# Simulation Software: Omnet++ GTNetS GlomoSim / QualNet

Holger Füßler

Simulation of Computer Networks

Holger Füßler Universität Mannheim Summer 2004

#### **Course overview**

1. Introduction

2. Building block: RNG

7. NS-2: Fixed networks

8. NS-2: Wireless networks

3. Building block: Generating random variates I and modeling examples

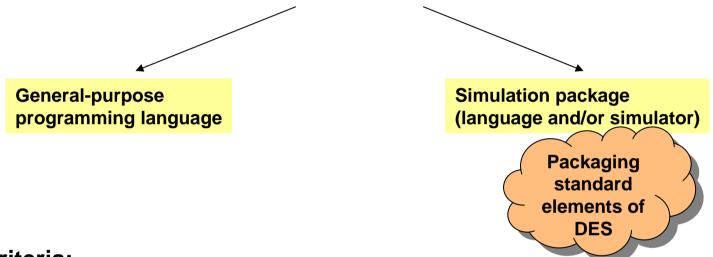
4. Building block: Generating random variates II and modeling examples 9. Output analysis

10. OPNET Modeler / CN "Praktikum"

5. Algorithmics: Management of events

**11. Other Network Simulators** 

6. NS-2: Introduction


12. Trends, Simulation lifecycle, summary

Simulation of Computer Networks

Holger Füßler - 2 Universität Mannheim Summer 2004

#### Simulation software and tools

- » ... where simulation meets software technology
  - How to build models and run simulations <u>conveniently</u>.



- » Criteria:
  - General capabilities (flexibility, available models, re-use, ...)
  - Hardware/software considerations
  - Graphical facilities
  - Statistical features
  - "Learning curve", documentation, support
  - Output reports and plots

#### **Choice of simulation software**

- So far we know ns-2 / OPNET / BirdySim <sup>(2)</sup> and some 'toy example' (simlib)
  - What do you like about ns-2?
  - What do you dislike?
- » Many more options:
  - CSIM: C-based simulation package (http://www.atl.external.lmco.com/proj/csim/)
  - JSIM: Java-based simulation package (http://chief.cs.uga.edu/~jam/jsim/)
  - OMNeT++
  - GTNetS
  - GloMoSim / QualNet
  - ...

Today:

» OMNeT++ / GTNetS / QualNet

#### Lecture overview: OMNeT++

- >> OMNeT++ overview
- » Concept
- > Architecture / Steps to follow
- » Simulator internals
- » Example
- » Existing modules
- » Differences with ns-2

- Open-source, generic simulation framework -- best suited for simulation of communication networks, multiprocessors and other complex distributed systems (further examples: queuing systems, hardware architectures, server farm, business processes, call centers)
- C++ based simulation kernel plus a set of libraries and tools (GUI and command-line)
- **»** Platform: Unix, Windows
- » Being developed at BUTE (Technical University of Budapest), CVS at Uni Karlsruhe
- » Contributions from worldwide
- » Active user community (mailing list has about 240 subscribers)

Separation of concerns:

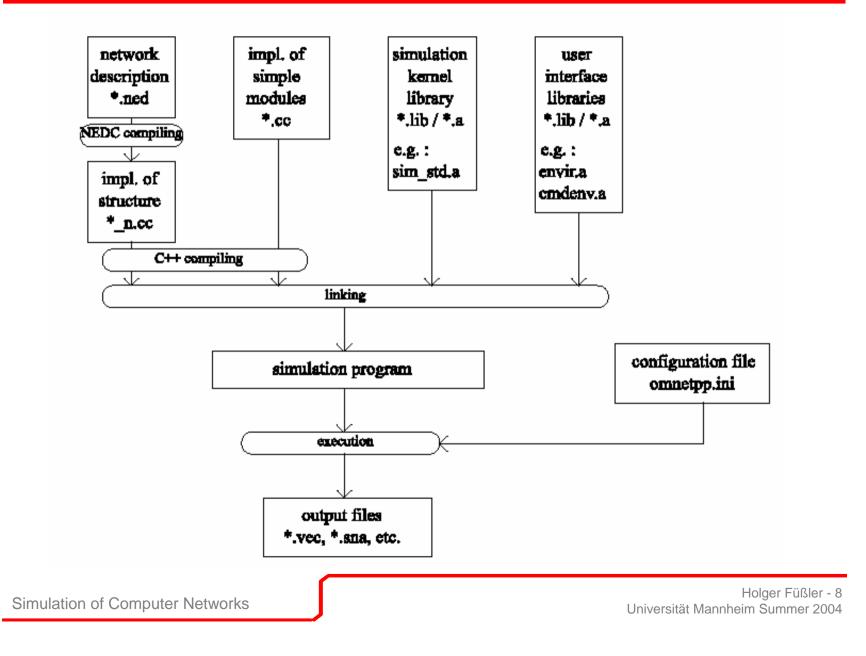
# simulation = sim. program + experiments

