. The result of this test was an average CCD of 150 msec on the
LAN, and 370 msec between the clients behind 28.8 kbps modem. It is worth mentioning
that the transmission delay of the very first event took 750 msec and 2.5 sec on the LAN
and modem, respectively. We believe this to be attributed to the Just-in-Time compiler (JIT)
utility of JDK 1.2 which compiles the interpreted bytecode of a given method into native
code, the first time that method is called, causing a one-time-only larger than usual delay.

As argued in Section 2.2.2, the system must also be able to send data between clients in
addition to the event updates. It is interesting to know the delay of sending such data. We
therefore repeated the CCD test for data exchange, this time for data of different packet
sizes. The result is shown is figure 13. The packet size is measured in number of integers
sent per packet. Even though it is very unlikely that a synchronization or control message
of size 500 integers is sent in one packet, we did extend our test to that limit to see the effect
of very large update messages. Figure 14 shows the same test performed over 28.8 Kbps
modem access instead of 100 Mbps Ethernet.

4.2.2. SPD test. For the SPD test, we had the sender applet flood the server with event
updates. Then we had the receivers (up to 45) calculate the average delay between receiving
adjacent packets from the server. As expected, this delay increases with increasing number
of users as seen in figure 15. Figure 16 shows the same test performed for data updates.

P1: GXI
Multimedia Tools and Applications KL1598-01

20

October 30, 1904 15:29

SHIRMOHAMMADI ET AL.

Client to client Delay-LAN

3.5

25

CCD (msec)

50 100 150 200 250 300
Packet Size (integers)

Figure 13. JASMINE CCD results (packet-based).

Clietn-to-Client Delay (28.8 Modem Access)

160

140

120

100

CCD (msec)

80

60

40
0

50

100 150 200 250 300
Packet Size (integers)

Figure 14. JASMINE CCD results over modem line (packet-based).

Note that due to floor control and moderation, no more that one client at a time can send

events to the server, a scenario, which is typical of collaborative applications.
We can see that the delay increases linearly. This is due to the fact that the server spends

equal amount of processing time per packet per client; therefore it increases linearly with
increasing number of clients.

4.2.3. FCD test. For the Floor Control Delay, we had a client constantly ask for control,
and release it upon receipt, for a given amount of time. The average FCD turned out to be less
than 5 msec, which affirms the intuitiveness of the floor-control mechanism of the system.

P1: GXI
Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

JASMINE: A JAVA TOOL FOR MULTIMEDIA COLLABORATION 21

Server Processing Delay (Events)
T T

i i e Ak it At
e A naain Rt W E R R

I P WY IR PEPUPPY RPN (NP RN
s LT S e R S e

N | g |

o
o b
S
o

20 25 30
number of users

w
o
N
o

45

Figure 15. JASMINE server processing delay.

Server Processing Delay (Data

70
60
50 .25 users
— 10 users
5 users

[95]
o

server delay (msec)
N
o

N
o

A

—
///
L

0 L
0 50 100 150 200 250 300 350 400 450 500
Packet Size (integers)

Figure 16. JASMINE server processing delay (data).

4.3. Subjective evaluation

We also tested a few applets, including a typical whiteboard application, as seen in figure 7,
with up to 5 users sitting next to each other and able to see one another’s screens. The
applications responded in a natural manner in terms of the feel and interaction/perception
of the whiteboard. The visual updating delay between the screens of the workstations was
very small yet detectable by the naked eye.

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

22 SHIRMOHAMMADI ET AL.

4.4. Analysis

As mentioned before, the recommended overall end-to-end delay is less than 1000 msec,
with less than 200 msec required for closely-coupled collaboration. This delay includes the
CCD, the SPD, and the on-screen rendering/display delay corresponding to the application’s
GUI As argued previously, the rendering delay (RD) is not constant and it depends on the
hardware/OS/platform used.

From the CCD and SPD tests, we can approximate the overall delay as:

delay = CCD + SPD + RD;
from figure 15: SPD = 0.142* N, where N is the number of users;
hence:

delay ~ CCD + 0.142* N +RD

which roughly represents the delay experienced from the time an event is generated due
to a client’s interaction until that interaction is shown on the screen of all other clients.
Figures 17 shows achievable number of users based on the expected overall delay, for
different rendering delays (RD).

Figures 18 shows the same thing with focus on tightly-synchronized tasks (delay
<200 msec).

Finally, figure 19 illustrates number of users supportable with 28.8 Kbps modem access.

