# 3. Quality of Service

- **3.1 Motivation**
- 3.2 Characteristics of Real-Time / Multimedia Systems
- 3.3 QoS Definition
- **3.4 Resources**
- 3.5 Providing QoS
- 3.6 QoS Architectures



© Wolfgang Effelsberg, Ralf Steinmetz 3. Quality of Service (QoS)

3-1

# **3.1 Motivation**

Kinds of systems we are dealing with are



### Local

- · Harddisk recording
- Interactive DVD
- Computer-based training

#### Distributed

- Conferencing
- Video on demand
- IP-Telephony

### **Basic terminology**

- Resources
- Realtime
- Quality of Service

What and how much of it do we need, and how do we describe that?

A Graduate Course on Multimedia Technology

## **Motivation for QoS**

## A QoS model and its implications

- QoS specification
- · QoS calculation
- QoS enforcement

### QoS has different implications in different fields:

- Operating system / Resource scheduling
- File system organization
- Compression
- Communication system support
- Media synchronization
- User Interface
- and more ...

| 1 | A Graduate Course on Multimedia<br>Technology | © Wolfgang Effelsberg,<br>Ralf Steinmetz | 3. Quality of Service (QoS) | 3-3 |  |
|---|-----------------------------------------------|------------------------------------------|-----------------------------|-----|--|
|   |                                               |                                          |                             |     |  |

## 3.2 Characteristics of Real-Time / Multimedia Systems

#### **Real-time System:**

"A system in which the correctness of a computation depends not only on obtaining the right result, but also upon providing the result on time."

### **Real-time Process:**

"A process which delivers the results of the processing in a given time-span."

#### **Real-time applications - examples**

#### Control of temperature in a chemical plant

- -driven by interrupts from external devices
- -these interrupts occur at irregular and unpredictable intervals

#### A flight simulator

-execution at periodic intervals

-scheduled by a timer service which the application requests from the OS

#### **Common characteristics:**

-internal and external events that occur periodically or spontaneous -correctness also depends on meeting time constraints !

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 3. Quality of Service (QoS)

## **Deadlines in Realtime Systems**

A deadline represents the latest acceptable time to finish an operation, e.g., for the presentation of a processing result



#### Hard deadlines:

- · should never be violated
- · result presented too late (after deadline) has no value for the user
- · violation means severe (potentially catastrophic) system failure
- Example: Nuclear power plant

#### • Soft deadlines:

- · deadlines are not missed by much
- · in some cases the deadline may be missed, but not too many deadlines are missed
- presented result still has some value for the user
- example: train/airplane arrival / departure

| A Graduate Course on Multimedia<br>Technology | © Wolfgang Effelsberg,<br>Ralf Steinmetz | 3. Quality of Service (QoS) |   | 3-5 |  |
|-----------------------------------------------|------------------------------------------|-----------------------------|---|-----|--|
|                                               |                                          |                             | - |     |  |

## **Realtime System - Requirements**

### **Primary goal:**

- · deterministic behavior according to specification
- · results in a variety of requirements

### **Mandatory requirements:**

- Predictable (fast) handling of time-critical events
- Adequate schedulability
- · Stability under overload conditions

### **Desirable requirements:**

- Multi-tasking capabilities
- Short interrupt latency
- Fast context switching
- Control of memory management
- Proper scheduling
- Fine granularity of timer services
- Rich set of interprocess communication and synchronization mechanisms

## **Real-time in Multimedia Systems**

A new application area for real-time systems with special characteristics:

- Typically soft real-time and not (that) critical
- Requirements may often be adapted to ensure proper handling, e.g., scaling of data streams to available bit rates

## **Characteristics**

- Periodic processing
- Large bandwidth
- End-to-end guarantees
- Fault-tolerance
- Fairness
- Standardization

| A Graduate Course on Multimedia<br>Technology | © Wolfgang Effelsberg,<br>Ralf Steinmetz | 3. Quality of Service (QoS) | 3-7 |  |
|-----------------------------------------------|------------------------------------------|-----------------------------|-----|--|
|                                               |                                          |                             |     |  |

# 3.3 QoS - Definition

#### Quality of Service =

"well-defined and controllable behavior of a system according to quantitatively measurable parameters"

3-8

| Layer model                                   | Use                                      | er                          |
|-----------------------------------------------|------------------------------------------|-----------------------------|
|                                               | Applica                                  | ation                       |
|                                               | MM Sy                                    | /stem                       |
|                                               | File System Local Pi                     | Processing Transport System |
|                                               |                                          | I I                         |
| Different service object                      | cts:                                     |                             |
| <ul> <li>Media / Stream</li> </ul>            | S                                        |                             |
| <ul> <li>Tasks</li> </ul>                     |                                          |                             |
| <ul> <li>Memory areas</li> </ul>              |                                          |                             |
| A Graduate Course on Multimedia<br>Technology | © Wolfgang Effelsberg,<br>Ralf Steinmetz | 3. Quality of Service (QoS) |

