
Computer Networks 6. Transport Layer 6 - 1© Wolfgang Effelsberg

6. Transport Layer

6.1 Internet Transport Layer Architecture

6.2 UDP (User Datagram Protocol)

6.3 TCP (Transmission Control Protocol)

Computer Networks 6. Transport Layer 6 - 2© Wolfgang Effelsberg

6.1 Internet Transport Layer Architecture

The Internet transport protocols are end-to-end protocols!

Application

Transport

Internet

Network
Interface

Network
Interface

Internet

Application

Transport

Internet

Network
Interface

identical
message

identical
packet

Gateway G

identical
datagram

identical
datagram

identical
frame

identical
frame

Physical Net 1 Physical Net 2

Host A Host B

Computer Networks 6. Transport Layer 6 - 3© Wolfgang Effelsberg

Important INTERNET Protocols

SMTP = Simple Mail Transfer Protocol
FTP = File Transfer Protocol
TELNET = Remote Login Protocol
UDP = User Datagram Protocol
NFS = Network File System
TCP = Transmission Protocol
IP = Internet Protocol
LLC = Logical Link Control
MAC = Media Access Control

SMTP
Mail

FTP
File Transfer

TELNET
Remote
Login

NFS
HTTP

Web access

TCP UDP

IP

LLC and MAC

Physical layer

Computer Networks 6. Transport Layer 6 - 4© Wolfgang Effelsberg

Addressing of Service Processes: Ports

• The layer 4 address serves to identify a certain type of service
(application type) which is assigned to an application process on the
host computer.

• Addressing by process number (process ID) would be unsuitable
because processes are generated and terminated dynamically by the
operating system; therefore process numbers are unknown outside the
local system.

• The mapping between a service and a process is not necessarily 1:1:

• One process may provide several services.

• Several processes may provide the same service.

• Thus we introduce the concept of an abstract communication end point:
a port

Computer Networks 6. Transport Layer 6 - 5© Wolfgang Effelsberg

Port Characteristics

• One service is assigned to exactly one port.

• Several connections can run over the same port at the same time.

• Asynchronous and synchronous port access is possible.

• Each port is associated with a buffer.

• The port provides an application programming interface (API).

Computer Networks 6. Transport Layer 6 - 6© Wolfgang Effelsberg

Examples for Reserved Port Numbers

Some port allocations ("well-known addresses")

Decimal Key word Unix Key word Description

0 Reserved
. . . .
. . . .
20 FTP-DATA ftp-data File Transfer

Protocol (data)
21 FTP ftp File Transfer

Protocol
23 TELNET telnet Terminal Con-

nection
25 SMTP smtp Simple Mail

Transfer Protocl
42 NAME-

SERVER
name Host Name

Server
43 NICNAME whois Who Is

Computer Networks 6. Transport Layer 6 - 7© Wolfgang Effelsberg

6.2 UDP (User Datagram Protocol)

UDP is the unreliable, connectionless datagram transport protocol of the
Internet. It basically serves to offer a programming interface for direct IP
access to applications, supplemented by port addressing.

Characteristics

• Datagram transport
• No guaranteed delivery of the packets to the receiver
• No automatic retransmission in case of bit errors
• No flow control
• No congestion control
• No guarantee of correct packet order at the receiver

• Multicast is possible

Computer Networks 6. Transport Layer 6 - 8© Wolfgang Effelsberg

• The packet length is counted in bytes (including UDP header)
• The checksum is built over header fields and the user data field for

error detection. A bit-column-wise EXOR is computed over the 16-bit
words of the packet.

• The use of the checksum is optional (if UDP is carried over IPv4). It is
mandatory if IPv6 is used.

UDP Packet Format

UDP-Header 0 16 31

Transmitter port Receiver port

Packet length Checksum

Data

...

