
Simulation of Computer Networks Holger Füßler
Universität Mannheim Summer 2004

Generating Random Variates II
and Examples

Holger Füßler

Holger Füßler 2
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Side note: TexPoint

» TexPoint is a Powerpoint add-in that enables the easy use of Latex
symbols and formulas in Powerpoint presentations.

» There are two main modes of operation: inline and display.

» In inline mode you can use Latex symbol-macro invocations such as
"\alpha^2 \times \beta_0" on your Powepoint slides.

» In the display mode you can write any Latex source and Latex is run
to produce a bitmap that is then inserted on the slide. The bitmap
remembers its Latex source so you can modify it later.

» http://raw.cs.berkeley.edu/texpoint/index.html

Holger Füßler 3
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Course overview

1. Introduction

2. Building block: RNG

3. Building block:
Generating random variates I

and modeling examples

4. Building block:
Generating random variates II

and modeling examples

5. Algorithmics:
Management of events

6. NS-2: Introduction

7. NS-2: Fixed networks

8. NS-2: Wireless networks

9. Output analysis: single system

10. Output analysis: comparing
different configuration

11. Omnet++ / OPNET

12. Simulation lifecycle, summary

Holger Füßler 4
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Generation of normal variates

Given X ~ N(0,1) we can obtain X’ ~ N(µ, σ2) by setting X’ = µ + σ X (see next
slide).

Thus, we focus on N(0,1).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-4 -2 0 2 4 6 8

N(0,1)

N(2,9)

Recommendation:
Play with Gnuplot!

Density:

Holger Füßler 5
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Applications

» Citing Law/Kelton:

“Errors of various types, e.g., in the impact point of a bomb;

quantities that are the sum of large number of other quantities

(by virtue of central limit theorem).”

» Central limit theorem: let X1, X2, … be IID random variables with
mean µ and variance σ2 < ∞:

Holger Füßler 6
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Recap: general process of generating random variates

» Formal algorithm - depends on desired distribution.

» But all algorithms have the same general form:
– Generate one or more IID U(0, 1) random numbers
– Transformation (depends on desired distribution)
– Return X ~ desired distribution

Holger Füßler 7
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Code example (NS-2)

tools/rng.cc:

» Generate
random
numbers U1 and
U2

» Set
– V1 = 2 U1 -1
– V2 = 2 U2 -1
– R2 = V1

2 + V2
2

» If R2 > 1 return
to step 1

» Return indep.
normals

double
RNG::normal(double avg, double std)
{

static int parity = 0;
static double nextresult;
double sam1, sam2, rad;

if (std == 0) return avg;
if (parity == 0) {

sam1 = 2*uniform() - 1;
sam2 = 2*uniform() - 1;
while ((rad = sam1*sam1 + sam2*sam2) >= 1) {

sam1 = 2*uniform() - 1;
sam2 = 2*uniform() - 1;

}
rad = sqrt((-2*log(rad))/rad);
nextresult = sam2 * rad;
parity = 1;
return (sam1 * rad * std + avg);

}
else {

parity = 0;
return (nextresult * std + avg);

}
}

rad==0?

Holger Füßler 8
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Acceptance-rejection method: introduction

» How to generate a uniform distribution for a (bounded) irregular shape?

Holger Füßler 9
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Acceptance-rejection method: introduction

Start of algorithm:
– Generate random numbers U1 and U2
– Set

• V1 = 2 U1 -1
• V2 = 2 U2 -1
• R2 = V1

2 + V2
2

– If R2 > 1 return to step 1

1. Select a point in the ‘bounding box’ by sampling from a uniform distribution.

2. Check, if the point is in the shaded area:
1. If not, go to step 1.
2. If yes, select it as output value.

Generates uniform distribution on shaded area.

Holger Füßler 10
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Acceptance-rejection method:

» Do same thing as before, but take projection to x-axis as output value.

Holger Füßler 11
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Acceptance-rejection method: general algorithm

Goal: generate random variate

X with density function f(x).

Specify function t(x) such that t(x) ≥ f(x)

for all x such that ∫ t(x) = c < ∞.

Define r(x) = t(x)/c; it’s a density.

