
Computer Networks 6. Transport Layer 6 - 1© Wolfgang Effelsberg

6. Transport Layer

6.1 Internet Transport Layer Architecture

6.2 UDP (User Datagram Protocol)

6.3 TCP (Transmission Control Protocol)

Computer Networks 6. Transport Layer 6 - 2© Wolfgang Effelsberg

6.1 Internet Transport Layer Architecture

The Internet transport protocols are end-to-end protocols!

Application

Transport

Internet

Network
Interface

Network
Interface

Internet

Application

Transport

Internet

Network
Interface

identical
message

identical
packet

Gateway G

identical
datagram

identical
datagram

identical
frame

identical
frame

Physical Net 1 Physical Net 2

Host A Host B

Computer Networks 6. Transport Layer 6 - 3© Wolfgang Effelsberg

Important INTERNET Protocols

SMTP = Simple Mail Transfer Protocol
FTP = File Transfer Protocol
TELNET = Remote Login Protocol
UDP = User Datagram Protocol
NFS = Network File System
TCP = Transmission Protocol
IP = Internet Protocol
LLC = Logical Link Control
MAC = Media Access Control

SMTP
Mail

FTP
File Transfer

TELNET
Remote
Login

NFS
HTTP

Web access

TCP UDP

IP

LLC and MAC

Physical layer

Computer Networks 6. Transport Layer 6 - 4© Wolfgang Effelsberg

Addressing of Service Processes: Ports

• The layer 4 address serves to identify a certain type of service
(application type) which is assigned to an application process on the
host computer.

• Addressing by process number (process ID) would be unsuitable
because processes are generated and terminated dynamically by the
operating system; therefore process numbers are unknown outside the
local system.

• The mapping between a service and a process is not necessarily 1:1:

• One process may provide several services.

• Several processes may provide the same service.

• Thus we introduce the concept of an abstract communication end point:
a port

Computer Networks 6. Transport Layer 6 - 5© Wolfgang Effelsberg

Port Characteristics

• One service is assigned to exactly one port.

• Several connections can run over the same port at the same time.

• Asynchronous and synchronous port access is possible.

• Each port is associated with a buffer.

• The port provides an application programming interface (API).

Computer Networks 6. Transport Layer 6 - 6© Wolfgang Effelsberg

Examples for Reserved Port Numbers

Some port allocations ("well-known addresses")

Decimal Key word Unix Key word Description

0 Reserved
. . . .
. . . .
20 FTP-DATA ftp-data File Transfer

Protocol (data)
21 FTP ftp File Transfer

Protocol
23 TELNET telnet Terminal Con-

nection
25 SMTP smtp Simple Mail

Transfer Protocol
42 NAME-

SERVER
name Host Name

Server
43 NICNAME whois Who Is

Computer Networks 6. Transport Layer 6 - 7© Wolfgang Effelsberg

6.2 UDP (User Datagram Protocol)

UDP is the unreliable, connectionless datagram transport protocol of the
Internet. It basically serves to offer a programming interface for direct IP
access to applications, supplemented by port addressing.

Characteristics

• Datagram transport
• No guaranteed delivery of the packets to the receiver
• No automatic retransmission in case of bit errors
• No flow control
• No congestion control
• No guarantee of correct packet order at the receiver

• Multicast is possible

Computer Networks 6. Transport Layer 6 - 8© Wolfgang Effelsberg

• The packet length is counted in bytes (including UDP header)
• The checksum is built over header fields and the user data field for

error detection. A bit-column-wise EXOR is computed over the 16-bit
words of the packet.

• The use of the checksum is optional (if UDP is carried over IPv4). It is
mandatory if IPv6 is used.

UDP Packet Format

UDP-Header 0 16 31

Transmitter port Receiver port

Packet length Checksum

Data

...

