(Pseudo) Random Number Generation

Holger Füßler

Lehrstuhl für Praktische Informatik IV, Universität Mannheim

Simulation of Computer Networks

Holger Füßler Universität Mannheim, Summer 2004

Course overview

1. Introduction

2. Building block: RNG

7. NS-2: Fixed networks

8. NS-2: Wireless networks

3. Building block: Generating random variates I and modeling examples

4. Building block: Generating random variates II and modeling examples

10. Output analysis: comparing different configuration

9. Output analysis: single system

5. Algorithmics: Management of events

6. NS-2: Introduction

11. Other Simulators

12. Simulation lifecycle, summary

Simulation of Computer Networks

Holger Füßler - 2 Universität Mannheim, Summer 2004

I Why do we need 'random numbers'?

I Example: Why do we need 'random numbers'?

» Recap: M/M/1 queue example

- Arrival process: exponentially distributed inter-arrival times
- Service process: exponentially distributed service times

I What are 'random numbers'?

- Independent samples from the uniform distribution over the interval [0,1]
- >> Out of random numbers one can generate arbitrary random variates

I Example application: building a mobility model

Random waypoint mobility

- 1. Node randomly chooses* destination point in area
- 2. Moves with constant **speed** to this point
- 3. Waits for a certain pause time
- 4. Chooses* a new destination, moves to this destination

... and so on ...

*Sampled from uniform distribution

I Example: building a mobility model

Simulation of Computer Networks

Holger Füßler - 7 Universität Mannheim, Summer 2004

I Random number generators ...

Coin flipped on 2004-02-27 16:24:09 GMT US 5¢ 1913 Liberty Head nickel

True random numbers from random.org

Your coin came down tails!

Simulation of Computer Networks

Holger Füßler - 8 Universität Mannheim, Summer 2004

I Arithmetic (pseudo-) random number generators

- * "Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin." [John von Neumann, 1951]
- "It may seem perverse to use a computer, that most precise and deterministic of all machines conceived by the human mind, to produce 'random' numbers." [Numerical Recipes]

- » Why still use arithmetic methods?
 - Reproducability, portability
 - No I/O costs, high speed, low memory
 - Well analyzed
- » In the future: random numbers 'off the shelf' (from DVD)?

... and now we focus on "pseudo-random numbers" ^(C).

I What do we need to know about random number generation?

We are not going to design our own new RNG, but:

Case 1: Use an existing simulation tool

- Examples: NS-2, OMnet++, Glomosim/Qualnet, Opnet, ...
- What RNG does it use?
- Is it known to be a good one?
- Appropriate for our simulation task?
- Are we really sure?

Case 2: Build your own simulator

- Since using an existing tool might be 'overkill'
- Choose a RNG
- Check whether selection was appropriate

Know what is available, do statistical tests within simulation

Check references, Track RNG, do statistical Tests within simulation

Structure of this lecture

- Part I: What and why of random numbers
- **»** Part II: Various random number generators
 - Criteria for random number generators
 - RNGs
 - Linear congruential generators
 - Generalized CGs
 - Tausworthe and related generators
- » Part III: Evaluating and testing RNGs
- Summary and side notes

Remember: if the RNG is not done appropriately, the 'results' are meaningless!

'Disclaimer': Since this set of slides should also be used as a lecture script, we introduce some math results and formulas for completeness.

II Criteria for random number generators

- > <u>Uniformity, independence</u>: "Appear" to be distributed uniformly on [0,1] and independent
- Speed and memory: Fast, low memory
- Reproducibility, portability: Be able to reproduce a particular stream of random numbers. Why?
 - » a. Makes debugging easier
 - » b. Use identical random numbers to simulate alternative system configurations for sharper comparison
- > <u>Uncorrelated streams</u>: Have provision in the generator for a large number of separate (nonoverlapping) streams of random numbers; usually such streams are just carefully chosen subsequences of the larger overall sequence

Most RNGs are fast, take very little memory

But beware: There are many RNGs in use that have extremely poor statistical properties

II Linear congruential generators

- > Introduced by Lehmer in 1951
- **>>** Produce a sequence of integers z_1, z_2, z_3, \dots as defined by the recursive formula

$$z_i = (az_{i-1} + c) \mod m$$

 $m \mod u$ us $a \mod t$ iplier $c \operatorname{increment}$ $z_0 \operatorname{seed}$ $u_i = z_i/m \in [0, 1]$

- Increment c = 0: "multiplicative congruential generator"
- » Otherwise: "mixed congruential method"

II Linear congruential generators: example

$$Z_i = (5Z_{i-1} + 3) \pmod{16}$$

i	Z_i	u_i	Length of period?		
0	7			I	I
1	6	0.375	÷	:	÷
2	1	0.063	14	13	0.813
3	8	0.500	15	4	0.250
4	11	0.688	16	7	0.438
5	10	0.625			

II A good and a bad LCG

- Sood (in absolute terms 'medium quality'): Marse and Roberts implementation (1983)
 - a = 630 360 016
 - c = 0
 - m = 2³¹ -1
- » Bad: RANDU
 - $a = 2^{16} + 3 = 65539$
 - c = 0
 - m = 2³¹

1. Choice of modulus:

- Modulus m should be large (for a large potential period)
- Integer division is costly; however, for $m = 2^k$ it is cheap.