model parameters, batch vs. GUI execution, sequential vs parallel execution, analysis of results

## simulator + model

framework of generic services & tools

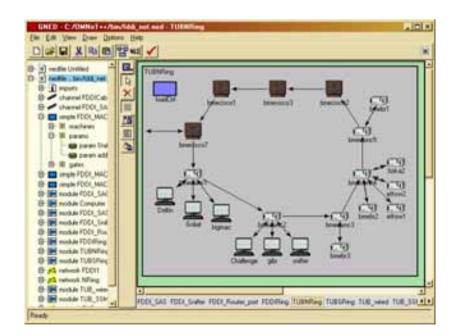
# 'topology' + behaviour


NED language, graphical editor

expressed in C++, using the simulation library

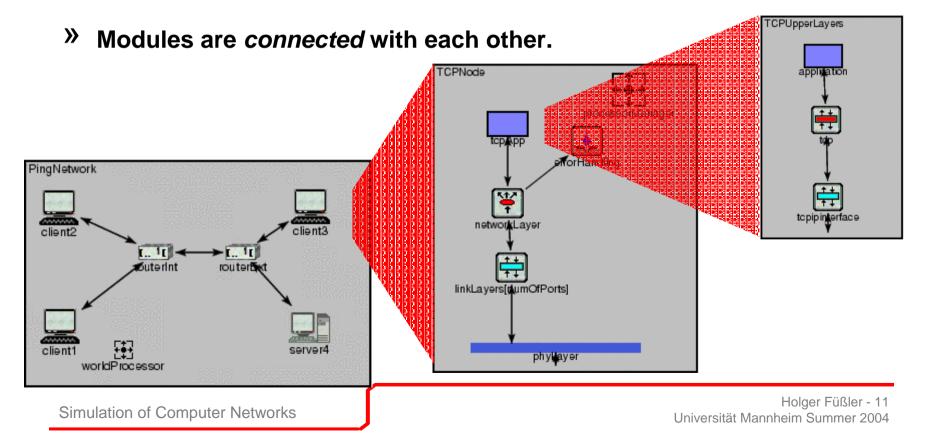
Simulation of Computer Networks

Holger Füßler - 7 Universität Mannheim Summer 2004


#### Architecture



- **1.** Map your system into a set of communicating modules
- **2.** Use NED (or GNED) to define the model's structure
- **3.** Using C++, describe the active components of the model as concurrent processes
- 4. Provide a suitable configuration file containing options of OMNeT++ and parameters to your model
- **5.** Build the simulation program and run it
- 6. Analyze results written into output vector files.


#### **Defining the topology**

- » NED Network Description Language
  - declares simple modules with their interfaces
  - defines compound modules (submodules, interconnection)
  - defines the network as instance of a module type
- » GNED -- Graphical Network Editor
  - works directly with NED files
  - two-way tool: you may edit in NED sources or graphical view – they are automatically kept consistent



Holger Füßler - 10 Universität Mannheim Summer 2004 **Component-oriented approach (Hierarchically nested modules):** 

- >> The basic building block is a simple module (programmed in C++).
- » Simple modules can be grouped to form compound modules.