By looking at the above graphs, we can conclude that the system can support “many”
users. Even though the plots suggest that theoretically thousands of users can be supported,
the fact is that the actual number of users supportable is less. The reason is that the linear

Maximum number of users supportable on LAN

6000

5000 ---

I
|
l
1
|
e — o ——— e
1
)
(
|
J
\

4000 - -~

3000 F---

number of users

2000 ---

T T T T T T Tt T T T T T T T T AT T T T

1000 F---

o
-
s}
o
g T\
s}
w
<3 TR
o
N
Y T
o
o
3
s}
[}
S
~
o
S
®
fg)
o
©

0 1000
Delay

msec)

Figure 17. Number of users supported by the system.

P1: GXI
Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

JASMINE: A JAVA TOOL FOR MULTIMEDIA COLLABORATION 23

Maximum number of users supportable on LAN (tightly-synchronized)

350

300

250

200

number of users

100

50

l
l
:
0 180 190 200
msec)

-
o
o
-
ool
o
-
o
o
-
JF-—-—-

Delay

Figure 18. Number of users supported by the system (delay <200 msec).

Maximum number of users supportable on 28.8 modem

5000 T T T T T
1 1 1 1 1 1
| |

4500

4000

3500

3000

2500

number of users

2000

1500

1000

500

0
300 400 500 600 700 800 900 1000
Delay (msec)

Figure 19. Number of users supported by the system (modem access).

behavior of the system diminishes as the number of users increases: the performance of the
machine running the server decreases substantially as we approach the limit of maximum
allowable socket connections on the machine, also the underlying physical network be-
comes slower with increasing number of users. So the hardware/OS of the server machine
and the network either cannot support so many simultaneous users, or their performance de-
creases significantly. Nevertheless, this shows that the underlying communication module

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

Disk
followed

Disk
followed

24 SHIRMOHAMMADI ET AL.

of JASMINE can support small-size and medium-sized collaboration sessions of hundreds
of users, resource permitting.

5. Related work

There are many Java-based collaboration systems, none of which offer a management or
moderation feature similar to ours. Kuhmiinch [12] at the University of Mannheim has
developed a Java Remote Control Tool, which allows the control and synchronization of
distributed Java applications and applets. The drawback of this approach is that it is necessary
to have access to the original source code of the application or applets in order to make it
collaborative. That means every applet must initiate a Remote-Control-Client object, which
is usually done in the constructor of the applet. Also the event handling within the applet must
be modified in order to receive and/or send events from/to remote applets. The Java Shared
Data Toolkit (JSDT) from JavaSoft is also an API-based framework [11]. Habanero [5] is
an approach that supports the development of collaborative environments. Habanero is in
its terms a framework that helps developers create shared applications, either by developing
a new one from scratch or by altering an existing single-user application which has to be
modified to integrate the new collaborative functionality. Instead of using applets, which
can be embedded in almost every browser, the Habanero system uses so-called “Happlets”
which need a proprietary browser to be downloaded and installed on the client site. Java
Collaborative Environment (JCE) has been developed at the National Institute of Standards
and Technology (NIST) coming up with an extended version of the Java-AWT [2] called
Collaborative AWT (C-AWT). In this approach AWT-components must be replaced by the
corresponding C-AWT components [1].

All these approaches propose the use of an API, which has the cost of modifying
the source-code of an application, re-implementing it or to design and implement a new
application from scratch in order to make it collaborative.

Java Applets Made Multiuser (JAMM) [4] is a system, which is similar to our approach
in terms of its objective: the transparent collaboration of single-user applications. The
difference between JAMM and JASMINE is the way collaboration is achieved. In JAMM
[6], the set of applications that can be shared is constrained to those that are developed
using Swing user interface components as part of Java Foundation Classes, which are part
of the standard JDK since version 1.2. JAMM’’s set of applications is furthermore restricted
to those which implement the Java serializable interface.

6. Conclusion

We presented the architecture and implementation of our transparent collaboration frame-
work for Java applets and applications. We developed this architecture in order for users to
be able to collaborate via collaborative-unaware applications and applets without modify-
ing the source code. Our architecture enables us to use almost all single-user applets and
applications in a collaborative way. We have successfully tested our system on a number of
applets. We also observed that using the TCP-client-server approach of our communication

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

JASMINE: A JAVA TOOL FOR MULTIMEDIA COLLABORATION 25

module can support relatively large number of users. However, when reliable multicast-
ing becomes more practical in the future, it would be more logical to replace the current
communication module with one which is RM based.