2. Choice of increment:

- Preferably, equals zero (less computations)

3. Choice of multiplier:

- Should be chosen in a way that the actually achieved period is large.

But:

- » Some of these requirements are incompatible with each other.
- » Still many choices left that lead to very bad RNGs.

II Some theorem ...

The linear congruential sequence defined by m, a, c, and Z_0 has period of length m if and only if

i) c is relatively prime to m;

The only positive integer that divides both m and c is 1. Thus, a multiplicative LCG cannot have full period

ii) b=a-1 is a multiple of p, for every prime p dividing m

iii) b is a multiple of 4, if m is a multiple of 4

II Fundamental problems of LCGs

- "Marsaglia" effect [Marsaglia, 1968, "Random numbers fall mainly in the planes]:
 - Overlapping d-tuples will all fall in a relatively small number of (d-1)dimensional hyperplanes.

II Illustrations from Law/Kelton

Simulation of Computer Networks

Holger Füßler - 19 Universität Mannheim, Summer 2004

II Enhanced generators

» Generalization of LCG: $Z_i = g(Z_{i-1}, Z_{i-2}, ...) \pmod{m}$

> Multiple recursive generator:

$$g(Z_{i-1}, Z_{i-2}, \dots) = a_1 Z_{i-1} + a_2 Z_{i-2} + \dots + a_q Z_{i-q}$$

Composite generators, e.g., combined MRGs:

> Let Z_1 and Z_2 denote two MRGs. $Y_i = (\delta_1 Z_{1,i} + \delta_2 Z_{2,i}) \pmod{m_1}$

II Tausworthe and related generators

» Define a sequence b_1, b_2, \dots of bits via

 $\mathbf{b}_{i} = (\mathbf{c}_{1} \ \mathbf{b}_{i-1} + \mathbf{c}_{2} \ \mathbf{b}_{i-2} + \dots + \mathbf{c}_{q} \ \mathbf{b}_{i-q}) \mod 2$

where c_1, \ldots, c_q are either 0 or 1.

- » Recurrence like with MRGs, but operating on bits
- > Can be implemented as feedback shift registers
- > Pretty large periods can be achieved

II Current 'star': Mersenne Twister

Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random

Number Generator

MAKOTO MATSUMOTO, Keio University and the Max-Planck-Institut für Mathematik, Bonn

TAKUJI NISHIMURA, Keio University

A new algorithm called Mersenne Twister (MT) is proposed for generating uniform pseudorandom numbers. For a particular choice of parameters, the algorithm provides a super astronomical

period of 219937 - 1

and 623-dimensional equidistribution up to 32-bit accuracy, while using a working area of only 624 words.

http://www.math.keio.ac.jp/~matumoto/emt.html#Colt

С

II PRNGs in Practical Use

- » java 1.4.2 : LCG with 48Bit Seed
- » glib (part of GTK): Mersenne Twister
- » GSL (GNU Scientific Library): Almost anything
- » ns-2: Multiple Recursive Generator (L'Ecuyer)
- » ... (Use the force, read the source ;-))

II Simple Speed Comparison

\$ time ./randspeed 1
Initializing rand()
Drawing 100000000 times...
Done!

Standard rand() function

- real 0m2.951s user 0m2.920s
- sys 0m0.000s

```
$ time ./randspeed 2
Initializing grand() Mersenne Twister
Drawing 100000000 times...
Done!
```

real 0m1.332s user 0m1.290s sys 0m0.010s

> randspeed is a simple program available in the download area

Mersenne Twister as implemented in glib

Simulation of Computer Networks

III Criteria revisited

- » Uniformity, independence
 - Chi-square tests
- » Speed, memory
- » Reproducibility, portability
- >> Uncorrelated streams

Portability problems:

- rand function (ANSI C): implementation depends on choice of compiler
- How many random bits?

Assumption: 16bit words, actual 32bit words Taken from [J. Heinrich]

III Test for uniformity: problem statement

Sampled from uniform/non-uniform distribution?

III Chi-square test: general set-up

Compare actual observations (n samples) with expected values of the assumed distribution $\{p_s \mid 1 \le s \le k\}$ using the following 'meansquared-error' statistics:

$$V = \sum_{s=1}^{k} \frac{(Y_s - np_s)^2}{np_s}$$

with Y_s being the number of observations that actually fall into category s.

Simulation of Computer Networks

III Chi-square distribution function for k=100

One can now determine how 'likely' the value V actually is under the assumption of the probabilities for the various bins.

