Computer Networks

SS 2004

Prof. Dr. Wolfgang Effelsberg

Lehrstuhl für Praktische Informatik IV Universität Mannheim

	Computer Networks	© Wolfgang Effelsberg	1. Introduction	1 - 1	Ľ
1				-	

Contents (1)

- 1. Introduction
- 1.1 Definition of a Computer Network
- 1.2 Standard Organizations
- 1.3 Protocol Architecture
- 1.4 ISO/OSI Reference Model
- 2. Physical Layer
- 2.1 Definition
- 2.2 Mechanical, Electrical and Functional Specifications
- 2.3 Transmission Techniques, Modulation, Multiplexing
- 2.4 Physical Media
- 2.5 Examples: V.24, ADSL

Contents (2)

- 3. Data Link Layer
- 3.1 Transmission Errors
- 3.2 Error Detecting and Error Correcting Codes
- 3.3 Bit Stuffing
- 3.4 Acknowledgments and Sequence Numbers
- 3.5 Flow Control
- 3.6 Examples: HDLC, PPP

Computer Networks	© Wolfgang Effelsberg	1. Introduction	1 - 3	

Contents (3)

4. Local Area Networks

- 4.1 Topologies for Local Area Networks
- 4.2 Medium Access Control
- 4.3 ALOHA
- 4.4 CSMA/CD (Ethernet)
- 4.5 Hubs and LAN Switching
- 4.6 Token Ring
- 4.7 Wireless LAN (IEEE 802.11)
- 4.8 Logical Link Control for LANs
- 4.9 LAN Bridges

Contents (4)

5. Wide Area Networks and Routing

- 5.1 Packet Switching
- 5.2 Virtual Connections vs. Datagrams
- 5.3 Routing in Unicast Networks
- 5.4 Routing in Multicast Networks
- 5.5 Congestion Control
- 5.6 Examples: IP Version 4, IP Version 6, ATM

6. Transport Layer

- 6.1 Internet Transport Layer Architecture
- 6.2 UDP (User Datagram Protocol)
- 6.3 TCP (Transmission Control Protocol)

Computer Networks	© Wolfgang Effelsberg	1. Introduction	1 - 5	

Contents (5)

7. Application Layer

- 7.1 Internet Application Layer Architecture
- 7.2 SMTP for Electronical Mail
- 7.3 FTP for File Transfer
- 7.4 NFS for Remote Access to Files
- 7.5 **TELNET** for Virtual Terminal (Remote Login)
- 7.6 HTTP for the World Wide Web
- 7.7 Telephone Services over IP

8. Directory Services: The Domain Name Service

- 8.1 DNS Naming
- 8.2 DNS Protocols

Literature (1)

Comer: Internetworking with TCP/IP, Vol.1; Prentice-Hall, 1995

De Prycker, Martin: Asynchronous Transfer Mode. 3rd Edition, Prentice Hall Europe, 1995

Halsall, Fred: Data Communications, Computer Networks and Open Systems. 4th Edition, Addison-Wesley, 1995

Huitema, Ch.: Routing in the Internet, Prentice Hall, Englewood Cliffs, 1995

Huitema, Ch.: IPv6, 2nd Edition, Prentice Hall, Englewood Cliffs, 1998

Kuo, Frank, Effelsberg, Wolfgang und Garcia-Luna-Aceves, J.J.: Multimedia Communications - Protocols and Applications. Prentice Hall, Upper Saddle River, 1998

Kurose, James F.; Ross, Keith W.: Computer Networking. 2nd Edition, Addison Wesley, 2002

Computer Networks	© Wolfgang Effelsberg	1. Introduction	1 - 7	1

Literature (2)

Peterson, Larry L. and Davie, Bruce S.: Computernetze – ein modernes Lehrbuch. dpunkt-Verlag, Heidelberg, 2000 (or the original in English: Peterson, Larry L. and Davie, Bruce S.: Computer Networks - A Systems Approach. 3rd Edition, Morgan Kaufman, 2003)

Stevens, W. Richard: TCP/IP Illustrated. Volume 1: The Protocols. Addison Wesley, 1994.

Tanenbaum, A.S.: Computer Networks. 3rd edition, Prentice Hall, 1996

1.1 Definition of a Computer Network

Definition

A computer network connects independent computers for the purpose of data exchange.

As opposed to:

- Bus, channel
- Interconnection network for parallel computers (multiprocessor systems)
- Terminal network

	Computer Networks	L	© Wolfgang Effelsberg	1. Introduction	1	1 - 9	L

Bus

A **bus** connects the components of a computer within the box.

Interconnection Network

Interconnection network in a multiprocessor

1.2 Standard Organizations

- International Organization for Standardization (ISO)
- International Telecommunications Union (ITU)
- CEN/ CENELEC/ ETSI (European)
- National Institute of Standards and Technology (NIST)
- and many more

Computer N	letwork
------------	---------

© Wolfgang Effelsberg

1. Introduction

1 - 13

International Standards Organization (ISO)

Standardization on an international level

- Members: National Standards Organization (DIN, ANSI, AFNOR,...)
 - ISO TC 97: Information Processing Systems
 - DIN: Normungsausschuss Informationsverarbeitung (NI)
 - TC 97/SC 6: Data Communications
 - TC 97/SC 18: Text and Office Communications
 - TC 97/SC 21: Open Systems Interconnection
- Steps towards a standard:
 - 1. Working Draft (WD)
 - 2. Draft Proposal (DP)
 - 3. Draft International Standard (DIS)
 - 4. International Standard (IS)

