
(Pseudo) Random Number Generation

Holger Füßler

Lehrstuhl für Praktische Informatik IV, Universität Mannheim

Simulation of Computer Networks Holger Füßler
Universität Mannheim, Summer 2004

Holger Füßler - 2
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Course overview

1. Introduction 7. NS-2: Fixed networks

2. Building block: RNG 8. NS-2: Wireless networks

3. Building block:
Generating random variates I

and modeling examples
9. Output analysis: single system

4. Building block:
Generating random variates II

and modeling examples

10. Output analysis: comparing
different configuration

5. Algorithmics:
Management of events 11. Other Simulators

6. NS-2: Introduction 12. Simulation lifecycle, summary

Holger Füßler - 3
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Why do we need ‘random numbers’?

System Mathematical model State variables:
Xt, Yt, Zt, …

Changes of time
at discrete ‘events’

Random effects, e.g.:
• Link breaks
• Node movements
• Packet arrivals
• Jitter
• Random access
• …

Required building block:
(Pseudo) Random number generation

Holger Füßler - 4
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Example: Why do we need ‘random numbers’?

» Recap: M/M/1 queue example

Router
[Server]

Queue Departing packetArriving packet

x
0

1
β

f(x)
» Arrival process: exponentially

distributed inter-arrival times

» Service process: exponentially
distributed service times

Holger Füßler - 5
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I What are ‘random numbers’?

» Independent samples from the uniform distribution over the interval
[0,1]

» Out of random numbers one can generate arbitrary random variates

Holger Füßler - 6
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Example application: building a mobility model

Random waypoint mobility

one epoch
2. Moves with constant speed to

this point
3. Waits for a certain pause time

4. Chooses* a new destination,
moves to this destination

... and so on ...

1. Node randomly chooses*
destination point in area

*Sampled from uniform distribution

Holger Füßler - 7
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Example: building a mobility model

Holger Füßler - 8
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Random number generators …

Coin flipped on 2004-02-27 16:24:09 GMT
US 5¢ 1913 Liberty Head nickel

Your coin came down tails!

True random numbers
from random.org

Holger Füßler - 9
Universität Mannheim, Summer 2004 Simulation of Computer Networks

I Arithmetic (pseudo-) random number generators

» “Any one who considers arithmetical methods of producing random digits is,
of course, in a state of sin.” [John von Neumann, 1951]

» “It may seem perverse to use a computer, that most precise and
deterministic of all machines conceived by the human mind, to produce
‘random’ numbers.” [Numerical Recipes]

» Why still use arithmetic methods?
– Reproducability, portability
– No I/O costs, high speed, low memory
– Well analyzed

» In the future: random numbers ‘off the shelf’ (from DVD)?

… and now we focus on “pseudo-random numbers” ☺.

I What do we need to know about random number generation?

Holger Füßler - 10
Universität Mannheim, Summer 2004 Simulation of Computer Networks

We are not going to design our own new RNG, but:

Case 1: Use an existing simulation tool
– Examples: NS-2, OMnet++, Glomosim/Qualnet, Opnet, …
– What RNG does it use?
– Is it known to be a good one?
– Appropriate for our simulation task?
– Are we really sure?

Case 2: Build your own simulator
– Since using an existing tool might be ‘overkill’
– Choose a RNG
– Check whether selection was appropriate

Check references,
Track RNG, do statistical
Tests within simulation

Know what is
available, do
statistical tests
within simulation

Holger Füßler - 11
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Structure of this lecture

» Part I: What and why of random numbers

» Part II: Various random number generators
– Criteria for random number generators
– RNGs

• Linear congruential generators
• Generalized CGs
• Tausworthe and related generators

» Part III: Evaluating and testing RNGs

» Summary and side notes

Remember: if the RNG is not done appropriately, the ‘results’ are meaningless!

‘Disclaimer’: Since this set of slides should also be used as a lecture script, we
introduce some math results and formulas for completeness.

