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| Why do we need ‘random numbers’?

System Mathematical model » State variables:
X, Yoo Zyy ..
Random effects, e.qg.: ~ Changes of time
e Link breaks ~ at discrete ‘events’

« Node movements
» Packet arrivals

o Jitter

« Random access Required building block:

. ... (Pseudo) Random number generation
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| Example: Why do we need ‘random numbers’?

» Recap: M/M/1 queue example

A 4

O QO | Zue | O =

Arriving packet Queue Departing packet

f(x)
» Arrival process: exponentially -
distributed inter-arrival times

1
. . —
» Service process: exponentially f(x) = —e /B
distributed service times
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| What are ‘random numbers’?

» Independent samples from the uniform distribution over the interval
[0,1]

» Out of random numbers one can generate arbitrary random variates
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| Example application: building a mobility model

Random waypoint mobility

one epoch

Simulation of Computer Networks

Node randomly chooses*
destination point in area

Moves with constant speed to
this point
Waits for a certain pause time

Chooses* a new destination,
moves to this destination

...and so on ...

*Sampled from uniform distribution

J
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| Example: building a mobility model
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| Random number generators ...

Coin flipped on 2004-02-27 16:24:09 GMT
US 5¢ 1913 Liberty Head nickel

True random numbers
from random.org
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| Arithmetic (pseudo-) random number generators

» *“Any one who considers arithmetical methods of producing random digits is,
of course, in a state of sin.” [John von Neumann, 1951]

» “It may seem perverse to use a computer, that most precise and
deterministic of all machines conceived by the human mind, to produce
‘random’ numbers.” [Numerical Recipes]

» Why still use arithmetic methods?

— Reproducability, portability
— No I/O costs, high speed, low memory
— Well analyzed

» In the future: random numbers ‘off the shelf’ (from DVD)?

... and now we focus on “pseudo-random numbers” ©.
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| What do we need to know about random number generation?

We are not going to design our own new RNG, but:

Case 1. Use an existing simulation tool
— Examples: NS-2, OMnet++, Glomosim/Qualnet, Opnet, ...

— What RNG does it use?
— Is it known to be a good one? Check references,
— Appropriate for our simulation task? 'ZD Track RNG, do statistical

— Are we really sure? Tests within simulation

Case 2: Build your own simulator

— Since using an existing tool might be ‘overkill’ _
ch RNG Know what is
- whoosea available, do

— Check whether selection was appropriate statistical tests
within simulation
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Structure of this lecture

» Part I: What and why of random numbers

» Part ll: Various random number generators

— Criteria for random number generators
— RNGs

* Linear congruential generators

* Generalized CGs

 Tausworthe and related generators

» Part lll: Evaluating and testing RNGs
» Summary and side notes
Remember: if the RNG is not done appropriately, the ‘results’ are meaningless!

‘Disclaimer’: Since this set of slides should also be used as a lecture script, we
introduce some math results and formulas for completeness.
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Il Criteria for random number generators

» Uniformity, independence: “Appear” to be distributed uniformly on [0,1] and
independent

» Speed and memory: Fast, low memory

» Reproducibility, portability: Be able to reproduce a particular stream of
random numbers. Why?

» a. Makes debugging easier

» b. Useidentical random numbers to simulate alternative system
configurations for sharper comparison

» Uncorrelated streams: Have provision in the generator for a large number of
separate (nonoverlapping) streams of random numbers; usually such
streams are just carefully chosen subsequences of the larger overall
sequence

Most RNGs are fast, take very little memory

But beware: There are many RNGs in use that have extremely poor statistical
properties
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Il Linear congruential generators

» Introduced by Lehmer in 1951

» Produce a sequence of integers z,, z,, Z;, ... as defined by the
recursive formula

z; = (az;_1+c¢) mod m

m modulus
a multiplier
c Increment
zo Seed

Uy — ZZ/’I’)’L < [Oa 1]
» Increment ¢ = 0: “multiplicative congruential generator”

» Otherwise: “mixed congruential method”
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Il Linear congruential generators: example

Z. = (5Z;_1+3) (mod 16)

Simulation of Computer Networks I

() Zi U,
0|7

116 |0.375
211 ]0.063
3|13 |0.500
4111 | 0.683
5|10 | 0.625

Length of period?

14 | 13 | 0.813
15
16

~N B
© O
N
O
O
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Il A good and a bad LCG

» Good (in absolute terms ‘medium quality’): Marse and Roberts
implementation (1983)

— a=630360016
— ¢=0
- m=23%-1

» Bad: RANDU
— a=21 4+ 3=65539
— ¢=0
— m= 231
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Il Choice of a, ¢, m: “wish list”

1. choice of modulus:

— Modulus m should be large (for a large potential period)
— Integer division is costly; however, for m= 2k it is cheap.