## QoS - Layer Model (1)

## Examples: both qualitative / quantitative description

### **Perception QoS**

- Tolerable Synchronisation Drift
- Visual Perceptability

### **Application QoS**

- Media Parameters
- Media (Transmission) Characteristics

## System QoS

- CPU Rate / Usage
- Available Memory

| A Graduate Course on Multimedia<br>Technology | © Wolfgang Effelsberg,<br>Ralf Steinmetz | 3. Quality of Service (QoS) | 3-9 |  |
|-----------------------------------------------|------------------------------------------|-----------------------------|-----|--|
|                                               |                                          |                             |     |  |

## QoS - Layer Model (2)

### **Communication QoS**

- Packet Size / Rate
- Bandwidth
- End-to-End Delay

## **Device QoS**

- Seek / data transfer rate of a disk
- · Sampling rate / resolution of a camera



## **QoS Parameter Example**

## Delay

- Maximum end-to-end delay for transmission of one packet
- Delay jitter = variance of transmission times

## Throughput

- Maximum long-term rate = maximum amount of data units transmitted per time interval (e.g. ,packets or bytes per second)
- Maximum burst size
- Maximum packet size

## Loss

- · Sensitivity class: ignore / indicate / correct losses
- Loss rate = maximum number of losses per time interval
- Loss size = maximum number of consecutively lost packets

## **Service Classes**

#### **Guaranteed Service**

- values or intervals of QoS parameters
  - deterministic (at any time)
  - statistical (consider a time interval or a certain probability)

 $QoS_{min} \le P \le QoS_{max}$ 

### **Predictable Service**

- consider history
  - from the very beginning of calculation
  - in a shifting time window
- "if it was like that in the last ..., you can rely on ..."

### **Best-Effort Service**

no guarantees given

| A Graduate Course on Multimedia<br>Technology | © Wolfgang Effelsberg,<br>Ralf Steinmetz | 3. Quality of Service (QoS) | 3-13 |  |
|-----------------------------------------------|------------------------------------------|-----------------------------|------|--|
|                                               |                                          |                             |      |  |

## **QoS Intervals (1)**

Parameter values result in

- · inacceptable regions
- acceptable regions

of QoS in one-dimensional intervals



- Below required QoS level no useful service
- · Above required QoS level unnecessary (useless) resource consumption / cost

| A Graduate Course | on | Multimedia |
|-------------------|----|------------|
| Technology        |    |            |

## **QoS Intervals (2)**

## Also: multidimensional intervals



# **3.4 Resources**

### Classification

#### **By functionality**

- active resources
  - · actively fulfill a certain task
  - e.g., processor, network adapter
- passive resources
  - provide "space"
  - e.g., memory, frequency spectrum, file system

#### By availability for concurrent usage

- exclusive
- shared

#### By occurrence

- single
  - multiple

#### **Common parameter:**

"Capacity" - allows quantitative description

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

3-16

## **Resources - Availability**

#### **Starting point:**

scarce but sufficient resources



### Goal

Provide best service at the lowest possible cost

### Conclusion

We need resource management in all components of a multimedia system

| A Graduate Course on Multimedia<br>Technology | © Wolfgang Effelsberg,<br>Ralf Steinmetz | 3. Quality of Service (QoS) | 3-17 |  |
|-----------------------------------------------|------------------------------------------|-----------------------------|------|--|
|                                               |                                          |                             |      |  |

## Architecture



# 3.5 Providing QoS

## **Resource Management Phases**



## 3.5.1 QoS Provisioning – Setup Phase



#### **Definition of required parameters**

· implicitly or explicitly by application or user

#### **Distribution and negotiation**

#### **Translation between different layers**

· especially if they use different semantics / notations

#### Transformation

QoS parameter => Resource requirements

#### Allocation and coordination of resources

along path(s) from source(s) to sink(s)

A Graduate Course on Multimedia Technology

## **QoS Calculation and Negotiation**



## **QoS Negotiation (1)**

#### Bilateral peer-to-peer

- service provider may not modify requested QoS parameters
- only the service user at the receiver side may modify (lower) the value(s) in the confirmation message



## **QoS Negotiation (2)**

#### **Bilateral layer-to-layer**

- only between adjacent layers
  - between local service users and providers
  - between sender and network