Computer Networks 6. Transport Layer 6 - 9© Wolfgang Effelsberg

Characteristics of UDP

• Minimal consumption of resources (storage, CPU time), very efficient

• No explicit connection establishment, minimal protocol message
overhead

• Easy implementation

UDP is particularly suitable for simple one-way or client-server interactions.
Examples are status reports or request/response protocols:

• a request packet from the client to the server

• a response packet from the server to the client

Computer Networks 6. Transport Layer 6 - 10© Wolfgang Effelsberg

Examples for the Use of UDP

• Domain Name Service (DNS)
• SNMP: Simple Network Management Protocol
• NFS: Network File System
• many multimedia protocols that do not want error protection in layer 4
• all multicast protocols, including RTP for real time applications. Often

used for real-time audio and video streams.

Computer Networks 6. Transport Layer 6 - 11© Wolfgang Effelsberg

6.3 TCP (Transmission Control Protocol)

TCP is the first protocol in the Internet protocol hierarchy that achieves a
secured data communication between end systems.

Characteristics
• Stream-oriented: TCP transports a serial bit stream of the application in

the form of 8-bit bytes.
• Connection-oriented: Before data transmission begins a connection is

established between both communication partners. Error control and
flow control operate on each connection separately.

• Segmentation: The sequential data stream (byte stream) is cut up into
segments (packets) for transmission.

• Duplex communication: A TCP connection is full-duplex: data can be
transported in both directions at the same time.

Computer Networks 6. Transport Layer 6 - 12© Wolfgang Effelsberg

What is contained in a TCP standard?

The TCP standard (RFC 793) specifies

• the formats of data packets and control information

• the procedures for
• connection establishment and takedown
• error detection and error correction
• flow control
• congestion control (by "abusing" flow control)

RFC 793 does not specify the interface to the application program (e.g., a
socket interface). This is local matter.

Computer Networks 6. Transport Layer 6 - 13© Wolfgang Effelsberg

Addressing

A TCP connection is uniquely determined by a quintuple of

• IP addresses of the transmitter and the receiver

• port addresses of the sender and the receiver

• TCP protocol identifier

Computer Networks 6. Transport Layer 6 - 14© Wolfgang Effelsberg

Packet Format

Format of the TCP header

0 4 10 16 24 31

Source Port Destination Port

Sequence Number

Acknowledgement Number

HLEN Res. code
bits Window Size

Checksum Urgent Pointer

Options (if any) Padding

Data

...

Computer Networks 6. Transport Layer 6 - 15© Wolfgang Effelsberg

Data Fields in the TCP Header (1)

SEQUENCE NUMBER

ACKNOWLEDGMENT
Byte numbers

HLEN Header length = Offset of the data field

code bits

URG

ACK

PSH

RST

SYN

FIN

WINDOW SIZE

URGENT POINTER

6 bits from left to right as follows:

Ack Number field is valid

Urgent Pointer is used

Push

Reset of the connection

Synchronize sequence numbers

End of the data stream

Window size in bytes

Byte Offset to the current sequence
number at witch important data begins

Computer Networks 6. Transport Layer 6 - 16© Wolfgang Effelsberg

Data Fields in the TCP Header (2)

• Port number: like for UDP.

• Sequence number: the position of the first byte in the user data field in
the logical byte stream.

• Acknowledgement number: Identifies the next byte in the data stream
that the receiver expects from the sender. Note that not individual
packets but byte positions in the logical byte stream are confirmed.
Thus, an accumulation of confirmations over several TCP packets is
possible. Acknowledgements control the re-transmission in the event of
an error. They also influence the sliding window for flow control. Since
data can flow in both directions at the same time (duplex operation),
there is a separate numbering sequence for each direction.

• Header length (HLEN): Size of the TCP header in 32 bit words.