#### **Defining the behaviour**

- >>> Behaviour is encapsulated in simple modules, C++.
- **»** A simple module:
  - sends messages, reacts to received messages
  - collects statistics
- **>>** Gates are the input and output interfaces for messages.
- Sonnections (links) are established between modules, characterized by:
  - Propagation delay
  - Bit error rate
  - Data rate

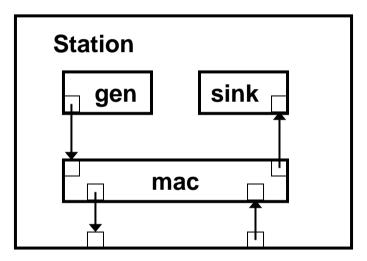
#### **Simulation library**

- Simulation class library covers commonly needed functionality, such as:
  - random number generation
  - queues and other containers
  - support for topology discovery and routing
  - recording simulation results (output vectors)
  - statistics collection and estimation (histograms, etc)

#### The GUI

| S MileT++/Tkenv - Bushet                                                                               |                                                  | 🖉 😌 🗙 (cOutVector)t.hostA.mac.class -members.bytesSent 💦 🔲 🛋 🗙                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>F</u> ile <u>E</u> dit <u>S</u> imulate <u>T</u> race <u>I</u> nspect <u>V</u>                      | iew <u>O</u> ptions <u>H</u> elp                 | cOutVector) BusNet.hostA.mac.class-members.bytesSent (ptr0x8280360)                                                                                                                                           |
|                                                                                                        | • 🚥 \land 🎿 🕂 🐼 🏤 🖬 🔍                            | 1230142                                                                                                                                                                                                       |
| Run #5: BusNet Event #429                                                                              | T=0.0902266843 ( 90ms) Next: BusNet.bus (id=     | 30                                                                                                                                                                                                            |
| Msgs scheduled: 12 Msgs                                                                                | created: 299 Msgs present: 42                    |                                                                                                                                                                                                               |
| Ev/sec: n/a Simsec/s                                                                                   |                                                  | 1192273-                                                                                                                                                                                                      |
|                                                                                                        |                                                  | 1154404                                                                                                                                                                                                       |
| P- P hostA (EtherHo     ** Event #4                                                                    |                                                  | 15.8317926 16.3106134 16.6777926                                                                                                                                                                              |
|                                                                                                        |                                                  | Last value: t=16.677783 (16.67s) value=1.23014e+06 Options                                                                                                                                                    |
| Encapsulation                                                                                          | g h:                                             |                                                                                                                                                                                                               |
| ⊞- m bus (Bus) (id=3 sent from Bus (Bus)                                                               |                                                  | ( X (EliceMAC) Bustlet lostB mas <2> )                                                                                                                                                                        |
| □ 🗄 scheduled-events transmitStat                                                                      |                                                  | X (BlueMAC) Bus Hit Lood Branes <2>                                                                                                                                                                           |
| Received fra                                                                                           |                                                  | ■ J H H @ Q                                                                                                                                                                                                   |
| ⊕ = etherirame=21- Packet (Ether     ⊕ upstream (cMes ng                                               | rFr: gen[1] 📮 sink[1] 👖                          | (EtherMAC) BusNethostB.mac (id=15) (ptr0x825d708)                                                                                                                                                             |
| 🗕 🗕 EndTransmissio 🔰 Filling in s                                                                      | 30                                               | 1f-message (cMessage)EndReception received                                                                                                                                                                    |
| - e generateNextPa t                                                                                   |                                                  | ame reception complete<br>ame 'etherframe-28-1663' not destined to us, discarding                                                                                                                             |
| <ul> <li>e generateNextP:</li> <li>transmitState</li> <li>generateNextP:</li> <li>numConcil</li> </ul> | e; I 🖬 🖬                                         | ansmitState: TX_IDLE_STATE, receiveState: RX_IDLE_STATE, backoffs: 0, num                                                                                                                                     |
| anersteNextPs ** Event #4                                                                              | 6.                                               | ncurrentTransmissions: 0, queueLength: 0<br>Event #120550, T=16,736358 (16,73s), Module #15 'BusNet.hostB.mac'                                                                                                |
| - e generateNextPa 0, numConci                                                                         |                                                  | ansmitState; TX_IDLE_STATE, receiveState; RX_IDLE_STATE, backoffs; 0, num<br>ncurrentTransmissions: 0, queueLength: 0                                                                                         |
| — ● generateNextPa Self-message                                                                        | (ct                                              | ceived frame from upper layer: (EtherFrame)etherframe-14-1683                                                                                                                                                 |
| — ● generateNextPε IFG elapsed,<br>1                                                                   | Fil                                              | cket (EtherFrame)etherframe-14-1689 arrived from higher layers, enqueueing<br>lling in source address                                                                                                         |
| └ ● generateNextPa                                                                                     | a TRANSMITTING STATE receiveState: PX IN E STATE | <pre>incoming carrier signals detected, frame clear to send, wait IFG first<br/>ansmitState: WAIT_IFG_STATE, receiveState: RX_IDLE_STATE, backoffs: 0, nu<br/>oncurrentTransmissions: 0, queueLength; 1</pre> |
|                                                                                                        |                                                  | 7                                                                                                                                                                                                             |