Computer Networks 6. Transport Layer 6 - 9© Wolfgang Effelsberg

Characteristics of UDP

• Minimal consumption of resources (storage, CPU time), very efficient

• No explicit connection establishment, minimal protocol message
overhead

• Easy implementation

UDP is particularly suitable for simple one-way or client-server interactions.
Examples are status reports or request/response protocols:

• a request packet from the client to the server

• a response packet from the server to the client

Computer Networks 6. Transport Layer 6 - 10© Wolfgang Effelsberg

Examples for the Use of UDP

• Domain Name Service (DNS)
• SNMP: Simple Network Management Protocol
• NFS: Network File System
• many multimedia protocols that do not want error protection in layer 4
• all multicast protocols, including RTP for real time applications. Often

used for real-time audio and video streams.

Computer Networks 6. Transport Layer 6 - 11© Wolfgang Effelsberg

6.3 TCP (Transmission Control Protocol)

TCP is the first protocol in the Internet protocol hierarchy that achieves a
secured data communication between end systems.

Characteristics
• Stream-oriented: TCP transports a serial bit stream of the application in

the form of 8-bit bytes.
• Connection-oriented: Before data transmission begins a connection is

established between both communication partners. Error control and
flow control operate on each connection separately.

• Segmentation: The sequential data stream (byte stream) is cut up into
segments (packets) for transmission.

• Duplex communication: A TCP connection is full-duplex: data can be
transported in both directions at the same time.

Computer Networks 6. Transport Layer 6 - 12© Wolfgang Effelsberg

What is contained in a TCP standard?

The TCP standard (RFC 793) specifies

• the formats of data packets and control information

• the procedures for
• connection establishment and takedown
• error detection and error correction
• flow control
• congestion control (by „abusing“ flow control)

RFC 793 does not specify the interface to the application program (socket).
This is local matter.

Computer Networks 6. Transport Layer 6 - 13© Wolfgang Effelsberg

Addressing

A TCP connection is uniquely determined by a quintuple of

• IP addresses of the transmitter and the receiver

• Port addresses of the sender and the receiver

• TCP protocol identifier

Computer Networks 6. Transport Layer 6 - 14© Wolfgang Effelsberg

Packet Format

Format of the TCP header

0 4 10 16 24 31

Source Port Destination Port

Sequence Number

Acknowledgement Number

HLEN Res. Code
Bits Window Size

Checksum Urgent Pointer

Options (if any) Padding

Data

...

Computer Networks 6. Transport Layer 6 - 15© Wolfgang Effelsberg

Data Fields in the TCP Header (1)

SEQUENCE NUMBER

ACKNOWLEDGMENT
Byte numbers

HLEN Header length = Offset of the data field

CODEBITS

URG

ACK

PSH

RST

SYN

FIN

WINDOW SIZE

URGENT POINTER

(6 bits from left to rigth)

Ack Number field is valid

Urgent Pointer is used

Push

Reset of the connection

Synchronize sequence numbers

End of the data stream

Window size in bytes

Byte Offset to the current sequence
number at witch important data begins

Computer Networks 6. Transport Layer 6 - 16© Wolfgang Effelsberg

Data Fields in the TCP Header (2)

• Port number: like for UDP.

• Sequence number: the logical position of the first byte in the user data
field within the overall byte stream.

• Acknowledgement number: Identifes the next byte in the data stream
that the receiver expects from the the sender. Note that not individual
packets but byte positions in the logical data stream are confirmed. Thus
cumulation of confirmations over several TCP packets is easily possible.
Acknowledgements control the transmission repetition in the event of an
error. They also define the sliding window for flow control. Since data
can flow into both directions between the communication partners
(duplex operation), there is a sequence number sequence for each
direction.

• Header length (HLEN): Size of the TCP header in 32 bit words.

Computer Networks 6. Transport Layer 6 - 17© Wolfgang Effelsberg

Data Fields in the TCP Header (3)

• Codebits (Flags)
• URG: urgent pointer field is valid ("in use")
• ACK: acknowledgement field is valid ("in use")
• PSH: (push) The receiver is to provide data to the application as fast

as possible.
• RST: Reset the connection
• SYN: Synchronisation of the initials sequence numbers with

connection establishment
• FIN: The transmitter has ended the transfer of its data.