Computer Networks 6. Transport Layer 6 - 17© Wolfgang Effelsberg

Data Fields in the TCP Header (3)

• Code bits (Flags)
• URG: urgent pointer field is valid ("in use")
• ACK: acknowledgement field is valid ("in use")
• PSH: (push) The receiver should forward the data to the application

as quickly as possible.
• RST: reset the connection
• SYN: synchronization of the initial sequence numbers at connection

setup time
• FIN: The transmitter has completed his data transfer.

• Window size: Number of bytes that the sender of this packet can accept
in the opposite direction until his buffer is full (flow control).

Computer Networks 6. Transport Layer 6 - 18© Wolfgang Effelsberg

Data Fields in the TCP Header (4)

• Checksum: The checksum is computed over the entire segment, inclu-
ding the header. A bit-column-wise EXOR is computed over the 16-bit
words of the packet (as with UDP).

• Urgent pointer: Identifies the last byte in the data segment that should
be processed with high priority. The data following this byte has normal
priority.

• Options: optional data fields for special purposes.

The data segment of a TCP packet is optional. For example, an empty TCP
packet can occur as a confirmation of received data if no data is ready to
send in the opposite direction.

Computer Networks 6. Transport Layer 6 - 19© Wolfgang Effelsberg

TCP/IP: Format of the Entire Header

Version IHL Type of
Service Total Length

Identification Fragment OffsetD
F

M
F

Time to live Protocol Header Checksum

Source address

Destination address

Options

Source Port Destination Port

Sequence number

Piggybacked acknowledgement

Window SizeTCP
header
length

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Checksum Urgent Pointer

Options (0 or more 32 bit words)

.
DATA

.

.

I
P
-
H
E
A
D
E
R

T
C
P
-
H
E
A
D
E
R

32 bits

Computer Networks 6. Transport Layer 6 - 20© Wolfgang Effelsberg

Main Functions in TCP

• Positive acknowledgement or retransmission (PAR)

• Retransmission after timeout by the sender. No NACKs in TCP!

• "sliding window" mechanism for flow control. Variable window size: with
each acknowledgement from the receiver, a new window size is
transmitted.

• Error detection by checksum.

• Piggybacking: Data and control information of the opposite direction can
be transmitted in the same TCP packet.

Computer Networks 6. Transport Layer 6 - 21© Wolfgang Effelsberg

TCP Connection Establishment

Three-Way Handshake: connection establishment with three packets:

At connection establishment, the initial sequence numbers for both sides
(both directions) are exchanged and confirmed, they are “synchronized“,
thus the name SYN for the packet.

Partner 1 Partner 2

Send SYN seq=x

Receive SYN

Send ACK x+1 SYN seq=y

Receive SYN+ACK

Send ACK y+1

Receive ACK

Computer Networks 6. Transport Layer 6 - 22© Wolfgang Effelsberg

Timeout During Connection Establishment

What happens if the communication partner does not answer?

• The transmission of the packet is repeated, TCP regards this as a usual
packet loss.

• After a predefined time period (timeout), the attempt to connection is
aborted, and the application (next higher layer) is informed.

Computer Networks 6. Transport Layer 6 - 23© Wolfgang Effelsberg

TCP Connection Termination (1)

Normal termination of a connection with four TCP messages:

Partner 1 Partner 2
Send FIN seq=x

Receive FIN

Send ACK x+1

Receive ACK

Receive ACK+FIN

Send ACK y+1

Send FIN, ACK x+1

inform application

Receive ACK

1

2

3

4

Computer Networks 6. Transport Layer 6 - 24© Wolfgang Effelsberg

TCP Connection Termination (2)

Takedown of a connection by two "half-close„ operations:

• Since the TCP connection is bi-directional, both directions must be
terminated separately.

• The communication partner who wants to stop sending sets the FIN flag.

• FIN "costs" one byte and is therefore confirmed by an acknowledge-
ment.

• The other participant can keep sending. However, in practice, one al-
most always sees the behavior that the other participant terminates the
connection.

Computer Networks 6. Transport Layer 6 - 25© Wolfgang Effelsberg

TCP Reset

A packet in which the RST bit is set terminates the connection immediately,
it signals an ABORT (in contrast to an orderly release with FIN).