Holger Füßler - 12
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Criteria for random number generators

» Uniformity, independence: “Appear” to be distributed uniformly on [0,1] and
independent

» Speed and memory: Fast, low memory

» Reproducibility, portability: Be able to reproduce a particular stream of
random numbers. Why?

» a. Makes debugging easier
» b. Use identical random numbers to simulate alternative system

configurations for sharper comparison

» Uncorrelated streams: Have provision in the generator for a large number of
separate (nonoverlapping) streams of random numbers; usually such
streams are just carefully chosen subsequences of the larger overall
sequence

Most RNGs are fast, take very little memory

But beware: There are many RNGs in use that have extremely poor statistical
properties

Holger Füßler - 13
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Linear congruential generators

» Introduced by Lehmer in 1951

» Produce a sequence of integers z1, z2, z3, … as defined by the
recursive formula

» Increment c = 0: “multiplicative congruential generator”

» Otherwise: “mixed congruential method”

Holger Füßler - 14
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Linear congruential generators: example

Length of period?

Holger Füßler - 15
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II A good and a bad LCG

» Good (in absolute terms ‘medium quality’): Marse and Roberts
implementation (1983)

– a = 630 360 016
– c = 0
– m = 231 -1

» Bad: RANDU
– a = 216 + 3=65539
– c = 0
– m = 231

Holger Füßler - 16
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Choice of a, c, m: “wish list”

1. Choice of modulus:
– Modulus m should be large (for a large potential period)
– Integer division is costly; however, for m= 2k it is cheap.

2. Choice of increment:
– Preferably, equals zero (less computations)

3. Choice of multiplier:
– Should be chosen in a way that the actually achieved period is large.

But:

» Some of these requirements are incompatible with each other.

» Still many choices left that lead to very bad RNGs.

Holger Füßler - 17
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Some theorem …

The only positive integer that divides
both m and c is 1. Thus, a multiplicative
LCG cannot have full period

Holger Füßler - 18
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Fundamental problems of LCGs

“Marsaglia” effect [Marsaglia, 1968, “Random numbers fall mainly in the
planes]:

Overlapping d-tuples will all fall in a relatively small number of (d-1)-
dimensional hyperplanes.

[LK2000]

LCG: m=64, a=37, c=1 LCG: m=64, a=21, c=1

Holger Füßler - 19
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Illustrations from Law/Kelton

Holger Füßler - 20
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Enhanced generators

» Generalization of LCG:

» Multiple recursive generator:

» Composite generators, e.g.,
combined MRGs:

Holger Füßler - 21
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Tausworthe and related generators

» Define a sequence b1, b2, … of bits via

bi = (c1 bi-1 + c2 bi-2 + … + cq bi-q) mod 2

where c1, … , cq are either 0 or 1.

» Recurrence like with MRGs, but operating on bits

» Can be implemented as feedback shift registers

» Pretty large periods can be achieved

Holger Füßler - 22
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Current ‘star’: Mersenne Twister
Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random

Number Generator

MAKOTO MATSUMOTO, Keio University and the Max-Planck-Institut für Mathematik, Bonn

TAKUJI NISHIMURA, Keio University

A new algorithm called Mersenne Twister (MT) is proposed for generating
uniform pseudorandom numbers. For a particular choice of parameters, the
algorithm provides a super astronomical

period of 219937 - 1

and 623-dimensional equidistribution up to 32-bit accuracy, while using a
working area of only 624 words.

http://www.math.keio.ac.jp/~matumoto/emt.html#Colt

C

Holger Füßler - 23
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II PRNGs in Practical Use

» java 1.4.2 : LCG with 48Bit Seed

» glib (part of GTK): Mersenne Twister

» GSL (GNU Scientific Library): Almost anything

» ns-2: Multiple Recursive Generator (L’Ecuyer)

» … (Use the force, read the source ;-))

Holger Füßler - 24
Universität Mannheim, Summer 2004 Simulation of Computer Networks

II Simple Speed Comparison

$ time ./randspeed 1
Initializing rand()
Drawing 100000000 times...
Done!

