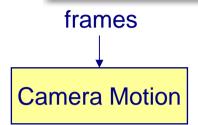

8.4 Object Recognition in Videos

- Object Segmentation
- Classification of Objects
- Some Experimental Results

Goal and Challenges

- Goal: Recognition of postures and gestures in videos
- Major challenges:
 - * Camera motion
 - * Noise

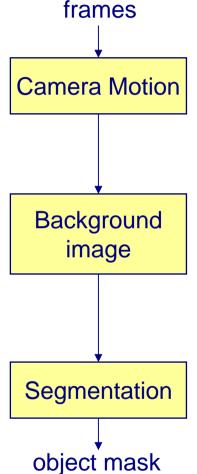

Segmentation (1)

- Assumption: At least half of the visible area in each frame is background.
- Estimate the camera motion between consecutive frames.
- Calculate parameters of the camera model:

$$x' = \frac{a_{11}x + a_{12}y + t_x}{p_x x + p_y y + 1} \qquad y' = \frac{a_{21}x + a_{22}y + t_y}{p_x x + p_y y + 1}$$

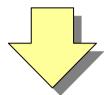
Segmentation (2)

- •Assumption: At least half of the visible area in each frame is background.
- Estimate the camera motion between consecutive frames.
- Calculate parameters of the camera model:

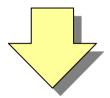

$$x' = \frac{a_{11}x + a_{12}y + t_x}{p_x x + p_y y + 1}$$

$$y' = \frac{a_{21}x + a_{22}y + t_y}{p_x x + p_y y + 1}$$

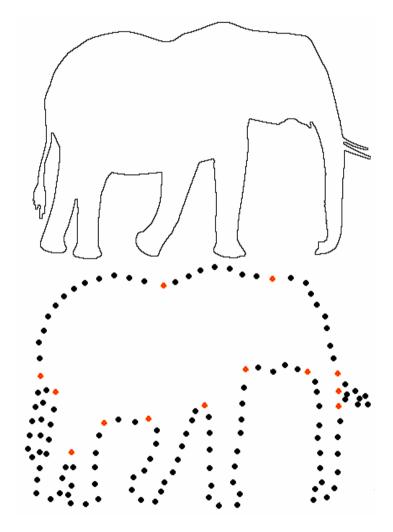
Segmentation (3)


- Assumption: At least half of the visible area in each frame is background.
- Estimate the camera motion between consecutive frames.
- Calculate parameters of the camera model:

$$x' = \frac{a_{11}x + a_{12}y + t_x}{p_x x + p_y y + 1} \qquad y' = \frac{a_{21}x + a_{22}y + t_y}{p_x x + p_y y + 1}$$

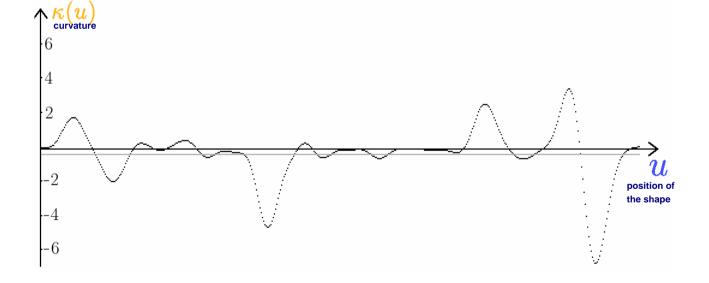

- Apply a median filter on the transformed frames to construct the background image.
- Compare the background image with transformed frame to get the object mask.

Calculate Shape Features


Segmentation

Parameterization of the shape

Calculate the curvature of the shape



Definition of the Curvature

Definition of the curvature

$$\kappa = \frac{\ddot{x} \cdot \dot{y}^2 - 2 \cdot \dot{x} \cdot \dot{y} \cdot \dot{x}\dot{y} + \ddot{y} \cdot \dot{x}^2}{\dot{x}^2 + \dot{y}^2}$$

Curvature function

Calculation of the curvature (1)

Calculate curvature with first and second derivatives

First derivatives

$$\kappa = \frac{\ddot{x} \cdot \dot{y}^2 - 2 \cdot \dot{x} \cdot \dot{y} \cdot \dot{x}\dot{y} + \ddot{y} \cdot \dot{x}^2}{\dot{x}^2 + \dot{y}^2}$$

$$\dot{x}_{i,j} = \frac{P_{i+1,j} - P_{i-1,j}}{2 \cdot hx}$$

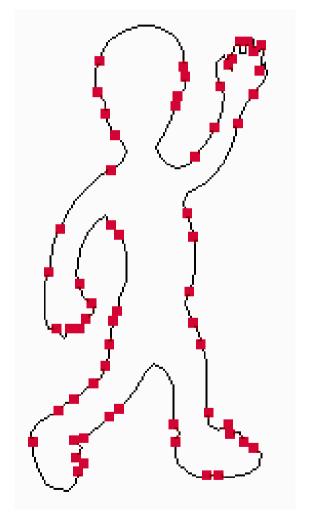
$$\dot{y}_{i,j} = \frac{P_{i,j+1} - P_{i,j-1}}{2 \cdot hy}$$