• Window size: Number of bytes, that the transmitter of this packet can
take, until its buffer is full (flow control).

Computer Networks 6. Transport Layer 6 - 18© Wolfgang Effelsberg

Data Fields in the TCP Header (4)

• Checksum: The checksum is computed over the entire fragment,
including UDP header. A column-wise EXOR is computed over the
"vertically over each other written" 16-Bit words of the packet (like with
UDP).

• the "urgent pointer" identifies the last byte in the data segment, which
should be processed with special priority. The data following thereafter
has normal priority.

• Urgent pointer: The "urgent pointer" identifies the last byte in the data
division, which should be processed with special priority. The data
following thereafter have normal priority.

• Options: (we will talk about this later on)

The data segment of a TCP packet is optional, an empty TCP packet can for
example be sent as a pure confirmation of received data if no data has to be
sent in the back direction at this point.

Computer Networks 6. Transport Layer 6 - 19© Wolfgang Effelsberg

TCP/IP: Format of the entire Header

Version IHL Type of
Service Total Length

Identification Fragment OffsetD
F

M
F

Time to live Protocol Header Checksum

Source address

Destination address

Options

Source Port Destination Port

Sequence number

Piggybacked acknowledgement

Window SizeTCP
header
length

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Checksum Urgent Pointer

Options (0 or more 32 bit words

.
DATA

.

.

I
P
-
H
E
A
D
E
R

T
C
P
-
H
E
A
D
E
R

32 bits

Computer Networks 6. Transport Layer 6 - 20© Wolfgang Effelsberg

Important Functions in TCP

• Positive acknowledgement or retransmission (PAR)

• Transmission repetition after timeout at the transmitter. No NACKs!

• "Sliding Window" mechanis for flow control. Variable window size: with
each acknowledgement of the receiver, the window size which is to be
used from now on, is also transmitted.

• Error recognition by check sum.

• Piggybacking: Control information on the way back and data can be
transmitted in the same TCP packet.

• Out-of-Band Data: important information is to be delivered to the
receiver, previous to processing of data sent before . Example: Alarm
notifications.

Computer Networks 6. Transport Layer 6 - 21© Wolfgang Effelsberg

TCP Connection Establishment

Three-Way-Handshake: Connection Establishment by three packets:

With the connection establishment also the initial sequence numbers of
both sides (both directions) are exchanged and confirmed.

Partner 1 Partner 2

Send SYN seq=x

Receive SYN

Send ACK x+1 SYN seq=y

Receive SYN+ACK

Send ACK y+1

Receive ACK

Computer Networks 6. Transport Layer 6 - 22© Wolfgang Effelsberg

Three-Way-Handshake

• The SYN flag indicates that the sequence numbers are to be
synchronized.

• SYN "costs" one byte with regard to the allocation of sequence numbers.

• Pure acknowledgements do not "cost" bytes.

Computer Networks 6. Transport Layer 6 - 23© Wolfgang Effelsberg

Timeout with the Connection Establishment

What happens, if the communication partner does not answer?

• The transmission of the packet is repeated, TCP regards this as usual
packet loss.

• After a fixed time period (timeout) the connection attempt is aborted and
the application is informed.

Computer Networks 6. Transport Layer 6 - 24© Wolfgang Effelsberg

TCP Connection Establishment (1)

Arranged connection clearing by four packets:

Partner 1 Partner 2

Send FIN seq=x

Receive FIN

Send ACK x+1

Receive ACK

Receive ACK+FIN

Send ACK y+1

Send FIN, ACK x+1

(Inform Application)

Receive ACK

1

2

3

4

Computer Networks 6. Transport Layer 6 - 25© Wolfgang Effelsberg

TCP Connection Establishment (2)

Takedown of a connection by two times "half-close":

• Since the TCP connection is bi-directional, both directions should always
be terminated separately from each other.

• The one who would like to terminate its transmission role, sets the FIN
flag.

• FIN "costs" one byte and is therefore confirmed by an
acknowledgement.

• The other participant could send further - however in practice one almost
always sees the behavior that the other participant as a reaction also
terminates its transmission role.

