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Side note: TexPoint

» TexPoint is a Powerpoint add-in that enables the easy use of Latex 
symbols and formulas in Powerpoint presentations. 

» There are two main modes of operation: inline and display.

» In inline mode you can use Latex symbol-macro invocations such as 
"\alpha^2 \times \beta_0" on your Powepoint slides. 

» In the display mode you can write any Latex source and Latex is run 
to produce a bitmap that is then inserted on the slide. The bitmap 
remembers its Latex source so you can modify it later.

» http://raw.cs.berkeley.edu/texpoint/index.html
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Course overview

1. Introduction

2. Building block: RNG

3. Building block:
Generating random variates I

and modeling examples

4. Building block:
Generating random variates II

and modeling examples

5. Algorithmics:
Management of events

6. NS-2: Introduction

7. NS-2: Fixed networks

8. NS-2: Wireless networks

9. Output analysis: single system

10. Output analysis: comparing 
different configuration

11. Omnet++ / OPNET

12. Simulation lifecycle, summary
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I Generation of normal variates

Given X ~ N(0,1) we can obtain X’ ~ N(µ, σ2) by setting X’ = µ + σ X (see next 
slide).

Thus, we focus on N(0,1).
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I Applications 

» Citing Law/Kelton:

“Errors of various types, e.g., in the impact point of a bomb;

quantities that are the sum of large number of other quantities

(by virtue of central limit theorem).”

» Central limit theorem: let X1, X2, … be IID random variables with 
mean µ and variance σ2 < ∞:
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I Recap: general process of generating random variates

» Formal algorithm - depends on desired distribution.

» But all algorithms have the same general form: 
– Generate one or more IID U(0, 1) random numbers 
– Transformation (depends on desired distribution)
– Return X ~ desired distribution 
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I Code example (NS-2)

tools/rng.cc:

» Generate 
random 
numbers U1 and 
U2

» Set 
– V1 = 2 U1 -1
– V2 = 2 U2 -1
– R2 = V1

2 + V2
2

» If R2 > 1 return 
to step 1

» Return indep. 
normals

double
RNG::normal(double avg, double std)
{

static int parity = 0;
static double nextresult;
double sam1, sam2, rad;

if (std == 0) return avg;
if (parity == 0) {

sam1 = 2*uniform() - 1;
sam2 = 2*uniform() - 1;
while ((rad = sam1*sam1 + sam2*sam2) >= 1) {

sam1 = 2*uniform() - 1;
sam2 = 2*uniform() - 1;

}
rad = sqrt((-2*log(rad))/rad);
nextresult = sam2 * rad;
parity = 1;
return (sam1 * rad * std + avg);

}
else {

parity = 0;
return (nextresult * std + avg);

}
}

rad==0?
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III Acceptance-rejection method: introduction

» How to generate a uniform distribution for a (bounded) irregular shape?
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III Acceptance-rejection method: introduction

Start of algorithm:
– Generate random numbers U1 and U2
– Set 

• V1 = 2 U1 -1
• V2 = 2 U2 -1
• R2 = V1

2 + V2
2

– If R2 > 1 return to step 1

1. Select a point in the ‘bounding box’ by sampling from a uniform distribution.

2. Check, if the point is in the shaded area:
1. If not, go to step 1.
2. If yes, select it as output value.

Generates uniform distribution on shaded area.
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III Acceptance-rejection method: 

» Do same thing as before, but take projection to x-axis as output value.
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III Acceptance-rejection method: general algorithm

Goal: generate random variate

X with density function f(x).

Specify function t(x) such that t(x) ≥ f(x) 

for all x such that ∫ t(x) = c < ∞.

Define r(x) = t(x)/c; it’s a density.

1. Generate variate Y with density r(x).

2. Generate U~U(0,1) independent of Y.

3. If U · f(Y)/t(Y), return X=Y and stop; 

else go back to step 1.

f(x)

t(x)

Example:

0 1

f(x)/t(x)

t(x)

0 1
Y

U
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III Acceptance-rejection method: improvement
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Wrap-up, summary

» U(0,1) → transform → desired distribution

» Normal variates frequently used to model ‘errors’ or variation of 
quantity
– Example: Log-normal shadowing in wireless communications

» Acceptance-rejection method
– Less ‘direct’ than inverse transform method
– Can be used when distribution function does not have closed form

expression
– Is used in polar method to generate uniform distribution on unit disc

» We know have all major stochastic building blocks for our 
simulations
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So far … stochastic building blocks and models

Random Number Generators: continuous and discrete uniform variates

Inverse Transform Method:
Exponential, discrete

distributions 

Specialized transforms:
Normal variates

Acceptance-Rejection:
Uniform on irregular

Regions, Gamma, Beta

Data traffic:
-CBR with jitter
- Exponential 

On/Off sources

Data traffic:
-CBR with jitter
- Exponential 

On/Off sources
Network topology, 
topography:
-Random graphs
-Node mobility
-Radio propagation 

Network topology, 
topography:
-Random graphs
-Node mobility
-Radio propagation 

Randomness as 
element of 
communication 
protocols (MAC)

Randomness as 
element of 
communication 
protocols (MAC)
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Course overview