2. Choice of increment:

— Preferably, equals zero (less computations)

3. Choice of multiplier:
— Should be chosen in a way that the actually achieved period is large.

But:
» Some of these requirements are incompatible with each other.

» Still many choices left that lead to very bad RNGs.
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Il Some theorem ...

The linear congruential sequence defined by
m, a, ¢, and Zg has period of length m if and
only if

. ) ) . The only positive integer that divides
I) C IS relatlvely prime tO M: both mandcis 1. Thus, a multiplicative

LCG cannot have full period

ii) b=a-1 is a multiple of p, for every prime p
dividing m

iii) b is a multiple of 4, if m is a multiple of 4
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Il Fundamental problems of LCGs

“Marsaglia” effect [Marsaglia, 1968, “Random numbers fall mainly in the
planes]:

Overlapping d-tuples will all fall in a relatively small number of (d-1)-
dimensional hyperplanes.

. "
Lipy . - ) " Uena

[LK2000]

E
Ur Ur

LCG: m=64, a=37, c=1 LCG: m=64, a=21, c=1

. . Holger FuRler - 18
Simulation of Computer Networks Universitat Mannheim, Summer 2004




Il llustrations from Law/Kelton

m =231 =2 147 483 648. a = 216 + 3 = 65,539, ¢ = 0 (RANDU):

['IH- ]
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Il Enhanced generators

» Generalization of LCG: Z; =9(Z;_1,Z;_o,...) (mod m)

» Multiple recursive generator:

9(Zi_1,Z;i_2,...) = a1Z;_1+axZ;_o+---+aqZ;_,

» Composite generators, e.g.,
combined MRGs:

Let 71 and Z» denote two MRGs.
Y; = (0121, + 62Z2;) (mod mq)
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Il Tausworthe and related generators

» Define a sequence by, b,, ... of bits via

b,=(c b +c,b,+ ... +¢c, b ) mod 2

where c,, ..., c, are either O or 1.
» Recurrence like with MRGs, but operating on bits
» Can be implemented as feedback shift registers

» Pretty large periods can be achieved

ﬂ:sﬂ :Sls 52: Sll ].;I 4
TRCRCEm T
Output —4{ 5p 4 5] 4 8o [ 4 Sy [ s, g
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[l Current ‘star’: Mersenne Twister

Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random

Number Generator

MAKOTO MATSUMOTO, Keio University and the Max-Planck-Institut fir Mathematik, Bonn

TAKUJI NISHIMURA, Keio University

A new algorithm called Mersenne Twister (MT) is proposed for generating
uniform pseudorandom numbers. For a particular choice of parameters, the

algorithm provides a super astronomical

period of 219937 .1

and 623-dimensional equidistribution up to 32-bit accuracy, while using a
working area of only 624 words.

http://www.math.keio.ac.jp/~matumoto/emt.html#Colt

C
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Il PRNGs in Practical Use

» java 1.4.2 : LCG with 48Bit Seed

» glib (part of GTK): Mersenne Twister

» GSL (GNU Scientific Library): Almost anything
» ns-2: Multiple Recursive Generator (L'Ecuyer)

» ... (Usethe force, read the source ;-))
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Il Simple Speed Comparison

$ time ./randspeed 1
Initializing rand()
Drawing 100000000 times...
Done!

real Om2.951s
user Om2.920s
Sys Om0O.000s

$ time ./randspeed 2

Initializing grand() Mersenne Twister
Drawing 100000000 times...

Done!

real Om1.332s
user Om1.290s

Standard rand() function

Mersenne Twister as
implemented in glib

Sys Om0.010s
randspeed is a simple
program available in the
download area

Simulation of Computer Networks I
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Il Criteria revisited

» Uniformity, independence Portability problems:
— Chi-square tests — rand function (ANSI C):
implementation depends on choice
» Speed, memory of compiler

— How many random bits?
» Reproducibility, portability

1186494 M M

» Uncorrelated streams
64 bins 107 entries

mean=0.625

0 0.25 0.5 0.75 1.0
RandEngine: :flat () on Lihux

Assumption: 16bit words, actual 32bit words
Taken from [J. Heinrich]
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lll Test for uniformity: problem statement

1200

L . —T T Observed samples

1000 [ e e e e e — e R Expected values
200 K
100 000 samples
GO0 H
400 H
200 H
0 JLL Il Il .
0 0.2 0.4 0.6 0.8 1 100 bins

» Sampled from uniform/non-uniform distribution?
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Il Chi-square test: general set-up