• All normal data buffered at the sender is dropped, and the RST packet is
sent immediately. The connection is closed.

• As a consequence, with RST, data can be lost.
• The receiver of the RST packet notifies the application and immediately

terminates the connection.

Computer Networks 6. Transport Layer 6 - 26© Wolfgang Effelsberg

Data Flow of an Interactive Application over TCP

character

ack for display of the character

rlogin serverrlogin client

ack for character

display of the character

Computer Networks 6. Transport Layer 6 - 27© Wolfgang Effelsberg

Delayed Acknowledgements (1)

In order to reduce the number of TCP packets that contain ACKs only, the
sending of ACKs is often delayed:

character

ack for display of the character

rlogin serverrlogin client

ack for character and

display of the character
delayed ack

delayed ack

Computer Networks 6. Transport Layer 6 - 28© Wolfgang Effelsberg

Delayed Acknowledgements (2)

• An ACK is usually delayed for a maximum of 200 ms

• During this time, data sent in the opposite direction can carry the ACK
"piggybacked“. This saves the transmission of a separate ACK packet.

• If there is no data to be sent before timeout, a pure ACK packet without
data is transmitted.

• The 200 ms timer is not set for every single packet but runs globally, i.
e., after 200 ms all ACKs that are still open are sent. However, the timer
is of course connection-oriented, i.e., for each TCP connection and each
transmission direction there is a separate timer.

Computer Networks 6. Transport Layer 6 - 29© Wolfgang Effelsberg

Mass Data Transfer

What happens, if large amount of data is transferred by TCP (bulk data
flow)? When is an ACK sent?

• So far: delayed ACK after 200 ms

• That would cause too many unconfirmed packets in transit if the data
rate is high (bulk data flow).

• Therefore, every second packet is confirmed immediately even if the
200-ms timer has not yet expired.

Computer Networks 6. Transport Layer 6 - 30© Wolfgang Effelsberg

Error Control in TCP

• TCP divides the byte stream into units, which will be transferred each in
one IP packet. These units are called segments.

• After TCP sent a segment by IP, a timer for this segment is started.
• If no confirmation of the successful receipt of this segment arrives within

the timers running time, the transmission is repeated.
• The timer dynamically adapts to the "normal" round trip time of the

connection.
• If a TCP receiver receives an error free segment from the transmitter, it

sends a confirmation of the successful receipt to the transmitter.
• The receiver buffers further segments, which were received correctly

after an error, until the error is corrected by transmission repetition ("go-
back-n" with buffering).

• No negative ACKs (NACKs) are sent!

Computer Networks 6. Transport Layer 6 - 31© Wolfgang Effelsberg

Error Detection and Correction

• TCP computes a checksum over the entire segment. The computation
takes place with the same algorithm as with UDP. If the check sum
signals an error at the receiver, the segment is not confirmed. That leads
to expiration of the time limit at the transmitter and as consequence of
this to transmission repetition. The transmitter repeats the sending in the
"go-bake-n"-procedure.

• If segments are delivered out of sequence by IP, TCP restores the
correct order.

• If IP datagrams are doubled in the network TCP filters out the duplicates.

Computer Networks 6. Transport Layer 6 - 32© Wolfgang Effelsberg

Flow Control and Congestion Control in TCP

Flow Control

TCP uses a sliding window mechanism for flow control. As always in TCP,
the window size is expressed in bytes (not in packets!).

The size of the open window is sent as the flow control parameter "window
size" by the receiver to the transmitter.

The size of the window can be changed during the connection. For example,
if the receiver is running out of buffer space, he reduces the window size.

C
om

pu
te

r N
et

w
or

ks
6.