Computer Networks 6. Transport Layer 6 - 26© Wolfgang Effelsberg

TCP Reset

A packet, in which the RST bit is set in the TCP header, terminates the
connection in form of an "abortive release" (in contrast to an "orderly
release" with FIN):

• All data, which are buffered at the transmitter, are dropped, and the
reset packet is immediately sent. The connection is thereby instantly
closed from the view of the RST transmitter.

• With reset data can be lost (that does not happen with the connection
clearing with FIN).

• The receiver of a RST packet notifies the application and immediately
terminates the connection.

Computer Networks 6. Transport Layer 6 - 27© Wolfgang Effelsberg

Typical Data Flow with TCP

Data flow example of an interactive application

character

ack for character

dislpay of the character

ack for dislpay of the character

rlogin client rlogin server

Computer Networks 6. Transport Layer 6 - 28© Wolfgang Effelsberg

Delayed Acknowledgements (1)

In order to prevent that redundant TCP packets, which only contain one
ACK, are sent, sending of ACKs is frequently delayed:

rlogin client rlogin server

delayed ack

delayed ack

rlogin client rlogin server

character

ack for character and

the display of the character
delayed ack

delayed ack

ack for the display the character

Computer Networks 6. Transport Layer 6 - 29© Wolfgang Effelsberg

Delayed Acknowledgements (2)

• An ACK is usually delayed around a maximum of 200 ms with "delayed
acknowledgements"

• During this time data, which is sent in the opposite direction, can carry
the ACK "piggybacked", this saves the transmission of a separate ACK
packet.

• If there is no data to be sent within this time, a pure ACK packet without
data is transferred.

• The 200 ms timer is not drawn up for each packet, but runs globally, i.e.
every 200 ms all ACKs, which are still open, are sent. The timer however
is of course connectio-oriented, i.e., for each TCP connection and each
transmission direction there is a private timer.

Computer Networks 6. Transport Layer 6 - 30© Wolfgang Effelsberg

Mass Data Transfer

What happens, if large amount of data is transfered by TCP (bulk data
flow)? When is an ACK sent?

• So far: delayed ACK after 200 ms

• That would cause too many unconfirmed packets in the transit, if the
data rate is high (bulk data flow).

• Therefore with the mass data transfer every second packet is confirmed
immediately, even if the 200-ms-Timer did not run off yet.

Computer Networks 6. Transport Layer 6 - 31© Wolfgang Effelsberg

Error Protection in TCP

• TCP divides the byte stream into units, which will be transfered each in
one IP packet. These units are called segments.

• After TCP sent a segment by IP, a timer for this segment is started.
• If no confirmation of the successful receipt of this segment arrives within

the timers running time, the transmission is repeated.
• The timer dynamically adapts to the "normal" round trip time of the

connection.
• If a TCP receiver receives an error free segment from the transmitter, it

sends a confirmation of the successful receipt to the transmitter.
• The receiver buffers further segments, which were received correctly

after an error, until the error is corrected by transmission repetition ("go-
back-n" with buffering).

• No negative ACKs (NACKs) are sent!

Computer Networks 6. Transport Layer 6 - 32© Wolfgang Effelsberg

Error Recognition and Correction

• TCP computes a checksum over the entire segment. The computation
takes place with the same algorithm as with UDP. If the check sum
signals an error at the receiver, the segment is not confirmed. That leads
to expiration of the time limit at the transmitter and as consequence of
this to transmission repetition. The transmitter repeats the sending in the
"go-bake-n"-procedure.

• If segments are delivered out of sequence of IP, TCP restores the
correct order.

• If IP datagrams are doubled in the network, TCP filters the dupes.

Computer Networks 6. Transport Layer 6 - 33© Wolfgang Effelsberg

Flow Conrol and Congestion Control in TCP

Flow Control

TCP uses a sliding window mechanism for flow control. Like always in TCP,
the window size is expressed in bytes (not in packets!).

The size of the sliding windows is sent as the flow control parameter
"window size" by the receiver to the transmitter.