1. Generate variate Y with density r(x).

2. Generate U~U(0,1) independent of Y.

3. If U · f(Y)/t(Y), return X=Y and stop;

else go back to step 1.

f(x)

t(x)

Example:

0 1

f(x)/t(x)

t(x)

0 1
Y

U

Holger Füßler 12
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Acceptance-rejection method: improvement

Holger Füßler 13
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Wrap-up, summary

» U(0,1) → transform → desired distribution

» Normal variates frequently used to model ‘errors’ or variation of
quantity
– Example: Log-normal shadowing in wireless communications

» Acceptance-rejection method
– Less ‘direct’ than inverse transform method
– Can be used when distribution function does not have closed form

expression
– Is used in polar method to generate uniform distribution on unit disc

» We know have all major stochastic building blocks for our
simulations

Holger Füßler 14
Universität Mannheim, Summer 2004 Simulation of Computer Networks

So far … stochastic building blocks and models

Random Number Generators: continuous and discrete uniform variates

Inverse Transform Method:
Exponential, discrete

distributions

Specialized transforms:
Normal variates

Acceptance-Rejection:
Uniform on irregular

Regions, Gamma, Beta

Data traffic:
-CBR with jitter
- Exponential

On/Off sources

Data traffic:
-CBR with jitter
- Exponential

On/Off sources
Network topology,
topography:
-Random graphs
-Node mobility
-Radio propagation

Network topology,
topography:
-Random graphs
-Node mobility
-Radio propagation

Randomness as
element of
communication
protocols (MAC)

Randomness as
element of
communication
protocols (MAC)

Holger Füßler 15
Universität Mannheim, Summer 2004 Simulation of Computer Networks

References

» Box-Muller and polar method:
– Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.,

Numerical Recipes in C, 2nd edition, Cambridge University Press, 1992:
chapter 7.

– Knuth, D.E., The Art of Computer Programming, vol. 2, 3rd edition,
Addison Wesley, 1998: chapter 3.

– Ross, S. M.: Simulation, 2nd edition, Academic Press, 1997.

» Radio propagation models:
– NS-2 Manual, Dec. 13, 2003, Chapter 18 ‘Radio Propagation Models’
– Rappaport, T. S., Wireless Communications – Principles and Practice,

2nd. ed., Prentice Hall, 2002; Chapter 4.

» Acceptance-rejection method:
– Averill M. Law, W. David Kelton: “Simulation Modeling and Analysis”,

McGraw-Hill, 3rd edition, 2000.

Simulation of Computer Networks Holger Füßler
Universität Mannheim Summer 2004

Event Scheduling

Holger Füßler

Holger Füßler 17
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Course overview

1. Introduction

2. Building block:
Random number generation

3. Building block:
Generating random variates I

and modeling examples

4. Building block:
Generating random variates II

and modeling examples

5. Algorithmics:
Event scheduling, management of events

6. NS-2: Introduction

7. NS-2: Fixed networks

8. NS-2: Wireless networks

9. Output analysis: single system

10. Output analysis: comparing
different configuration

11. Omnet++ / OPNET

12. Simulation lifecycle, summary

Holger Füßler 18
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Recap: event scheduling w.r.t. M/M/1 queue

» Event: a state transition

» Event: depends on system logic and stochastic modeling

Router
[Server]

Queue Departing packetArriving packet

» Queuing systems as delay models

» Arrival process: ‘M’ for ‘memoryless’ (thus, exponentially distributed inter-arrival times)

» Service process: ‘M’ for ‘memoryless’ (thus, exponentially distributed service times)

» Number of queuing stations: 1

β=1.0 s for inter-arrival times

β=0.5 s for service times

Holger Füßler 19
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Recap: execute model

Initialization
Time = 0

System Computer representation

0 0 0

0 0 0 0

0 A: 0.4
D: ∞

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)

Holger Füßler 20
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Recap: execute model

Initialization
Time = 0.4

System Computer representation

1 0 0.4

1 0 0 0

0.4 A: 1.6
D: 2.4

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)

0.4

Holger Füßler 21
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Recap: execute model

Initialization
Time = 1.6

System Computer representation

1 1
1.6

1.6

1 0 0 1.2

1.6 A: 2.1
D: 2.4

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)

0.4

1.6

Holger Füßler 22
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Recap: execute model

Initialization
Time = 2.1

System Computer representation

1 2
1.6
2.1 2.1

1 0 0.5 1.7

2.1 A: 3.8
D: 2.4

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)

0.4

1.6

2.1

Holger Füßler 23
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Recap: execute model

Initialization
Time = 2.4

System Computer representation

1 1 2.1 2.4

2 0.8 1.1 2.0

2.4 A: 3.8
D: 3.1

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)

1.6

2.1

Holger Füßler 24
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Recap: execute model

Initialization
Time = 3.1

System Computer representation

1 0 3.1

3 1.8 1.8 2.7

3.1 A: 3.8
D: 3.3

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)

2.1

… see [LK2000] for continuation of this example

Holger Füßler 25
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Scalability challenge

» Example: wireless
communication

» For every packet send by a
sender, all nodes (at least the
ones within transmission
range) have to schedule a
‘receive event’.

» Thus, we have at least O(N2)
events where N denotes the
number of nodes
(sender/receiver).