real 0m2.951s
user 0m2.920s
sys 0m0.000s

$ time ./randspeed 2
Initializing grand() Mersenne Twister
Drawing 100000000 times...
Done!

real 0m1.332s
user 0m1.290s
sys 0m0.010s

Standard rand() function

Mersenne Twister as
implemented in glib

randspeed is a simple
program available in the

download area

Holger Füßler - 25
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Criteria revisited

» Uniformity, independence
– Chi-square tests

» Speed, memory

» Reproducibility, portability

» Uncorrelated streams

Portability problems:
– rand function (ANSI C):

implementation depends on choice
of compiler

– How many random bits?

Assumption: 16bit words, actual 32bit words
Taken from [J. Heinrich]

Holger Füßler - 26
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Test for uniformity: problem statement

Observed samples

Expected values

100 000 samples

100 bins

» Sampled from uniform/non-uniform distribution?

Holger Füßler - 27
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Chi-square test: general set-up

Observations YsCompare actual observations
(n samples) with expected
values of the assumed
distribution {ps | 1 · s · k}
using the following ‘mean-
squared-error’ statistics:

Expected values

1 2 3 4 5 6 k Bins

Holger Füßler - 28
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Chi-square distribution function for k=100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

P
(V

<
=

x)

x

x

P(V>123.223)= 0.05

» One can now determine how ‘likely’ the value V actually is under the
assumption of the probabilities for the various bins.

Holger Füßler - 29
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Chi-square test

» Hypothesis ‘Observed sampling is coherent with the distribution
assumption’

» Accept or reject hypothesis?

» Test with level α:
– Compute χ1 - α such that P(X< χ1 - α) = 1 - α
� χ1 - α is called ‘critical point’ for level α
– If V> χ1 - α then reject hypothesis, otherwise accept

» Alternative: twosided with level α:
– Compute χα1 such that P(X<χα1) = 1 - α/2
– Compute χα2 such that P(X<χα2) = α/2
– If V> χα 1 or V < χα 2 reject, otherwise accept.

Holger Füßler - 30
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Computation of critical points

» Need to know distribution function for chi-distribution with ‘k-1 degrees of
freedom’ (where k is the number of bins)

» Need to know inverse of this distribution function.

» For large k’s, say k>30, one makes use of the critical points z1 - α of the
normal distribution:

» How to compute critical point of normal distribution?
– Either table lookup or some ‘standardized’ inversion functions

Example: critical points for k=100
α=0.025: χ1-α = 128.425
α=0.05 : χ1-α = 123.223
α=0.1 : χ1-α = 117.402
α=0.25 : χ1-α = 108.089

Holger Füßler - 31
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Some technical stuff: chi-square distribution

» What is the distribution of V under the assumption of the
distribution?

» The distribution is approximately the chi-square distribution with k-1
degrees of freedom, a special type of a gamma distribution with
a=(k-1)/2, and b=2. The density function for a gamma distribution is
given by

Holger Füßler - 32
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Examples for various ‘degrees of freedom’

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

a=1

a=2

a=4

III How many samples do we need for a chi-square test?

Holger Füßler - 33
Universität Mannheim, Summer 2004 Simulation of Computer Networks

» χ2-distribution only depends on ‘degrees of freedom’, i.e., number of
categories.

» χ2-distribution only approximation, i.e., only valid when the number
of observations n is sufficiently large.

» Thus, in general, n should be made large.

» But: local ‘irregularities’ cannot be detected when n is large.
– 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, …., 97, 98, 99, 100, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, …
– Would also pass uniformity test …?