#### Unilateral

- no modification of requested QoS parameters allowed, but just accept or reject
- receiver may accept QoS parameter although he cannot meet them
   example: color TV broadcast

#### Hybrid

- · uses unilateral mode for a certain bilateral layer-to-layer negotiation
  - example: broadcast/multicast communication

===> heterogeneity of receivers

#### Further:

- trilateral for information exchange
- trilateral for a limited target value

| A Graduate Course on Multimedia<br>Technology | © Wolfgang Effelsberg,<br>Ralf Steinmetz | 3. Quality of Service (QoS) | 3-23 |
|-----------------------------------------------|------------------------------------------|-----------------------------|------|
|                                               |                                          |                             |      |

## **Admission Control**

The system checks whether requested resources are and will be available. Especially important for shared resources:

- CPU
- · network paths
- buffer space.

#### A simple rule

Check whether the sum of the resources already in use and new request(s) is less or equal to the available resource capacity.

More specific: check for

- schedulability
- availability of buffers (space)
- bandwidth

#### Note:

- strong relationship with pricing / billing
- efficient mechanisms will use "economic feedback" to prevent users from always requesting the maximum

A Graduate Course on Multimedia Technology



## **Resource Reservation Aspects - Example**

### **Example: Communication System**

#### **Reservation Models**

- Sender-initiated
- Receiver-initiated
- · Explicit vs. implicit
- · Out-of-Band vs. In-Band

#### **Reservation Style**

- · Semantics and notation
- · Heterogeneity and multicast support

#### **Reservation Protocols**

- · ST-II for IP multicast
- RSVP (Resource reSerVation Protocol) for IP multicast

## 3.5.2 QoS Provisioning – Data Processing Phase

## phase 2 (Dat a processing):



### Maintain resource reservations

#### Use:

- adequate traffic shaping (to ensure characteristics of processed data)
- scheduling algorithms
- · feedback and adaption of the streams

| A Graduate Course on Multimedia<br>Technology | © Wolfgang Effelsberg,<br>Ralf Steinmetz | 3. Quality of Service (QoS) | 3-27 |  |
|-----------------------------------------------|------------------------------------------|-----------------------------|------|--|
|                                               |                                          |                             |      |  |

# Shaping

Characteristics of Multimedia Traffic:

- bursty
- concurrent requests may cause problems though guarantees could be met (e.g., buffer overflow)

## **Basic principle**



# Shaping – Leaky Bucket Algorithm



#### **Bucket Size**

· determines maximum capacity till overflow (drop) and possible delay

#### **Other Algorithms**

- Token Bucket Algorithm
- Token Bucket Algorithm with Leaky Bucket Rate Control

| A Graduate Course on Multimedia<br>Technology | © Wolfgang Effelsberg,<br>Ralf Steinmetz | 3. Quality of Service (QoS) | 3-29 |  |
|-----------------------------------------------|------------------------------------------|-----------------------------|------|--|
|                                               |                                          |                             |      |  |

## **Loss Handling**

### **Error Detection**

· by means of redundancy / checks / analysis

### Loss handling algorithms fall into two basic categories:

- Retransmission
  - Go-back-N retransmission
  - Selective retransmission
- Prevention
  - Forward Error Correction (FEC)
  - Priority Coding
  - Slack Automatic Repeat Request

## **Adaptation - Feedback Control**

Monitor the load of network and local end-system resources

If significant changes occur, take appropriate action to reduce generated load:

- · Explicit communication receiver tells sender to slow down
- · Completely within the network on a hop-by-hop basis
- By feedback from congested network nodes to the sender.



Variety of possible reactions

- e.g., layered transmission
- · adaptive degradation of the stream quality
- ...

| A Graduate Course on Multimedia<br>Technology | © Wolfgang Effelsberg,<br>Ralf Steinmetz | 3. Quality of Service (QoS) | 3-31 |  |
|-----------------------------------------------|------------------------------------------|-----------------------------|------|--|
|                                               |                                          |                             |      |  |

# 3.6 QoS Architectures

## **Examples (communication layer)**

#### Integrated Services in the Internet

- uses existing infrastructure, but deploys dedicated handling of flows (streams) in the transfer system
- Resource Reservation Protocol RSVP to support heterogenous needs

### Differentiated Services in the Internet

- Granularity based on the ToS (Type of Service) IP Header Field
- Define service classes, negotiate service level agreements and ensure dedicated treatment of flows that behave as described
- IPv6
  - · QoS support was an important design criterion from the beginning
  - · Dedicated header fields to allow classification / dedicated treatment of flows