
A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 1© Wolfgang Effelsberg, Ralf Steinmetz

7. Operating System Support

7.1 Real-time Operation

7.2 Scheduling Algorithms

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 2© Wolfgang Effelsberg, Ralf Steinmetz

7.1 Real-time Operation

Management of processes in operating systems
Logical resources (i.e., processes) are mapped onto physical resources (e.g., central processing
unit (CPU) and memory).
A process can have four states:

• running: it is allocated to a processor
• ready: it holds all operating resources except the processor
• blocked: it is waiting for the occurrence of an event (e.g., the termination of an output to disk)
• inactive: the process is not assigned to an application program.

ready

blocked

running

inactive

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 3© Wolfgang Effelsberg, Ralf Steinmetz

Scheduler and Dispatcher

The scheduler decides which of the inactive processes will be moved to the
ready state.

The dispatcher decides which process to move next from state ready to
state running.

In conventional operating systems, neither scheduler nor dispatcher are
capable of real-time processing.

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 4© Wolfgang Effelsberg, Ralf Steinmetz

Requirements for Multimedia

Processing of continuous data streams
The data to be processed appears in periodic time-intervals.

Typical operations on multimedia data are:
• Creation and playout of audio and video packets,
• Transmission of audio and video packets,
• Compression and decompression of audio and video packets.

Real-time requirements:
• Processing must be completed by a specific time (deadline)
• Processing of a multimedia data packet takes approximately the same

amount of resources in each time period.

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 5© Wolfgang Effelsberg, Ralf Steinmetz

Light-weight Processes (threads)

Concept
• Concurrent (parallel) activities are carried out within one address space.
• Each concurrent activity is called a thread.
• Data transfer between threads is efficient (just a copy operation).
• A "context switch" (i.e., a switch between different threads) is much more

efficient than a switch between normal, heavy-weight operating system
processes.

But:
There is no access protection between threads provided by the oper-
ating system (same address space for all threads)!

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 6© Wolfgang Effelsberg, Ralf Steinmetz

Reservation of Resources

Pessimistic (deterministic) reservation
• Takes the worst case into consideration
• Reserves too many resources most of the time and thus leads to sub-optimal use of

the resources

Optimistic (stochastic) reservation
• Reservation is made for the expected value (mean value) of the processing resour-

ces
• Leads to a good utilization of the resources
• But can lead to an overload of the resources (blocking or sub-optimal execution of a

process)
• Role of a run-time monitor:

• Monitors resource usage
• In case of overload initiates suitable action, such as scaling (QoS adaptation) or

blocking of the process and withdrawal of the resource.

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 7© Wolfgang Effelsberg, Ralf Steinmetz

Real-time Process Specification for Multimedia

Traditional systems usually have
• either a scheduling mechanism for time-sharing applications
• or a scheduling mechanism for real-time applications
In multimedia systems, a scheduler for both types of applications is required.

real-time
applications

time-sharing
applications
(best effort)

scheduler and dispatcher

CPU

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 8© Wolfgang Effelsberg, Ralf Steinmetz

Real-time Applications vs. Multimedia Applications

Data in traditional real-time applications (e.g., in process automation and control) typ-
ically have hard real-time requirements.

Multimedia data is generally intended for presentation to the human being as the data
sink. This means:
• Rare violations of deadlines are acceptable. For example, a macro block deco-

ding failure in an MPEG video that is caused by late arrival of the data packet can
be tolerated; the decoder repeats the corresponding macro block of the previous
frame.

• In traditional real-time systems, operations are not always periodic. Multimedia data
is periodic. Scheduling and dispatching algorithms can take advantage of the perio-
dicity. Resource requirements are easier to predict.

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 9© Wolfgang Effelsberg, Ralf Steinmetz

Process Scheduling Goals

The main goal of process scheduling and dispatching is to ensure that all
deadlines of all processes are satisfied. Additional optimization goals are:
• A high average utilization of the resources, leading to high throughput
• fast computation of the resource allocation (an efficient algorithm).

The allocation does not necessarily have to be optimal. Complexity theory
tells us that the computation of optimal schedules is NP-complete.