The size of the window can be changed during the connection. If for
example the receiver has only little buffer space, it is reduced.

Computer Networks 6. Transport Layer 6 - 34© Wolfgang Effelsberg

Fast Transmitter and Slow Receiver (1)

sequ 1, length 1024, ack 1, win 4096

ack 2049, win 2048

ftp server ftp client

sequ 1025, length 1024, ack 1, win 4096

sequ 2049, length 1024, ack 1, win 4096

sequ 3073, length 1024, ack 1, win 4096

ack 4097, win 0

ack 4097, win 4096

sequ 1, length 1024, ack 1, win 4096

sequ 1, length 1024, ack 1, win 4096

ack 2049, win 2048
ack 2049, win 2048

ftp server ftp client

sequ 1025, length 1024, ack 1, win 4096

sequ 1025, length 1024, ack 1, win 4096

sequ 2049, length 1024, ack 1, win 4096

sequ 2049, length 1024, ack 1, win 4096

sequ 3073, length 1024, ack 1, win 4096

sequ 3073, length 1024, ack 1, win 4096

ack 4097, win 0
ack 4097, win 0

ack 4097, win 4096
ack 4097, win 4096

Computer Networks 6. Transport Layer 6 - 35© Wolfgang Effelsberg

Fast Transmitter and Slow Receiver (2)

• The transmitter sends data faster than the receiver can read from its
buffer and hand on to the higher layers.

• The buffer of the receiver gets filled up, it signalizes this by a window
size of 0. This is an extension of the original sliding window mechanism,
that allows to acknowledge packets concerning the error protection,
without giving the transmitter the right to send further packets.

• Only if the buffer of the receiver again has free space, this free space is
communicated to the transmitter in a further ACK in form of window size.

Computer Networks 6. Transport Layer 6 - 36© Wolfgang Effelsberg

Congestion Control

Problem: If all transmitters in the network always send as many packets, as
fit into the buffers of their receivers, an overload (blockage, congestion) may
evolve inside the network.

If all connections have the same bandwidth and both A and B send with the
full bandwidth of the connection, an overloading emerges inside the
network (congestion). TCP connections recognize this and voluntarily
regulate down the bandwidth!

A

B

C D

E

F

f1

f2

f1 + f 2

Computer Networks 6. Transport Layer 6 - 37© Wolfgang Effelsberg

Congestion Window

• In order to prevent congestion, an additional parameter Congestion
Window (cwnd) is carried with the transmitter.

• cwnd is carried in bytes like the flow control window communicated by
the receiver.

• A transmitter may always send only the MINIMUM of (cwnd,
Flusskontroll Window) of data.

• There is no necessity to transfer cwnd between the partners!

Computer Networks 6. Transport Layer 6 - 38© Wolfgang Effelsberg

Congestion Control in Steady State

Problem
How does the transmitter determine the correct size for the Congestion
Window?
Solution
It gradually tries to increase the window until congestion occurs. Then it
decreases its size again.
As long as no packets are lost, with each ACK cwnd is increased by 1/cwnd
segments. Per round trip time the congestion window thus becomes larger
approx. one segment ("additives increase").

Since there are no specific reporting packets from the inside of the network
for congestion, TCP interprets each packet loss of the connection as sign for
congestion!

There are two different reactions to segment losses, which will be described
in the following.

Computer Networks 6. Transport Layer 6 - 39© Wolfgang Effelsberg

Signs of Congestion

• Triple Duplicate Acknowledgement (TDACK): If a segment is lost, but
the following segments arrive, the transmitter receives several ACKs
with the same sequence number. After the third "Duplicate ACK" (thus
four ACKs altogether for the same segment) the missing packet is
transferred again, without waiting for the packet‘s timeout ("fast
retransmit"). The transmitter interprets a TDACK as "light" overload and
reduces cwnd to half of the original size ("multiplicative decrease").

• Timeout: If no more subsequent packets arrive after a lost packet, it
does not result in a TDACK, but in a timeout for the lost packet. The
transmitter interprets this as heavy overload and reduces cwnd to one
segment.