 T
ra

ns
po

rt
La

ye
r

6
-3

3
©

W
ol

fg
an

g
E

ffe
ls

be
rg

Fa
st

 T
ra

ns
m

itt
er

 a
nd

 S
lo

w
 R

ec
ei

ve
r

(1
)

Fl
ow

 c
on

tr
ol

ex

am
pl

e

1

se
qu

1,
 le

ng
th

 1
02

4,
 a

ck
1,

 w
in

40
96

ft
p

se
rv

er
ft

p
cl

ie
nt

ac
k

20
49

, w
in

 2
04

8

se
qu

10
25

, l
en

gt
h

10
24

, a
ck

1,
 w

in
40

96

se
qu

20
49

, l
en

gt
h

10
24

, a
ck

1,
 w

in
40

96
se

qu
30

73
, l

en
gt

h
10

24
, a

ck
1,

 w
in

40
96

ac
k

40
97

, w
in

 0

ac
k

40
97

, w
in

 4
09

6

2 3

Computer Networks 6. Transport Layer 6 - 34© Wolfgang Effelsberg

Fast Transmitter and Slow Receiver (2)

Explanation of the flow control example

1.) The sender sends faster than the receiver can process the incoming
packets.

2.) The buffer of the receiver fills up, he signals this fact to the sender by a
window size of 0. Note that this is an extension of the original sliding
window flow control protocol where the window size was fixed for the
entire connection. This extension allows to acknowledge the correct
receipt of packets from an error control point of view, without giving the
sender the right to send more packets. In other words, it separates error
control from flow control.

3.) When the receiver has enough free buffer space again, a new window
size is communicated to the sender with the next ACK.

Computer Networks 6. Transport Layer 6 - 35© Wolfgang Effelsberg

Congestion Control

Problem: Even if all senders in the network send only as many packets as
their receivers can accept, congestion can still evolve inside the network.

If connections f1 and f2 have the same bandwidth, and both A and B send
at full bandwidth, congestion might occur between nodes C and D. TCP
connections try to detect this and slow down voluntarily!

A

B

C D

E

F

f1

f2

f1 + f 2

Computer Networks 6. Transport Layer 6 - 36© Wolfgang Effelsberg

Congestion Window

• In order to prevent congestion, an additional parameter congestion
window (cwnd) is maintained locally at each sender. cwnd is counted in
bytes (like the flow control window).

• A sender may always send only the MINIMUM of (cwnd, flow control
window) of data.

• Note that cwnd it is NOT communicated to the partner!

Computer Networks 6. Transport Layer 6 - 37© Wolfgang Effelsberg

Congestion Control in Steady State

Problem
How does the sender determine the appropriate size for the congestion
window cwnd?
Solution
It gradually tries to increase cwnd until congestion occurs. Then it decreases
it again.
As long as no packets are lost, with each ACK received, cwnd is increased
by 1/cwnd segments. Thus, per round trip time, the congestion window
increases by approximately one segment size ("additive increase").

Since there are no specific congestion report packets from inside the
network, TCP interprets every packet loss as a sign for congestion!

Computer Networks 6. Transport Layer 6 - 38© Wolfgang Effelsberg

Signs of Congestion

There are two different reactions to packet loss in TCP:

• Triple Duplicate Acknowledgement (TDACK): If a packet is lost but
subsequent packets arrive correctly, the sender receives several ACKs
with the same sequence number. After the third "Duplicate ACK" (i. e.,
four ACKs altogether for the same segment) the missing packet is
transferred again, without waiting for the packet‘s timeout ("fast
retransmit"). The transmitter interprets a TDACK as "light" overload and
reduces cwnd to half of the original size ("multiplicative decrease").
ssthresh is also reduced to half the value of cwnd (see below).

• Timeout: If no packets arrive anymore after a lost packet, this does not
result in a TDACK but in a timeout for the lost packet at the sender. The
sender interprets this as heavy overload and reduces cwnd to one
segment. In other words, it starts sending again as if this were a new
connection.