Simulation of Computer Networks


Holger Füßler - 14 Universität Mannheim Summer 2004

#### **Running under the GUI**

- > Run or single-step the simulation
- » Monitor state of simulation and execution speed
- » Examine model object tree
- >> Explore modules and see message flow
- » Examine scheduled events
- » Trace what one module is doing
- » Step to next event in a module
- » Look at state variables and statistics
- » Find out pointer values for C++ debugging (gdb)
- » Look at results being recorded

#### Simple example

#### » Station:



Submodels can be connected to each other or to parent module

simple MAC

parameters: address;

gates:

in: from\_higher\_layer, from\_network;

out: to\_higher\_layer, to\_network;

endsimple

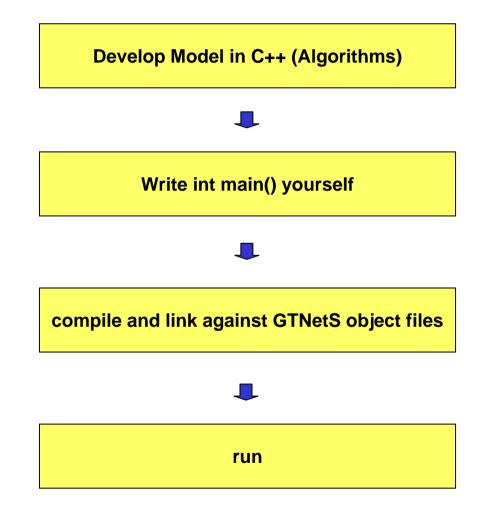
```
module Station
  parameters: mac address;
gates:
   in: in; out: out;
submodules:
  mac: MAC
       parameters:
       address=mac address;
  gen: Generator;
  sink: Sink;
connections:
  mac.to network --> out,
  mac.from network <-- in,</pre>
  mac.to_higher_layer --> sink.in,
  mac.from higher layer <-- gen.out;</pre>
endmodule
```

#### **Existing modules**

- **>>** Simulation Models TCP/IP networks:
  - IPSuite
  - IPv6Suite
- >> LAN/MAN protocols:
  - Ethernet
  - FDDI
  - Token Ring
- **»** Wireless LAN protocols:
  - 802.11
  - Hiperlan/2
- **»** Mobility and ad-hoc frameworks:
  - Mobility Framework
  - An AODV framework

### **OMNeT++** vs **NS-2** (seen from **OMNeT**'s perspective)

|                      | OMNeT++                                                 | NS-2                            |
|----------------------|---------------------------------------------------------|---------------------------------|
| Flexibility          | Generic simulation framework                            | Good for IP networks            |
| Topology Description | NED or GUI                                              | ОТсі                            |
| Model Management     | Models independent of simulation kernel                 | Monolithic                      |
| Hierarchical Models  | Hierarchical module structure                           | "Flat" models                   |
| Debugging            | Tkenv                                                   | None                            |
| Models Available     | Few computer systems                                    | Rich in communication protocols |
| Scalability          | Limit is the virtual memory of computer                 | Some problems in large networks |
| Parallel Simulation  | PDES: Parallel Discrete Event<br>Simulation             | Developed in Georgia Tech       |
| Embeddability        | Simulation kernel can be embedded in other applications | None                            |


#### References

- >> Home page: www.omnetpp.org
  - Downloadable
  - Tutorials (M/M/1 queue!)
  - Manual
  - Mailing List
  - Models
  - ...
- » Commercial version also exists: www.omnest.com