International Telecommunications Union (ITU)

- Formerly: Comité Consultatif International de Télégraphie et Téléphonique (CCITT)
- ITU-R (ITU Radiocommunication Standardization Sector)
- ITU-T (ITU Telecommunication Standardization Sector)
- · International union of telecom organizations
- Plenary assembly every 4 years (..., 1980, 1984, 1988, 1992, 1996 ...)
- · Standard documents are called "recommendations"
- ITU is a UN organisation

1	Computer Networks	© Wolfgang Effelsberg	1. Introduction	1 - 15	L

CEN / CENELEC / ETSI

- European Standards Organizations
- Europe-wide harmonization of national standards
- Often prepare input for ISO and ITU-T

Internet Standards

- IAB (Internet Activity Board)
 - IETF (Internet Engineering Task Force)
 - IRTF (Internet Research Task Force)
- RFC (Request for Comment) fulfills the role of an internet standard. Surprisingly the definition of RFCs is an informal process!
- Working groups, each with a leader
 - anyone can become a working group member
 - communication mainly by e-mail, occasional IETF meetings
 - typical duration: 9-18 months
 - result: Internet Draft
- Steps towards a standard: Internet Draft à at least two independent implementations; interoperability tests; stability for 4 months à Internet Standard (RFC)

Industry Consortia

- Association of predominantly industrial partners
- Goal: rapid realiziation of compatible products. Therefore: quick development of a common de-facto standard
- Submission of the results to international standardization organizations
- Exaples:
 - NFS (Network File System)
 - ATM (ATM-Forum)
 - WWW consortium

1.3 Protocol Architecture

We structure the complex communication system into layers:

- The lowest layer (layer 1) provides the physical connection.
- Each higher layer adds more functionality, hiding details from the next higher layer.
- "Horizontal" interfaces between layers are a local matter (there is no need for standardization). They are called "service interfaces".
- The rules of communication between two entities at the same layer are called "communication protocol".

Computer Networks	© Wolfgang Effelsberg	1. Introduction	1 - 19

1.4 The ISO/OSI Reference Model

- OSI = OPEN SYSTEMS INTERCONNECTION
- In short: ISO/OSI Reference Model
- ISO International Standard 7498
- Introduces the layered architecture and basic terminology
- Proposes seven layers and their functionality

Seven Layers and their Functionality

Seven Layers of the ISO-Reference Model (1)

- The **physical layer** provides the transmission of a digital data stream over a transmission line.
- The **data link layer** provides error and flow control for the physical bit stream. In LANs it also implements medium access control.
- The network layer provides routing algorithms to compute end-to-end paths through the network. It also implements packet queueing and forwarding in the "routers".
- The **transport layer** provides reliable end-to-end data connections from a process at the source node to a process at the destination node.
- The session layer coordinates the cooperation (dialog) between applications.

Seven Layers of the ISO-Reference Model (2)

- The **presentation layer** provides a common transfer syntax for all systems, and conversion rules from the local to the common data representation.
- The application layer implements the application-specific protocols.

Terminology of the ISO Reference Model (1)

Open System

• Computer system (hardware, software, periphery, ...) that intends to communicate and implements the OSI standards

• (N)-Layer

• Is formed by all entities of a (N)-hierarchy level in all open systems

• (N)-Entity

- Implementation of a (N)-layer in a system
- There can be different types of (N)-entities that implement (N)-layer protocols in a different way, e.g., from different manufacturers

Peer Entities

· Entities of the same layer at different locations.

- The main task of every layer is to offer services to the layer above. These services are made up of
 - · services implemented within this layer, and
 - the cumulative result of services of all the layers below.
- Layers are connected to the next higher and lower layers by service primitives.
- Direct (local) communication takes place with layers (N+1) and (N-1).
- Indirect communication with peer entities takes place according to the rules of the communication *protocol*.

Computer Networks	© Wolfgang Effelsberg	1. Introduction	1 - 25	T.

Terminology of the ISO Reference Model (3)

A **protocol** is the set of rules for data exchange between two entities of the same layer.

Service Events and Protocol Data Units

Types of Service Primitives

- Request
 - · request of a service by the user
- Indication
 - indicates to the user that a service has been requested by the remote user or that an event has occured in the layer
- Response
 - · acknowledgement of a preceeded indication by the user
- Confirmation
 - · acknowledgement of a preceeded request to the local requestor

Ľ	Computer Networks	© Wolfgang Effelsberg	1. Introduction	1 - 29	Ľ

Headers and Trailers in the Layered Model

Sending proces	s •	data	Receiving process
Application layer	Application protocol	AH data	Application layer
Presentation layer	Presentation protocol	← PH data →	Presentation layer
Session layer	Session protocol	← SH data	Session layer
Transport layer	Transport protocol	← TH data →	Transport layer
Network layer	Network protocol	← NH data →	Network layer
Data Link layer	-	DH data DT	Data Link layer
Physical layer	-	bits -	Physical layer

Reference Model and Peer Protocols

Router

Computer Networks

Layer Models of Different Network Arcitectures

Layer	ISO	Internet	SNA	
7	Application	smtp	End user	
6	Presentation	telnet http	NAU services	
5	Session		Data flow control	
4	Transport	TCP, UDP	Transmission control	
3	Network		Path control	
		IP		
2	Data Link	Data link control	Data link control	
1	Physical	Physical	Physical	

Computer Networks	© Wolfgang Effelsberg	1. Introduction	1 - 33	