Computer Networks 6. Transport Layer 6 - 39© Wolfgang Effelsberg

Setting the Timeout Value

Question: How large should the timeout value be selected? A well-chosen
timeout value is important in order to achieve high data throughput in
networks with frequent packet loss.

Solution
• Timeout must always be larger than the Round Trip Time (RTT) of a

packet

• RTT may vary à add a safety margin depending on the observed RTT
variance

• formulae:
• estimatedRTT = (1-x) * estimatedRTT + x * sampleRTT
• deviation = (1-x) * deviation + x * abs(sampleRTT - estimatedRTT)
• timeout = estimatedRTT + 4 * deviation

Computer Networks 6. Transport Layer 6 - 40© Wolfgang Effelsberg

Sawtooth Curve of TCP Throughput

The Additive Increase, Multiplicative Decrease (AIMD) algorithm results in a
sawtooth-shaped curve for the actual throughput of a TCP connection in
steady state.

Observation: The area under the curve corresponds to the TCP data rate.

10
20
30
40
50
60
70

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

kB

time (s)

Computer Networks 6. Transport Layer 6 - 41© Wolfgang Effelsberg

TCP Fairness

If n TCP streams share the same link each should use approx. 1/n of the
available bandwidth B.

Example: Two TCP streams running over the same link:

The data rates of TCP1 and TCP2 converge to the point of a fair capacity
distribution with full utilization of the available bandwidth B.

TCP 1

TC
P

 2

fair
B

B

Computer Networks 6. Transport Layer 6 - 42© Wolfgang Effelsberg

Slow-Start (1)

Problem:
When a TCP connection starts it takes a long time until the sender achieves
the optimal bit rate since with each round trip time cwnd is increased only by
one segment size. (MSS = max. segment size).

Solution:
The Slow-Start-Algorithm by Van Jacobsen

• cwnd is initialized with the MSS of the receiver

• Slow-start-threshold (ssthresh) is initialized with 65353 (64 k bytes)

• Per Round-Trip-Time do the following:
• If no loss and cwnd < ssthresh:

Slow-Start-Phase: increase cwnd by MSS for every received ACK
(exponential increase!)

• If packet loss occurs or cwnd >= ssthresh:
End of Slow-Start-Phase: the normal AIMD algorithm takes over.

Computer Networks 6. Transport Layer 6 - 43© Wolfgang Effelsberg

Slow-Start (2)

A TCP slow start likewise takes place after a timeout (indication of heavy
congestion). The ssthresh value is set to half of the current cwnd value, then
a new slow start phase begins.

Note

This algorithm is called "slow start" for historical reasons although it actually
is a “quick start algorithm" from today's point of view. Before it was built into
TCP, every new connection began with a window size determined by the
flow control window of the receiver. This often led to immediate congestion
and packet loss, not only for the new connection but also for other connec-
tions sharing links on the same path.

Computer Networks 6. Transport Layer 6 - 44© Wolfgang Effelsberg

Slow Start Example

Computer Networks 6. Transport Layer 6 - 45© Wolfgang Effelsberg

TCP Programming Interface (API)

Programming of TCP is done with sockets. A socket is the API for a port.

• The server waits for connection requests of clients on a well defined
port.

• A client connects to the port.

• After the connection is established the server creates a thread (light-
weight process) for this connection which then handles all the data
traffic.

Computer Networks 6. Transport Layer 6 - 46© Wolfgang Effelsberg

TCP Summary

Advantages of TCP
• Secure data communication
• Efficient data transfer in spite of complexity of the protocol (proven

experimentally up to 100 MBit/s on standard computers)
• Applicable in LANs and WANs
• Runs well for low data rates (e.g., an interactive terminal) as well as high

data rates (e.g., a file transfer)

Disadvantages in comparison with UDP
• Higher resource requirements (memory for status information and

buffers, CPU, many timers)
• Connection establishment and termination cause considerable overhead

for short data transfers
• Multicast is not possible