There are two outstanding issues remaining. These issues are not directly related to
JASMINE but are research areas of the transparent collaboration paradigm. The first issue
is that of latecomer-support. When a user starts a session later than other participants, there
is a need to bring this user up-to-date as opposed to start from scratch. This can be achieved
either by sending the entire object state of the shared application to the newcomer using
object serialization, or by sending all the events occurred up to now to the new user so that
it follows the same sequence of events that other participants have gone through [15]. We're
currently using JASMINE to experiment with these methods.

Another issue was brought up in 2.2.2: multimedia inter-client synchronization and con-
trol. Transparent collaboration cannot address this issue alone and we believe that using an
API is necessary to achieve such functionality for multimedia applications.

Today, computing environments where Java applications and applets are running over IP
have become very popular and widespread. Our architecture helps people to collaborate in
such environments easier.

Acknowledgments

The authors acknowledge the development contributions of Tien Bui and Wenbiao Zhu, as

well as the financial assistance of the Telelearning Network of Centers of Excellence of Disk

Canada, the Natural Sciences and Engineering Research Council of Canada, and Volkswagen
Stifftung of Germany.

Note

1. JASMINE: Java Application Sharing in Multiuser INteractive Environmnets.

References

1. H. Abdel-Wahab et al., “Using Java for multimedia collaborative applications,” in Proc. PROMS’96, Madrid,
Spain, 1996.

2. H. Abdel-Wahab et al., “An internet collaborative environment for sharing Java applications,” in IEEE Com-
puter Society Workshop on Future Trends of Distributed Computing Systems (FTDCS’97), October 29-31,
1997, pp. 112-117.

3. J. Begole et al., “Leveraging Java applets: Toward collaboration transparency in Java,” IEEE Internet Com-
puting, pp. 57-64, 1997.

4. J. Begole et al., “Transparent sharing of Java applets: A replicated approach,” in Proc. Symposium on User
Interface Software and Technology, ACM Press: New York, 1997, pp. 55-64.

5. A. Chabert et al., “Java object sharing in Habanero,” Communications of the ACM, Vol. 41, No. 6, pp. 69-76,
1998.

6. A. El Saddik, O. Karaduman, S. Fischer, and R. Steinmetz, “Collaborative working with stand-alone applets,”
in Proc. 12th International Symposium on Intelligent Multimedia and Distance Education (ISIMADE’99),
August 1999.

7. S.Fischer and A. El Saddik, Open Java: Von den Grundlagen zu den Anwendungen, Springer-Verlag: Berlin,
1999.

followed

Au: Pls.
provide
the vol. no.
for ref. 3.

Disk
followed

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

26 SHIRMOHAMMADI ET AL.

8. J. Grudin, “Computer-supported cooperative work: History and focus,” IEEE Computer, Vol. 27, No. 5, pp.
19-26, 1994.
9. Handheld IP Connectivity for 1998, IEEE Internet Computing, Vol. 2, No. 1, pp. 12-14, 1998.
10. International Data Corporation, “IDC’s Forecast of the Worldwide Information Appliance Marketplace 1996—
2001,” IDC Bulletin #w15080, December 1997, (screen phone revisions 5/7/98).
11. Javasoft (for Java, JINI, RMI, and JSDT technologies), available at http://www.javasoft.com
12. Kuhmiinch et al., “Java Teachware—The Java remote control tool and its Applications,” in Proc. ED-
MEDIA’98, 1998.
13. Multimedia Communication Forum Inc., “Multimedia communication quality of service,” MMCF document
MMCF/95-010, Approved Rev 1.0, September 24, 1995.
14. K. Obraczka, “Multicast transport protcols: A survey and taxonomy,” IEEE Communications, Vol. 36, No. 1,
pp. 94-102, 1998.
15. S. Shirmohammadi et al., “Applet-based telecollaboration: A network-centric approach,” IEEE Multimedia,
Vol. 5, No. 2, pp. 64-73, 1998.

Shervin Shirmohammadi received his M.A.Sc. and Ph.D. in Electrical Engineering from the University of
Ottawa in 1996 and 2000, respectively, where he conducted research at the Multimedia Communications Research
Laboratory in various projects. His research interests include collaborative virtual environments, multimedia
communications, and telecommunications software. He is the 1995 University of Ottawa Gold Medallist for highest
standing in Engineering, 1998 Canadian Advanced Technology Associate Award winner in Telecommunications
Software, and Natural Sciences and Engineering Research Council of Canada scholarship holder (NSERC-PGS B).