Computer Networks 6. Transport Layer 6 - 40© Wolfgang Effelsberg

Choise of the Timeout Value

Question: How large should the timeout value be selected?

• Always larger than the Round Trip Time (RTT)

• RTT may vary à Safety addition depending on the RTT variance
• EstimatedRTT = (1-x) * EstimatedRTT + x * SampleRTT
• Deviation = (1-x) * Deviation + x * abs(SampleRTT - EstimatedRTT)
• Timeout = EstimatedRTT + 4 * Deviation

• A well selected timeout value is important for high data throughput in
networks, in which packet losses arise frequently.

Computer Networks 6. Transport Layer 6 - 41© Wolfgang Effelsberg

Sawtooth curve of the TCP Throughput

The Additive Increase, Multiplicative Decrease algorithm results in a saw
tooth shaped curve of the actual throughput of a TCP connection in the
steady state. From regulation-technical view the procedure is stable, i.e. it
does not swing up.

Observation: The area under the curve corresponds to the TCP data rate!

An example is shown in the illustration below.

10
20
30
40
50
60
70

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

K
B

Time (seconds)

Computer Networks 6. Transport Layer 6 - 42© Wolfgang Effelsberg

TCP Fairness

If n TCP streams share one link, each should occupy a throughput of
approx. 1/n of the available bandwidth.

Example: Two TCP stream run over the same link:

The data rates tend towards the point of fair capacity distribution under full
utilization of the existing bandwidth.

TCP 1

TC
P

 2 fair

Computer Networks 6. Transport Layer 6 - 43© Wolfgang Effelsberg

Slow-Start (1)

Problem:
If a TCP connection is newly established, it takes a very long time until the
transmitter achieves the optimal bit rate, since with each round trip time
cwnd is increased only by one packet size (MSS = max. segment size).

Solution:
The Slow-Start-Algorithm by Van Jacobsen

• cwnd is initialized with the MSS of the receiver

• slow start threshold (ssthresh) is initialized with 65353

• Per Round-Trip-Time do the follwoing:
• If no losses and cwnd < ssthresh:

Slow-Start-Phase: increase cwnd by MSS for every received ACK
(this is exponentially!)

• If loss or cwnd >= ssthresh:
End of the Slow-Start-Phase: normal AIMD-algorithm starts.

Computer Networks 6. Transport Layer 6 - 44© Wolfgang Effelsberg

Slow-Start (2)

A TCP slow start likewise takes place after a timeout (signs of heavy
congestion). The ssthresh value is halved, then a new slow start phase
begins.

Note

This algorithm is called "slow start" for historical reasons, although it actually
is a "Quick start algorithm" from today's point of view. Before it was built into
TCP, every new connection began with a window size, which corresponded
to the flow control window of the receiver. This frequently led to immediate
congestion and packet losses.

Computer Networks 6. Transport Layer 6 - 45© Wolfgang Effelsberg

Slow-Start: Example of a Progression

Computer Networks 6. Transport Layer 6 - 46© Wolfgang Effelsberg

TCP Programming interface (API)

The programming of TCP takes place with the concept of sockets. A socket
is the program-technical realization of a port.

• The server waits for connecting requests of clients on a well defined
port.

• A client connects to the server

• After the connection is established, the server can create a thread (light-
weight process) for this connection, which then handles further received
packets of the connection.

• If it does not create a new thread, the connecting requests are
sequentially processed (rare).

Computer Networks 6. Transport Layer 6 - 47© Wolfgang Effelsberg

Summary TCP

Advantages of TCP
• Secured data communication
• Efficient data transfer despite complexity of the protocol (proven

experimentally up to 100 MBit/s on standard machines)
• Applicable in LAN and WAN domains
• Well usable for low data rates (e.g. interactive terminal) and high data

rates (e.g. file transfer)

Disadvantages towards UDP
• Higher resource requirements (intermediate memory, status informations

of transmitter and receiver, many timers)
• Connection establishment and takedown also necessary with short data

transfers
• Multicast impossible