» This lecture: focus on
sequential processing of events

Holger Füßler 26
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Structure

» Part I: Management of discrete events: problem statement

» Part II: Linear lists

» Part III: Heaps

» Part IV: Splay trees

» Part V: Calendar queue

» Part VI: Scheduling in NS-2

Holger Füßler 27
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Discrete event simulation: flow diagram
Start

0. Invoke initialization routine
1. Invoke timing routine
2. Invoke event routing i

1. Set clock=0
2. Init state/counters
3. Init event list

1. Update system state
2. Update counters
3. Generate future events

and add to event list

Generate random
variates

Is
simulation

over?

1. Determine next
event type i

2. Advance clock

Compute, report estimates

Stop

0 1

2

No

Yes

Holger Füßler 28
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Example M/M/1 queue: event type arrival

Arrival event

Schedule the next
arrival event

Is the
server
busy?

Return

Add 1 to the
number in queue

Is the queue
full?

Store time of arrival
for this packet

Set delay=0 for
this packet and
gather statistics

Add 1 to the
number of packet

processed

Make the router
busy

Schedule a
departure event
for this packet

Er
ro

r

yes no

Holger Füßler 29
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Example M/M/1 queue: event type departure

Departure
event

Is the
queue

empty?

Return

Make the router
idle

Eliminate departure
event from

consideration

Substract 1 from
the number in

queue

Compute delay of
packet entering

service

Add 1 to the number
of packets

Schedule a
departure event
for this packet

yes no

Holger Füßler 30
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Event management: operations

» Enqueue event

» Dequeue ‘next’ event

» Usually: # enqueued events = # dequeued events

» But: distribution of event types and times can differ drastically

» Example:
– Enqueue, enqueue, dequeue, enqueue, dequeue, enqueue, dequeue, …
– Enqueue, enqueue, enqueue, … dequeue, dequeue, dequeue, …

» Required: efficient data structure for event management.

» Priority queues

Holger Füßler 31
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Sorted doubly-linked linear list

» Dequeue next event: take first element
– Costs: O(1)

» Enqueue event according to priority
– Costs: O(N) where N is the number of events in the list

» Knowledge on interval between events can be used to improve
insertion process.

1 3 4 9 10 12

Highest priority Lowest priority

Null

Tail

Head

Null

Holger Füßler 32
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Heaps

» Standard priority queue

» A binary tree has ‘heap property’ if
– it is empty or
– any node has a higher priority than its children

» Can be easily stored in an array
– Root: A[1]
– Children of A[i] are given by A[2i] (left) and A[2i+1] (right)

» Dequeue:
– Remove root
– Put element of current right bound of array to root
– Restore heap property
– Costs: O(log(N))

» Enqueue:
– Put new element on current right bound of array
– Restore heap property
– Costs: O(log(N))

Holger Füßler 33
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Heaps: en-/dequeue

[Source:http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS210/heaps.html]

Dequeue

Enqueue

1

2

3

4

Holger Füßler 34
Universität Mannheim, Summer 2004 Simulation of Computer Networks

IV Splay trees

» Splay trees are binary search trees

» Binary search tree: for each node i
– All nodes in left subtree of node i have smaller priority
– All nodes in right subtree of node i have higher priority

» Costs for enqueue, dequeue in a sufficiently balanced binary search
tree: O(log(N)) where N denotes the number of nodes

» Splay trees: use heuristics to reorg the tree during an en-/dequeue
operation. The reorg pays off in subsequent operations.

» Implementation available in NS-2

Holger Füßler 35
Universität Mannheim, Summer 2004 Simulation of Computer Networks

IV Splaying operations (examples)

Holger Füßler 36
Universität Mannheim, Summer 2004 Simulation of Computer Networks

IV Results (Jones, 1986)

Holger Füßler 37
Universität Mannheim, Summer 2004 Simulation of Computer Networks

V Calendar queue: basic idea

Holger Füßler 38
Universität Mannheim, Summer 2004 Simulation of Computer Networks

V Calendar queue: static case I

Year

Day

0 2 4 6 8 10

‘now’

4.3

5.1

6.7 9.5

Li
st

s
pe

r d
ay

Holger Füßler 39
Universität Mannheim, Summer 2004 Simulation of Computer Networks

V Calendar queue: static case II

0 2 4 6 8 10

‘now’

11.2 4.3

5.1

14.9

6.7 9.5

Li
st

s
pe

r d
ay

Wrap around

Holger Füßler 40
Universität Mannheim, Summer 2004 Simulation of Computer Networks

V Calendar queue: static case III

Operations:

» Get next event (dequeue):
– a) go to next event of current day or go to next day
– b) if a) fails for a whole year, use direct search

Example:
– 500 events between [0,0.1]
– 500 events between [5.6,5.7]
– Length of day: 0.0002
– Length of year: 0.1024 (512 days)
– Strategy a) needs to cycle through the calendar for 54 year to find the

first event of [5.6,5.7]

» Insert key (enqueue):
– Find right day/bucket: key % ndays
– Insert key into ordered list

Holger Füßler 41
Universität Mannheim, Summer 2004 Simulation of Computer Networks

V Problems with static case

» Many keys per day: enqueue operation gets expensive
– Go through list of length O(N) where N denotes the number of events

» Only a few keys within many days: dequeue operation gets
expensive
– Go through empty days of length O(B) where B denotes the number of

buckets

» Analysis of problem complexity is not trivial:
– See ‘Optimizing static calendar queues’, K. B. Erickson, R. E. Ladner, A.