Holger Füßler - 34
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Comparing glibc ‘rand’ and 1,2,3,4, …

» … by looking at non-overlapping 2-tuples of the sequence x1, x2, x3,
x4, …

1000 samples

Holger Füßler - 35
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III Chi-square tests for independence of samples

» Serial tests: generalization of χ2 test to higher dimensions

» Take non-overlapping successive sample to form d-tuples
– (x1, x2), (x3, x4), (x5, x6) , …
– (x1, x2, x3), (x4, x5, x6), …

Count in subinterval j1, j2

Holger Füßler - 36
Universität Mannheim, Summer 2004 Simulation of Computer Networks

III The two methods for checking RNGs …

» … we have encountered in this lecture
– Visual inspection (‘Marsaglia effect’)
– Chi-square test

Holger Füßler - 37
Universität Mannheim, Summer 2004 Simulation of Computer Networks

Summary, recommendations, side notes

» RNGs are a science for itself

» As a simulation person, one acts as a customer of RNGs
– Probably not as a inventor of RNGs

» But: one is responsible for checking whether the employed RNG is
‘good enough’ for the task under analysis

» Visual tests can analyse ‘Marsaglia effect’

» Statistical tests can easily be deployed to see obvious bugs
– Chi-square test

» Combined MRGs and the MT are considered to be ‘state-of-the-art’

» RNGs also extremely important for ‘security’
– RFC 1750 “Randomness Recommendations for Security”

Holger Füßler - 38
Universität Mannheim, Summer 2004 Simulation of Computer Networks

So what shall we do… ?

» Self-Implement and PRNG?

» Check what PRNG is used by the library?

» Check what properties this PRNG has?
– check the web / documentation
– check yourself

» Always be aware of Properties!
– simulate n-times exactly the same
– parallel streams

NO

YES

If Needed

Definitely

Holger Füßler - 39
Universität Mannheim, Summer 2004 Simulation of Computer Networks

So what is the purpose of this lecture?

» Assume two nodes sending in a CSMA/CA style wireless network
using ns-2 or any other simulator.

» randomized media access:
– same stream (own PRNG with same seed)
Æ no data transport possible
– dependant streams
Æ one node gets more share of the bandwidth

Holger Füßler - 40
Universität Mannheim, Summer 2004 Simulation of Computer Networks

References

» Knuth, D.E., The Art of Computer Programming, vol. 2, 3rd edition,
Addison Wesley, 1998: chapter 3.

» Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.,
Numerical Recipes in C, 2nd edition, Cambridge University Press,
1992: chapter 7.

» Hechenleitner, B., Entacher, K., On shortcomings of the ns-2 random
number generator.

	(Pseudo) Random Number Generation
	Course overview
	I Why do we need ‘random numbers’?
	I Example: Why do we need ‘random numbers’?
	I What are ‘random numbers’?
	I Example application: building a mobility model
	I Example: building a mobility model
	I Random number generators …
	I Arithmetic (pseudo-) random number generators
	I What do we need to know about random number generation?
	Structure of this lecture
	II Criteria for random number generators
	II Linear congruential generators
	II Linear congruential generators: example
	II A good and a bad LCG
	II Choice of a, c, m: “wish list”
	II Some theorem …
	II Fundamental problems of LCGs
	II Illustrations from Law/Kelton
	II Enhanced generators
	II Tausworthe and related generators
	II Current ‘star’: Mersenne Twister
	II PRNGs in Practical Use
	II Simple Speed Comparison
	III Criteria revisited
	III Test for uniformity: problem statement
	III Chi-square test: general set-up
	III Chi-square distribution function for k=100
	III Chi-square test
	III Computation of critical points
	III Some technical stuff: chi-square distribution
	III Examples for various ‘degrees of freedom’
	III How many samples do we need for a chi-square test?
	III Comparing glibc ‘rand’ and 1,2,3,4, …
	III Chi-square tests for independence of samples
	III The two methods for checking RNGs …
	Summary, recommendations, side notes
	So what shall we do… ?
	So what is the purpose of this lecture?
	References
	Backup slides
	III Correlated streams
	III Correlated streams: illustrations
	III Comparison RNG seeding and results
	I Why do we need ‘random numbers’?
	I What do we need to know about random number generation?
	III Chi-square test: example
	III Dice example cont’d
	III Chi-square distribution, 10 DF
	III Chi-square test for uniformity of a RNG
	III Approximating 2 distribution by a normal distribution