Calculation of the curvature (2)

Second derivative

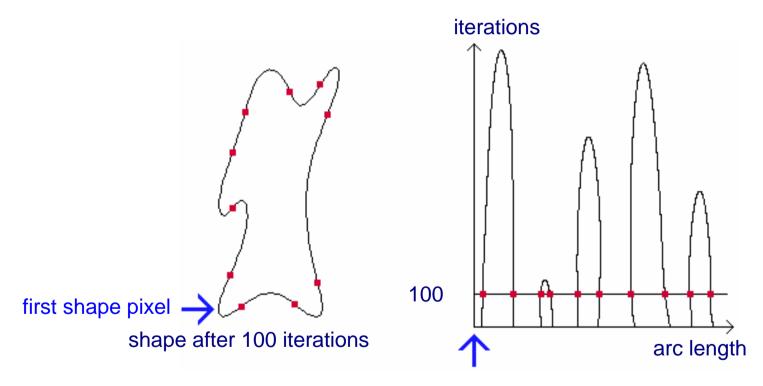
$$\ddot{x}_{i,j} = \frac{P_{i+1,j} - 2 \cdot P_{i,j} + P_{i-1,j}}{hx \cdot hx}$$

Derivative in xy-direction


$$M = \frac{1}{2 \cdot hx \cdot hy} \begin{cases} \begin{pmatrix} 0 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{pmatrix} & \text{for each} & <0 \ \vec{x} \cdot \vec{y} \\ 1 & -1 & 0 \end{pmatrix} & \text{else} \\ \begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix} & \text{for each} & <0 \ \vec{x} \cdot \vec{y} \end{cases}$$

Object Classification: Curvature Scale Space

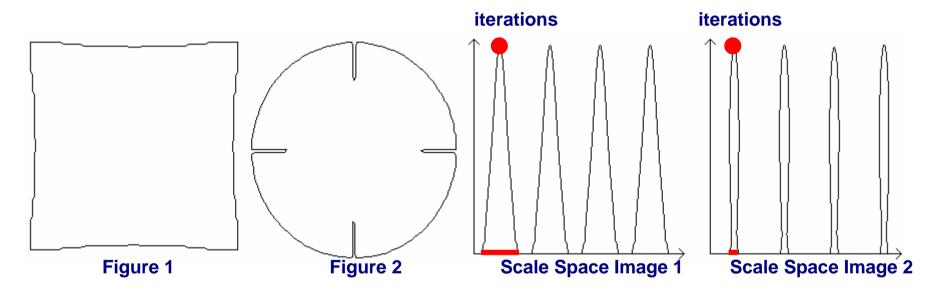
- Analyze the outer shape of an object.
- Smooth the shape with a Gaussian kernel in a sequence of iterations.
- The inflection points in each iteration are used as features to describe the object.


Curvature Scale Space: Smoothing in Iterations

- Analyze the outer shape of an object.
- Smooth the shape with a Gaussian kernel in a sequence of iterations.
- The inflection points in each iteration are used as features to describe the object.

Curvature Scale Space Diagram

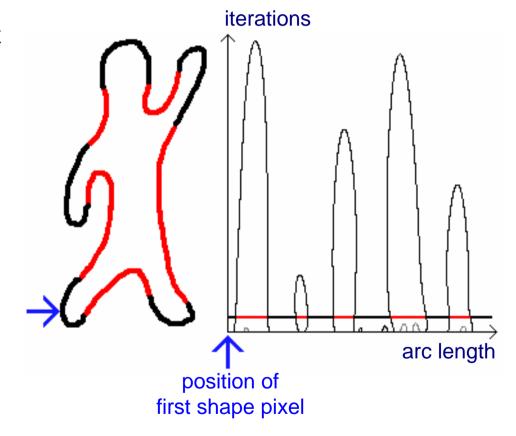
• A curvature scale space diagram is a visual representation of the inflection points during the smoothing process.


The peaks are used as features to describe the object.

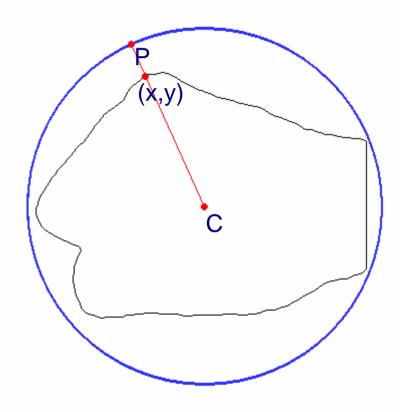
Properties of the Curvature Scale Space

- Pro:
 - * Only a few values are required to describe a complex object.
 - * The approach is invariant to rotation or scaling.
 - * Low computation time.
- Contra:
 - * Bad classification results with some shapes.