Lamarca, ACM Tomacs, vol. 10, no. 3, July 2000, pp. 179-214.

Holger Füßler 42
Universität Mannheim, Summer 2004 Simulation of Computer Networks

V Calendar queue: dynamic case

Idea: Adjust length of year and days according to current key set.

» Number of days (buckets):
– Whenever the number of keys exceeds twice the number of days, copy

calendar to a larger calendar (typically: double size).
– Whenever the number of keys is less than half the number of days, copy

to a smaller calendar (typically: half size).

» Length of day:
– Dequeue samples from calendar (typically 25)
– Calculate average separation of dequeued events
– Set new length of day to average separation (usually multiplied with

some factor)
– Enqueue samples

Holger Füßler 43
Universität Mannheim, Summer 2004 Simulation of Computer Networks

V Evaluation of calendar queues I

» Assume exponential
distribution:
– Mean 1
– Next priority:

last priority – ln(rng())

» Hold operation: dequeue
followed by enqueue

[Source: Original paper by Brown, 1988]

Holger Füßler 44
Universität Mannheim, Summer 2004 Simulation of Computer Networks

VI Scheduling in NS-2

» Choices are: list, heap, splay tree, calendar queue, real-time
– Real-time: tries to synchronize with real-time clock; experimental

» Calendar queue is default

» How to deal with events at same time?
– If more than one event are scheduled to execute at the same time,

their execution is performed on the first scheduled – first dispatched
manner.

– Simultaneous events are not reordered anymore by schedulers (as it
was in earlier versions) and all schedulers should yield the same
order of dispatching given the same input.

» Accuracy: see next slide

Holger Füßler 45
Universität Mannheim, Summer 2004 Simulation of Computer Networks

VI Precision of the scheduler clock in NS-2

» Precision of the scheduler clock: smallest time-scale of the
simulator that can be correctly represented.

» The clock variable for ns is represented by a double. As per the IEEE
std for floating numbers, a double, consisting of 64 bits must
allocate the following bits between its sign, exponent and mantissa
fields.

» sign exponent n mantissa X

1 bit 11 bits 52 bits

» Any floating number can be represented in the form X · 2n where X is
the mantissa and n is the exponent.

» Thus the precision of time in ns can be defined as 1/(252).

» As simulation runs for longer times the number of remaining bits to
represent the time educes thus reducing the accuracy. Given 52 bits
we can safely say time up to around 240 can be represented with
considerable accuracy.

Holger Füßler 46
Universität Mannheim, Summer 2004 Simulation of Computer Networks

VI Precision of NS-2

» 240 ≈ 1012

» Thus, for a simulated time of 1000 seconds we still have nanosecond
accuracy (10-9).

Holger Füßler 47
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Wrap-up

» Event management requires efficient priority queues: schedule an
event, dequeue next event.

» Linear lists, heaps, splay trees, calendar queues

» Efficiency depends on ‘priority increment distribution’

» Calendar queue in general ‘safe guess’

» But: one should check its own priority increment distribution to see
whether improvements are feasible

» Precision: with a 64-bit double, there is still a nanosecond accuracy
for a simulated time of 1000 seconds.

» Open: is there a paper available with a performance evaluation of
priority queues on current Pentium machines?

Holger Füßler 48
Universität Mannheim, Summer 2004 Simulation of Computer Networks

References

» William M. McCormack, Robert G. Sagent, Analysis of future event
set algorithms for discrete event simulation, Communications of the
ACM, vol. 24, no. 12, December 1981, pp. 801-812

» Douglas W. Jones, An empirical comparison of priority-queue and
event-set implementations, Communications of the ACM, vol. 29, no.
4, April 1986, pp. 300-311

» Randy Brown, Calendar queues: a fast O(1) priority queue
implementation for the simulation event set problem,
Communications of the ACM, vol. 31, no. 10, October 1988, pp. 1220-
1227

» Daniel D. Sleator, Robert E. Tarjan, Self-adjusting binary search
trees, Journal of the ACM, vol. 32, no. 3, July 1985m pp. 652-686

» NS manual, Dec. 13, 2003.