1. Introduction

2. Building block: 
Random number generation

3. Building block:
Generating random variates I

and modeling examples

4. Building block:
Generating random variates II

and modeling examples

5. Algorithmics:
Event scheduling, management of events

6. NS-2: Introduction

7. NS-2: Fixed networks

8. NS-2: Wireless networks

9. Output analysis: single system

10. Output analysis: comparing 
different configuration

11. Omnet++ / OPNET

12. Simulation lifecycle, summary
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Recap: event scheduling w.r.t. M/M/1 queue

» Event: a state transition

» Event: depends on system logic and stochastic modeling

Router
[Server]

Queue Departing packetArriving packet

» Queuing systems as delay models

» Arrival process: ‘M’ for ‘memoryless’ (thus, exponentially distributed inter-arrival times)

» Service process: ‘M’ for ‘memoryless’ (thus, exponentially distributed service times)

» Number of queuing stations: 1

β=1.0 s for inter-arrival times

β=0.5 s for service times
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Recap: execute model

Initialization
Time = 0

System Computer representation

0 0 0

0 0 0 0

0 A: 0.4
D: ∞

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of 

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)
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Recap: execute model

Initialization
Time = 0.4

System Computer representation

1 0 0.4

1 0 0 0

0.4 A: 1.6
D: 2.4

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of 

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)

0.4
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Recap: execute model

Initialization
Time = 1.6

System Computer representation

1 1
1.6

1.6

1 0 0 1.2

1.6 A: 2.1
D: 2.4

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of 

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)

0.4

1.6
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Recap: execute model

Initialization
Time = 2.1

System Computer representation

1 2
1.6
2.1 2.1

1 0 0.5 1.7

2.1 A: 3.8
D: 2.4

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of 

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)

0.4

1.6

2.1
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Recap: execute model

Initialization
Time = 2.4

System Computer representation

1 1 2.1 2.4

2 0.8 1.1 2.0

2.4 A: 3.8
D: 3.1

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of 

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)

1.6

2.1
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Recap: execute model

Initialization
Time = 3.1

System Computer representation

1 0 3.1

3 1.8 1.8 2.7

3.1 A: 3.8
D: 3.3

System state Event management

Statistical counters

Clock Event list

Server
status

Number
in

queue

Times
of 

arrival

Time
of last
event

Number Total
delay

Area
under Q(t)

Area
Under B(t)

2.1

… see [LK2000] for continuation of this example
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Scalability challenge

» Example: wireless 
communication

» For every packet send by a 
sender, all nodes (at least the 
ones within transmission 
range) have to schedule a 
‘receive event’.

» Thus, we have at least O(N2) 
events where N denotes the 
number of nodes 
(sender/receiver).

» This lecture: focus on 
sequential processing of events
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Structure

» Part I: Management of discrete events: problem statement

» Part II: Linear lists

» Part III: Heaps

» Part IV: Splay trees

» Part V: Calendar queue

» Part VI: Scheduling in NS-2
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I Discrete event simulation: flow diagram
Start

0. Invoke initialization routine
1. Invoke timing routine
2. Invoke event routing i

1. Set clock=0
2. Init state/counters
3. Init event list

1. Update system state
2. Update counters
3. Generate future events 

and add to event list

Generate random 
variates

Is
simulation

over?

1. Determine next 
event type i

2. Advance clock

Compute, report estimates 

Stop

0 1

2

No

Yes
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I Example M/M/1 queue: event type arrival

Arrival event

Schedule the next
arrival event

Is the
server
busy?

Return

Add 1 to the
number in queue

Is the queue
full?

Store time of arrival
for this packet

Set delay=0 for
this packet and
gather statistics

Add 1 to the
number of packet

processed

Make the router
busy 

Schedule a
departure event
for this packet

Er
ro

r

yes no
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I Example M/M/1 queue: event type departure

Departure 
event

Is the
queue

empty?

Return

Make the router
idle

Eliminate departure
event from

consideration 

Substract 1 from
the number in 

queue 

Compute delay of
packet entering

service

Add 1 to the number
of packets

Schedule a
departure event
for this packet

yes no
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I Event management: operations

» Enqueue event

» Dequeue ‘next’ event

» Usually: # enqueued events = # dequeued events

» But: distribution of event types and times can differ drastically

» Example:
– Enqueue, enqueue, dequeue, enqueue, dequeue, enqueue, dequeue, …
– Enqueue, enqueue, enqueue, … dequeue, dequeue, dequeue, …

» Required: efficient data structure for event management.

» Priority queues
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II Sorted doubly-linked linear list

» Dequeue next event: take first element
– Costs: O(1)

» Enqueue event according to priority
– Costs: O(N) where N is the number of events in the list

» Knowledge on interval between events can be used to improve 
insertion process.