Observations Y
Compare actual observations \ . s

(n samples) with expected Expected values
values of the assumed
distribution {p. | 1 <s <k}
using the following ‘mean-
squared-error’ statistics:

k 2
V:Z(Ys_npS) 1 2 3 4 56 k Bins

s=1 nPs

with Ys being the number of observations that
actually fall into category s.
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lll Chi-square distribution function for k=100

09 F

08 F

0.7

06 F

05 F

P(V<=x)

04 F
03 F
P(V>123.223)= 0.05
02 F

0.1

0 20 40 60 80 100 120 140

» One can now determine how ‘likely’ the value V actually is under the
assumption of the probabilities for the various bins.
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lll Chi-square test

» Hypothesis ‘Observed sampling is coherent with the distribution
assumption’

» Accept or reject hypothesis?

» Test with level a:

— Compute y; ., such that P(X<y,.,)=1-a
1 %, ., 1S called ‘critical point’ for level a
— If V>, ,thenreject hypothesis, otherwise accept

» Alternative: twosided with level a:

— Compute y, such that P(X<y,) =1 - a/2
— Compute y, such that P(X<y,) = a/2
- Ifv>y ,0rV<y, ,reject, otherwise accept.
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Il Computation of critical points

» Need to know distribution function for chi-distribution with ‘k-1 degrees of
freedom’ (where k is the number of bins)

» Need to know inverse of this distribution function.

» For large k’s, say k>30, one makes use of the critical points z, ., of the
normal distribution:

_ PN — — —|—Z _

» How to compute critical point of normal distribution?
— Either table lookup or some ‘standardized’ inversion functions

Example: critical points for k=100

a=0.025: y, = 128.425
a=0.05 : yx, = 123.223
a=0.1 : y,,=117.402
a=0.25 : yx, = 108.089
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Il Some technical stuff: chi-square distribution

» What is the distribution of V under the assumption of the
distribution?

» The distribution is approximately the chi-square distribution with k-1
degrees of freedom, a special type of a gamma distribution with
a=(k-1)/2, and b=2. The density function for a gamma distribution is
given by

a—1,—x/b

M) =

for a,b >0, 0 <z < oo, and O elsewehre.
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Il Examples for various ‘degrees of freedom’
1 Y
0.8 -“‘\l -
[
06}
04l

Simulation of Computer Networks

10
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Il How many samples do we need for a chi-square test?

» y2-distribution only depends on ‘degrees of freedom’, i.e., number of
categories.

» ~y2-distribution only approximation, i.e., only valid when the number
of observations n is sufficiently large.

» Thus, in general, n should be made large.

» But: local ‘irregularities’ cannot be detected when n is large.

- 1,2,3,4,5/6,7,8,9, 10, ....,, 97,98, 99, 100, 1, 2,3,4,5,6, 7, 8, 9, 10, ...
— Would also pass uniformity test ...?
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Il Comparing glibc ‘rand’ and 1,2,3,4, ...

» ... by looking at non-overlapping 2-tuples of the sequence x,, X,, X5,
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Il Chi-square tests for independence of samples

» Serial tests: generalization of y2 test to higher dimensions

» Take non-overlapping successive sample to form d-tuples

— (X1, X3)s (X3, Xg), (X5, Xg) 5 -+
— (X1, X5, X3), (X4y X5, Xg), -

V(2) = Z Z (Y150 — n/k’2>2

" ji=1j=1

o Count in subinterval j,, j,
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lll The two methods for checking RNGs ...

» ...we have encountered in this lecture

— Visual inspection (‘Marsaglia effect’)
— Chi-square test
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Summary, recommendations, side notes

»

»

»

»

»

»

»

RNGs are a science for itself

As a simulation person, one acts as a customer of RNGs

— Probably not as ainventor of RNGs

But: one is responsible for checking whether the employed RNG is
‘good enough’ for the task under analysis

Visual tests can analyse ‘Marsaglia effect’

Statistical tests can easily be deployed to see obvious bugs

— Chi-square test

Combined MRGs and the MT are considered to be ‘state-of-the-art’

RNGs also extremely important for ‘security’

— RFC 1750 “Randomness Recommendations for Security”
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So what shall we do... ?

» Self-Implement and PRNG?
» Check what PRNG is used by the library?

» Check what properties this PRNG has?

— check the web / documentation
— check yourself

» Always be aware of Properties!

— simulate n-times exactly the same
— parallel streams

YES

If Needed

Definitely

Simulation of Computer Networks I
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So what is the purpose of this lecture?

» Assume two nodes sending in a CSMA/CA style wireless network
using ns-2 or any other simulator.

» randomized media access:

— same stream (own PRNG with same seed)
— no data transport possible
— dependant streams

— one node gets more share of the bandwidth
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