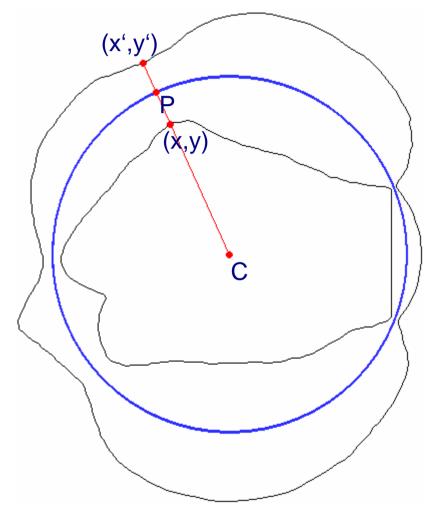
Ambiguities of Curvature Scale Space Images (1)


Shallow vs. deep concavities:

Solution: Use position, height and width of each peak as a feature.


Ambiguities of Curvature Scale Space Images (2)

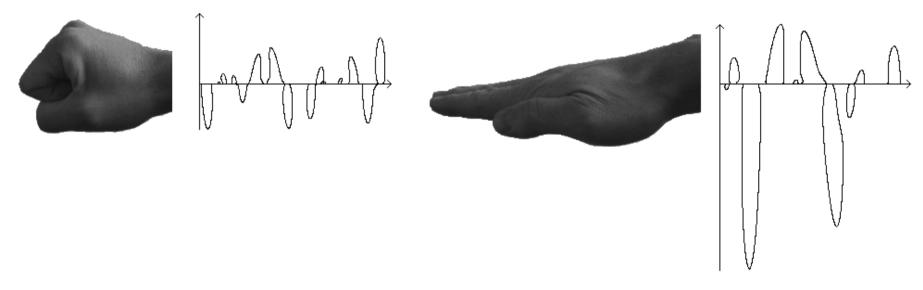
- Poor representation of convex regions of a shape: convex objects are not represented at all.
- Solution: Mapped shapes


Mapped Shapes (1)

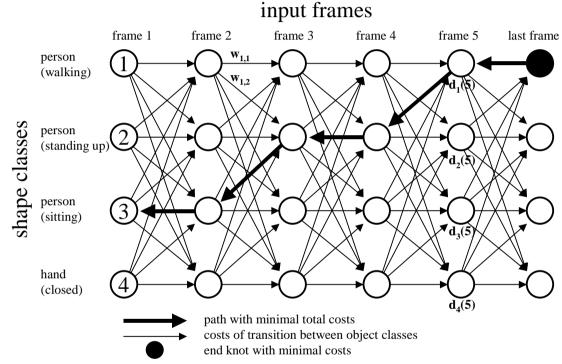
 Idea: mirror each contour pixel at a circle around the object

Mapped Shapes (2)

- Idea: mirror each contour pixel at a circle around the object
- Strong convex segments of the original shape become concave segments of the *mapped shape*.

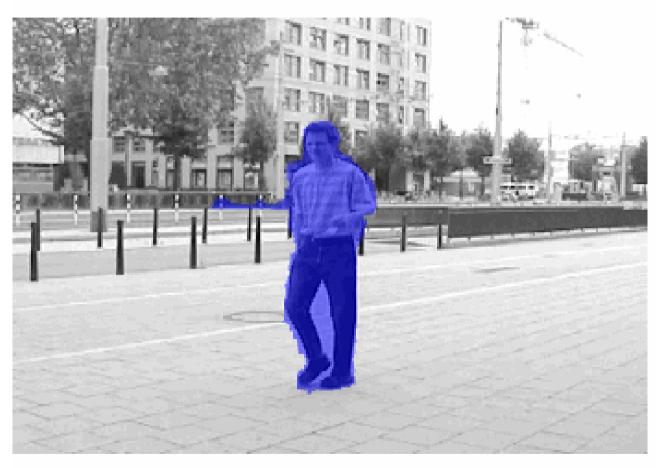

Curvature Scale Space Diagrams

• Calculate standard curvature scale space features.


Add the Curvature Scale for the Mapped Shapes

- Calculate standard curvature scale space features.
- Calculate features for the mapped shape.

Aggregation of the Classification Results


- Similar objects are grouped in one object class.
- Distance between input object i and object class c: d_c(i)
- Transition costs occur for each change of the object class: $w_{n,m}$

Solve the minimization problem:

$$\min_{c} \sum_{i=1}^{N} (d_{c(i)}(i) + w_{c(i),c(i-1)})$$

Experimental Results

standing walking turning around sitting down sitting open hand closed hand fist thumb

Conclusions

- New algorithms to classify postures and gestures of a person in a video were developed at U. Mannheim.
- A major deficiency of the curvature scale space approach is the fact that convex regions of a shape are not represented in the CSS diagram.
- We propose *mapped shapes*, mirrored at a circle around the object, to overcome this problem.