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 10© Wolfgang Effelsberg, Ralf Steinmetz

Scheduling Problem: An Example

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 11© Wolfgang Effelsberg, Ralf Steinmetz

7.2 Scheduling Algorithms

Requirements
• All deadlines must be met.
• Resource utilization should be high.
• Best-effort requests should not starve.
• The algorithm should be efficient, i.e., not use too much CPU time itself.

The scheduler can take advantage of the periodicity of continuous data
streams.

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 12© Wolfgang Effelsberg, Ralf Steinmetz

Preemptive vs. Non-preemptive Scheduling

Preemptive scheduling
• If a process with higher priority requests a resource, the currently active (running)

process is moved to the READY state, the high-priority process gets the CPU, i.e.,
is moved to the RUNNING state.

• There are many more process switches, process management overhead is high.

Non-preemptive scheduling
• Active processes are not interrupted by high-priority requests.
• Process switching occurs less frequently, overhead is lower.

Non-preemptive scheduling generally performs well for processes with short
execution times.

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 13© Wolfgang Effelsberg, Ralf Steinmetz

Model of a Periodic Data Stream

• R: Arrival rate
• Pj: Processing time
• Dj: Deadline for the termination of the process

These three parameters control the scheduling algorithm.

Aj
arrival time
of packet j

Dj
deadline

of packet j Pj
processing time

per packet

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 14© Wolfgang Effelsberg, Ralf Steinmetz

Algorithm 1: Earliest Deadline First (EDF)

The process with the earliest deadline is assigned the highest priority.

Process priorities vary over time.

One can show that the EDF algorithm always finds a valid schedule if there is
one.

Resources can be used up to 100%.

process i:

process j:

A

AA

AA

AA

i1 i2 i3

j1 j2 j3 j4
D

DDD

Di1 i2

j1 j2 j3

Prio j > Prio i Prio i > Prio j

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 15© Wolfgang Effelsberg, Ralf Steinmetz

EDF Scheduling

In most cases of periodic scheduling, the deadline of a request is identical to the end
of the period since the data buffer is needed again.

Performance
Preemptive scheduling (Liu /Layland, 1973):

• maximum possible throughput:

• delay of a packet <= 1/Ri

Non-preemptive scheduling (Nagarajan/Vogt, 1992)
• same throughput as above
• delay of a packet <= 1/Ri + Pi

1≤∑
istreamsall

iiPR

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 16© Wolfgang Effelsberg, Ralf Steinmetz

Algorithm 2: Rate-Monotonic Scheduling (RM)

The process with the highest packet rate is assigned the highest priority.

While streams are running priorities do not change; only when a new stream starts
or when a stream ends, priorities are re-computed.

RM is an algorithm for periodic processes only.

t

t

t

t

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 17© Wolfgang Effelsberg, Ralf Steinmetz

Rate-Monotonic Scheduling

Again, we set the deadline to the end of the period:

Performance
Preemptive scheduling (Liu/Layland, 1973):

• maximum possible throughput:

• delay of a packet <= 1/Ri

Non-preemptive scheduling (Nagarajan/Vogt, 1992):
• highly sophisticated computation
• guaranteed throughput is much less

2ln≤∑
istreamsall

iiPR

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 18© Wolfgang Effelsberg, Ralf Steinmetz

Examples for RM and EDF

With preemption

Process i:

Process j:

RM:

EDF:

D i1 D i2 D j1 D i3 D i4

Deadline violation

Deadline satisfied

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 19© Wolfgang Effelsberg, Ralf Steinmetz

Other Scheduling Algorithms

Scheduling according to laxity

• Laxity: maximum allowed waiting time until processing begins
• The process with the smallest laxity is assigned the highest priority.
• Priorities must be updated continuously (large computational overhead).

Current time ti Deadline Di

Processing time Pí

laxity(ti) = Di- t i - P'i

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 20© Wolfgang Effelsberg, Ralf Steinmetz

Determination of Processing Times

Problem
• For most scheduling algorithms, the actual processing time per packet on

the current CPU must be known!
• An analytic computation is hardly possible.

A pragmatic approach: measurement and standardization.

A Graduate Course on Multimedia
Technology

7. Operating System Support 7 - 21© Wolfgang Effelsberg, Ralf Steinmetz

Measurement of Processing Time

SH = Stream Handler

m
ea

su
re

m
en

t t
oo

l

recording of
CPU requirement