1 3 4 9 10 12

Highest priority Lowest priority

Null

Tail

Head

Null
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III Heaps

» Standard priority queue

» A binary tree has ‘heap property’ if 
– it is empty or
– any node has a higher priority than its children

» Can be easily stored in an array
– Root: A[1]
– Children of A[i] are given by A[2i] (left) and A[2i+1] (right)

» Dequeue:
– Remove root
– Put element of current right bound of array to root
– Restore heap property 
– Costs: O(log(N))

» Enqueue:
– Put new element on current right bound of array
– Restore heap property 
– Costs: O(log(N))
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III Heaps: en-/dequeue

[Source:http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS210/heaps.html]

Dequeue

Enqueue

1

2

3

4
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IV Splay trees

» Splay trees are binary search trees

» Binary search tree: for each node i
– All nodes in left subtree of node i have smaller priority
– All nodes in right subtree of node i have higher priority

» Costs for enqueue, dequeue in a sufficiently balanced binary search 
tree: O(log(N)) where N denotes the number of nodes

» Splay trees: use heuristics to reorg the tree during an en-/dequeue
operation. The reorg pays off in subsequent operations.

» Implementation available in NS-2
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IV Splaying operations (examples)
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IV Results (Jones, 1986)
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V Calendar queue: basic idea



Holger Füßler 38
Universität Mannheim, Summer 2004 Simulation of Computer Networks

V Calendar queue: static case I 

Year

Day

0 2 4 6 8 10

‘now’

4.3

5.1

6.7 9.5

Li
st

s 
pe

r d
ay
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V Calendar queue: static case II 

0 2 4 6 8 10

‘now’

11.2 4.3

5.1

14.9

6.7 9.5

Li
st

s 
pe

r d
ay

Wrap around
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V Calendar queue: static case III

Operations:

» Get next event (dequeue): 
– a) go to next event of current day or go to next day
– b) if a) fails for a whole year, use direct search

Example: 
– 500 events between [0,0.1]
– 500 events between [5.6,5.7]
– Length of day: 0.0002
– Length of year: 0.1024 (512 days)
– Strategy a) needs to cycle through the calendar for 54 year to find the 

first event of [5.6,5.7]

» Insert key (enqueue):
– Find right day/bucket: key % ndays
– Insert key into ordered list
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V Problems with static case

» Many keys per day: enqueue operation gets expensive
– Go through list of length O(N) where N denotes the number of events

» Only a few keys within many days: dequeue operation gets 
expensive
– Go through empty days of length O(B) where B denotes the number of 

buckets

» Analysis of problem complexity is not trivial: 
– See ‘Optimizing static calendar queues’, K. B. Erickson, R. E. Ladner, A. 

Lamarca, ACM Tomacs, vol. 10, no. 3, July 2000, pp. 179-214.
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V Calendar queue: dynamic case

Idea: Adjust length of year and days according to current key set.

» Number of days (buckets):
– Whenever the number of keys exceeds twice the number of days, copy 

calendar to a larger calendar (typically: double size).
– Whenever the number of keys is less than half the number of days, copy 

to a smaller calendar (typically: half size).

» Length of day:
– Dequeue samples from calendar (typically 25)
– Calculate average separation of dequeued events
– Set new length of day to average separation (usually multiplied with 

some factor)
– Enqueue samples
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V Evaluation of calendar queues I

» Assume exponential 
distribution:
– Mean 1
– Next priority: 

last priority – ln( rng())

» Hold operation: dequeue
followed by enqueue

[Source: Original paper by Brown, 1988]
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VI Scheduling in NS-2

» Choices are: list, heap, splay tree, calendar queue, real-time
– Real-time: tries to synchronize with real-time clock; experimental

» Calendar queue is default

» How to deal with events at same time?
– If more than one event are scheduled to execute at the same time, 

their execution is performed on the first scheduled – first dispatched 
manner. 

– Simultaneous events are not reordered anymore by schedulers (as it 
was in earlier versions) and all schedulers should yield the same 
order of dispatching given the same input.

» Accuracy: see next slide
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VI Precision of the scheduler clock in NS-2

» Precision of the scheduler clock: smallest time-scale of the 
simulator that can be correctly represented.

» The clock variable for ns is represented by a double. As per the IEEE 
std for floating numbers, a double, consisting of 64 bits must 
allocate the following bits between its sign, exponent and mantissa 
fields.

» sign    exponent n    mantissa X

1 bit    11 bits         52 bits

» Any floating number can be represented in the form X · 2n where X is 
the mantissa and n is the exponent. 

» Thus the precision of time in ns can be defined as 1/(252). 

» As simulation runs for longer times the number of remaining bits to 
represent the time educes thus reducing the accuracy. Given 52 bits 
we can safely say time up to around 240 can be represented with 
considerable accuracy. 
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VI Precision of NS-2

» 240 ≈ 1012

» Thus, for a simulated time of 1000 seconds we still have nanosecond 
accuracy (10-9).
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Wrap-up

» Event management requires efficient priority queues: schedule an
event, dequeue next event.

» Linear lists, heaps, splay trees, calendar queues

» Efficiency depends on ‘priority increment distribution’

» Calendar queue in general ‘safe guess’

» But: one should check its own priority increment distribution to see 
whether improvements are feasible

» Precision: with a 64-bit double, there is still a nanosecond accuracy 
for a simulated time of 1000 seconds.

» Open: is there a paper available with a performance evaluation of 
priority queues on current Pentium machines?
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