Simulation of Computer Networks

III Chi-square test

- » Hypothesis 'Observed sampling is coherent with the distribution assumption'
- » Accept or reject hypothesis?
- **»** Test with level α :
 - Compute $\chi_{1-\alpha}$ such that $P(X < \chi_{1-\alpha}) = 1 \alpha$
 - $\Box \chi_{1-\alpha}$ is called 'critical point' for level α
 - If V> $\chi_{1-\alpha}$ then reject hypothesis, otherwise accept
- » Alternative: twosided with level α :
 - Compute $\chi_{\alpha 1}$ such that P(X< $\chi_{\alpha 1}$) = 1 $\alpha/2$
 - Compute $\chi_{\alpha 2}$ such that $P(X < \chi_{\alpha 2}) = \alpha/2$
 - If V> $\chi_{\alpha 1}$ or V < $\chi_{\alpha 2}$ reject, otherwise accept.

III Computation of critical points

- » Need to know distribution function for chi-distribution with 'k-1 degrees of freedom' (where k is the number of bins)
- » Need to know inverse of this distribution function.
- » For large k's, say k>30, one makes use of the critical points $z_{1-\alpha}$ of the normal distribution:

$$\chi_{k-1,1-\alpha} \approx (k-1) \left\{ 1 - \frac{2}{9(k-1)} + z_{1-\alpha} \sqrt{\frac{2}{9(k-1)}} \right\}^3$$

- » How to compute critical point of normal distribution?
 - Either table lookup or some 'standardized' inversion functions

Example: critical points for k=100

Simulation of Computer Networks

III Some technical stuff: chi-square distribution

- What is the distribution of V under the assumption of the distribution?
- The distribution is approximately the chi-square distribution with k-1 degrees of freedom, a special type of a gamma distribution with a=(k-1)/2, and b=2. The density function for a gamma distribution is given by

$$f(x) = \frac{x^{a-1}e^{-x/b}}{b^a \Gamma(a)}$$

for a, b > 0, $0 \le x \le \infty$, and 0 elsewehre.

III Examples for various 'degrees of freedom'

Simulation of Computer Networks

Holger Füßler - 32 Universität Mannheim, Summer 2004

III How many samples do we need for a chi-square test?

- » χ^2 -distribution only depends on 'degrees of freedom', i.e., number of categories.
- » χ^2 -distribution only approximation, i.e., only valid when the number of observations n is sufficiently large.
- » Thus, in general, n should be made large.
- » But: local 'irregularities' cannot be detected when n is large.
 - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,, 97, 98, 99, 100, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
 - Would also pass uniformity test ...?

III Comparing glibc 'rand' and 1,2,3,4, ...

>> ... by looking at non-overlapping 2-tuples of the sequence x₁, x₂, x₃, x₄, ...

1000 samples

III Chi-square tests for independence of samples

- **》** Serial tests: generalization of χ^2 test to higher dimensions
- Take non-overlapping successive sample to form d-tuples **>>**
 - (x₁, x₂), (x₃, x₄), (x₅, x₆), ... - (X₁, X₂, X₃), (X₄, X₅, X₆), ...

$$V(2) = \frac{k^2}{n} \sum_{j_1=1}^k \sum_{j_2=1}^k (Y_{j_1,j_2} - n/k^2)^2$$
Count in subinterval j_l, j_2

III The two methods for checking RNGs ...

- » ... we have encountered in this lecture
 - Visual inspection ('Marsaglia effect')
 - Chi-square test

Summary, recommendations, side notes

- » RNGs are a science for itself
- **>** As a simulation person, one acts as a customer of RNGs
 - Probably not as a inventor of RNGs
- But: one is responsible for checking whether the employed RNG is 'good enough' for the task under analysis
- » Visual tests can analyse 'Marsaglia effect'
- Statistical tests can easily be deployed to see obvious bugs
 - Chi-square test
- » Combined MRGs and the MT are considered to be 'state-of-the-art'
- » RNGs also extremely important for 'security'
 - RFC 1750 "Randomness Recommendations for Security"

- » Self-Implement and PRNG?
- » Check what PRNG is used by the library?
- >> Check what properties this PRNG has?
 - check the web / documentation
 - check yourself
- » Always be aware of Properties!
 - simulate n-times exactly the same
 - parallel streams

- Assume two nodes sending in a CSMA/CA style wireless network using ns-2 or any other simulator.
- > randomized media access:
 - same stream (own PRNG with same seed)
 - → no data transport possible
 - dependant streams
 - \rightarrow one node gets more share of the bandwidth

- » Knuth, D.E., The Art of Computer Programming, vol. 2, 3rd edition, Addison Wesley, 1998: chapter 3.
- Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., *Numerical Recipes in C*, 2nd edition, Cambridge University Press, 1992: chapter 7.
- >> Hechenleitner, B., Entacher, K., On shortcomings of the ns-2 random number generator.