#### **GTNetS – The Georgia Tech Network Simulator**

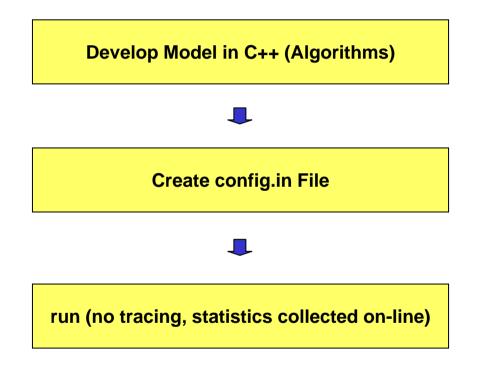
- » complete new design (pure C++)
- » main design goals: scalability, performance
- Download: http://www.ece.gatech.edu/research/labs/MANIACS/gtnets.htm
- » a lot of protocols as network primitives (802.3/11 / IP / TCP)
- » primitives for statistics generation / tracing
- » natural support for distributed execution
- » Mobility: RWP / specified waypoint
- » Radio Channel Modelling: ?

#### **The GTNetS Process**

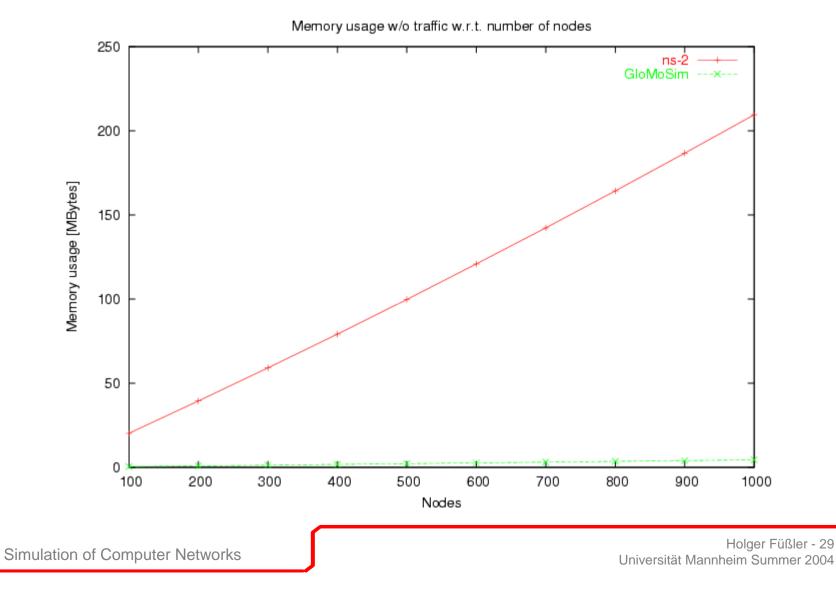


Simulation of Computer Networks

- » pure C++
  - IMHO very nice
  - BUT: have to provide Functions for reading scenarios etc.
- » potentially a lot faster than ns-2
- >> BUT: lots of people still focus on ns-2 → newer protocols available, more used means usually mor debugged


Download:

http://www.ece.gatech.edu/research/labs/MANIACS/gtnets.htm


» Riley, George F. : "The Georgia Tech Network Simulator", p. 5-12, In Proc. of SIGCOMM 2003, Karlsruhe, Germany

- » C++ / ParSec (language for description of parallel processes)
- ParSec has to be installed separately (bad license for commercial use)
- » QualNet is commercial spin-off, GlomoSim free but no longer maintained

#### **The GlomoSim / QualNet Process**



- **»** Strengths:
  - Ad-Hoc Networking (routing etc.)
  - Radio Channel Modeling (Directional Antennas)
  - a lot of nodes possible
- **Weaknesses:** 
  - needs PARSEC
  - licensing, sourcing (QualNet) / up-to-dateness (GlomoSim)
  - tracing (for debugging)



- SlomoSim: <u>http://pcl.cs.ucla.edu/projects/glomosim/</u>
- >> QualNet: <u>http://www.scalable-networks.com</u>

#### Wrap-Up – Which Simulator should I use?

- **»** Criteria re-visited:
  - General capabilities (flexibility, available models, re-use, ...)
    - which specific problem / class of problems do I want to tackle?
    - which orders of magnitude for simulation size?
  - Hardware/software considerations
    - which OS is available / needed?
    - which compilers etc.?
  - Graphical facilities
    - educational / scientific purpose?
  - Statistical features
    - tracing vs. inline statistics
  - "Learning curve", documentation, support
    - how many languages do I have to learn?
  - Output reports and plots
  - What do the others in my community use?