Abdulmotaleb El Saddik is pursuing a Ph.D. in electrical engineering in the Department of Electrical Engineering
and Information Technology at Darmstadt University of Technology, Germany. He is currently working on the
Multibook project, Funded by the German federal ministry for education and research. His research interests include
development of interactive multimedia visualizations for Web-based learning systems. A. El Saddik received his
M.Sc. (Dipl.-Ing.) degree in electrical engineering from Darmstadt University of Technology in 1995. He is a
member of the Association for Computing Machinery (ACM), The Gateway to Educational Materials (GEM) and
the Interactive Multimedia Electronic Journal of Computer-Enhanced Learning (IMEJ). He is also co-author of
the Open Java book, published 1999 by Springer.

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

JASMINE: A JAVA TOOL FOR MULTIMEDIA COLLABORATION 27

UNIVER

E— D'OT1

Nicolas D. Georganas is Professor and Director of the Multimedia Communications Research Laboratory
(MCRLab) at the School of Information Technology and Engineering, University of Ottawa, Canada. He has
been leading multimedia application development projects since 1984. He was General Chair of the IEEE Multi-
media Systems’97 Conference (ICMCS97) (June 1997, Ottawa). He has served as Guest Editor of the IEEE Journal
on Selected Areas in Communications, issues on “Multimedia Communications” (1990) and on “Synchronisation
Issues in Multimedia Communications” (1996). He is on the editorial boards of the journals Multimedia Tools
and Applications, ACM/Springer Multimedia Systems, ACM Computing Surveys, Performance Evaluation, Com-
puter Networks, Computer Communications, and was an editor of the IEEE Multimedia Magazine. He is Fellow
of IEEE, Fellow of the Canadian Academy of Engineering, Fellow of the Engineering Institute of Canada and
Fellow of the Royal Society of Canada. In 1998, he was honoured as the University of Ottawa Researcher of the
Year and also received the University 150th Anniversary Gold Medal for Research. In 1999, he received the T.W.
Eadie Medal of the Royal Society of Canada, funded by Bell Canada. In 2000, he received the A.G.L. McNaughton
Medal and Award, the highest distinction of IEEE Canada, the Julian C. Smith Medal of The Engineering Institute
of Canada and the President’s Award of the Ottawa Center for Research and Innovation.

Ralf Steinmetz is professor at the “Electrical Engineering and Information Technology” as well as “Computer
Science” departments of the Darmstadt University of Technology, Germany, since 1996. There he is in charge
of a new chair position in the area of process communications and multimedia networking sponsored mainly
by the Volkswagen-Stiftung. He is also one of the directors of the Information Transfer Office at the university.
In late 1996 he was appointed director of the Integrated Publications and Informations Institute of the German
National Research Center (GMD) in Darmstadt, Germany. Here he is in charge of co-operative work, workspaces
of the future, interactive learning, media processing and mobile networking. His research interests are networked
multimedia systems, co-operative applications, as well as mobile and service gateways for multimedia data.
Dr. Ralf Steinmetz studied electrical engineering with the focus on communications at the University of Salford,
England, and at the Technical University of Darmstadt, Germany, where he received the M.Sc. (Dipl.-Ing.) degree
in 1982. Working as scientific assistant, he received the Ph.D. degree (Dr.-Ing.) in 1986 at this university. He
mainly worked in the area of Petri-Nets and concurrent programming languages. Subsequently he joined the
“Advanced Development Department” of “Philips Kommunikations Industrie” in Siegen-Eiserfeld, Germany,
where he was involved in ISDN multimedia project workstations development activities. From 1988 until 1996
he worked at the IBM European Networking Center in Heidelberg, Germany. There he has been involved in
various multimedia communication activities. He started his first activities on multimedia and networking and

P1: GXI

Multimedia Tools and Applications KL1598-01 October 30, 1904 15:29

28 SHIRMOHAMMADI ET AL.

was in charge of a multimedia laboratory. In integrated multimedia projects that followed he acted as a key
technical coordinator. He was the leader of the whole multimedia transport system development and subsequently
was in charge of several application projects and their respective application support issues. He managed the
multimedia department in Heidelberg which at that time became IBM’s European Multimedia Center. He is
editor and co-author of a multimedia course, which reflects the major issues of a first in-depth technical book on
multimedia technology, 1993, (in German). He is editor of the magazine "Computer Communications” published
by Butterworths-Heinemann and Distributed Systems Engineering”. He was in charge of a worldwide IEEE
Multimedia Taskforce working group for magazine publication. There he is associate-editor in-chief of the IEEE
Multimedia Magazine. He has served as chair, vice-chair and member of various program and steering committees
of multimedia workshops and conferences. He is a member of ACM, GI, ITG, as well as senior member of IEEE.

