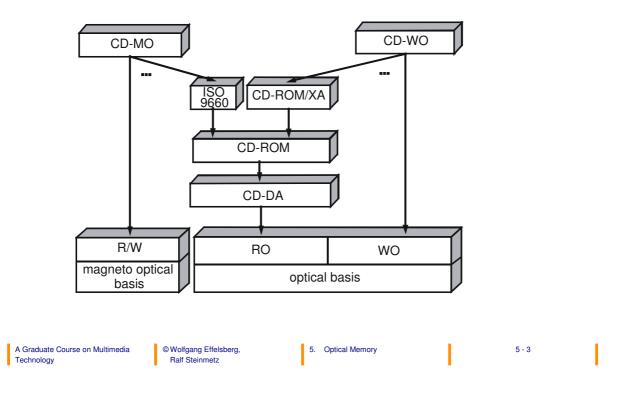
5. Optical Memory

- 5.1 Overview
- 5.2 History
- 5.3 Fundamentals
- 5.4 Laser Vision
- 5.5 CD-DA: Compact Disc Digital Audio
- 5.6 CD-ROM: Compact Disc Read Only Memory
- 5.7 CD-ROM/XA: CD-ROM Extended Architecture
- 5.8 Further CD-ROM-based Developments
- 5.9 CD-WO: Compact Disc Write Once
- 5.10 CD-MO: Compact Disc Magneto Optical
- 5.11 DVD: Digital Video Disk


A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 1	

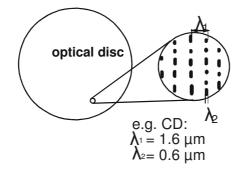
Where We Are

Ige	[Applications														
Usage	l	Learning	& Teaching	g	Des	sign		U	ser Interfaces								
Services		Content Process ing	Docu- ments	S	Security	Sync niza		Group Communi cations									
Systems	Į	Media-	Datab Server		Operating	gramming Communications											
Sy		Opt. Mem	ories		Quality o	f Serv	ice		N	etworks							
Ś	1	Computer		Compressio													
Basics		Archi- tectures	Image Graphi		Anima	tion	V	ideo		Audio							

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

Compact Disc Development

5.2 History


1973	Video Long Play (VLP) published
1983	Compact Disc Digital Audio (CD-DA) – available: the Red Book standard
1985	Compact Disc Read Only Memory (CD-ROM): - Yellow Book standard for physical format - High Sierra Proposal - ISO 9660 standard for logical file format
1986	Compact Disc Interactive (CD-I) announcement: the Green Book standard
1987	Digital Video Interactive (DVI): first presentation
1988	CD-ROM Extended Architecture (CD-ROM-XA) announcement
1990	CD Write Once (CD-WO), CD Magneto-Optical (CD-MO): - the Orange Book standard
1996	Digital Video Disk (DVD)

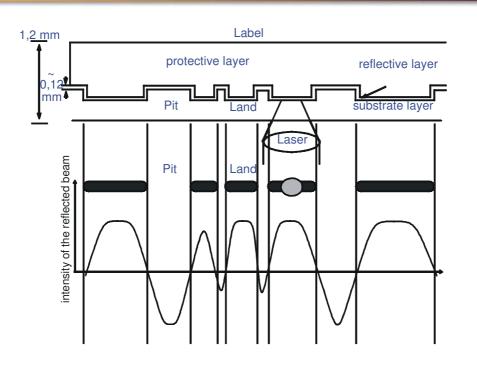
A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 5. Optical Memory

I

5.3 Fundamentals

Pits and Lands

Information is stored in a spiral-shaped track:


- · Series of pits and lands in substrate layer
- Transition from pit to land and from land to pit: '1'
- Between transitions: sequence of '0' s
- 16000 turns/inch (tpi)

Reading: Laser focused onto reflective layer

- Lands almost totally reflect the light
- Pits scatter the light

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 5	

Reading Data

Advantages of Optical Storage Media

High data density

- 1.66 data bits/µm of track
- · Inter-track density: 16000 tpi; compare diskette at 96 tpi

Long term storage

- · Insensitive to magnetic/electric interference
- · Insensitive to dust, scratches

Low probability of head crashes

Distance between head and substrate surface > 1 mm

Adequate error correction

· allows handling of many defects

Perception quality

• e.g., each digital music disc is exactly equivalent to the master

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 7	

5.4 Laser Disk

An important precursor of the audio CD.

Laser Disk Characteristics

- Diameter: ~ 30 cm
- Storage of video and audio
- Analog encoding
- High quality of reproduced data
- Storage capacity: ~ 2.6 GBytes

History

- Originally called Video Long Play (VLP)
- 1973 first description in the Philips Technical Review journal

Principles

- Mix of audio and video
- Frequency modulation
- No quantization of pit length

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

5.5 CD-DA: Compact Disc Digital Audio

Goal

• Storage of audio data

History

- · Development of basic technology by Philips
- · Cooperation of Philips N.V. and Sony Corporation
- 1983: CD-DA players and disks available in the market

Physical characteristics

- Diameter: 120 mm
- Constant linear velocity (CLV), i.e., number of rotations/s depends on the position of the head
- Track shape: one spiral with approx. 20000 turns (LP: 850 turns)

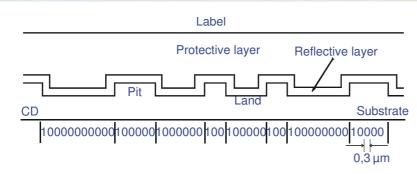
I	A Graduate Course on Multimedia Technology	©Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 9	

CD-DA: Characteristics

Audio data rate

- Sampling frequency: 44,100 Hz
- Quantization: 16 bits
- Pulse code modulation (PCM)
- Audio data rate = 1,411,200 bit/s = (~ 1.4 Mbit/s) (stereo)

Quality


- Signal to noise ratio (S/N): ~ 6 dB/bit, 16 bit quantization => S/N exactly 98 dB
- Compare LP, tape: S/N 50-60 dB

Capacity (without error correction data)

- Playback time: maximal 74 min
- Raw capacity =74 min x 1,411,200 bit/s = 6265728000 bit ~ 747 Mbyte

A Graduate Course on Multimedia
Technology

CD-DA: Pits and Lands

Length of pits and lands: multiples of 0.3 μm

Bit Encoding

- Transition from pit to land or from land to pit encodes a '1'
- · Between two transitions: a sequence of '0's

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 11	1
	•		·	

CD-DA: Eight-to-Fourteen Modulation

Restricted laser resolution

• Requires a minimal distance between transitions (pit to land, land to pit): at least two "0"s between two "1"s

Generation (adaptation) of the clock signal is driven by transitions

• Requires a maximal distance between transitions (pit to land, land to pit): not more than 10 consecutive "0"

=> Eight-to-Fourteen Modulation

- An 8 bit data value is encoded using 14 bits
- 267 combinations fulfill the criteria above, 256 are chosen. Criterion: efficient implementation with a small number of gates.

© Wolfgang Effelsberg, Ralf Steinmetz

CD-DA: Eight-to-Fourteen Modulation

Example from the code conversion table

data bits	channel bits
0000000	01001000100000
0000001	1000010000000

Concatenation of independent 14 bit values could lead to a violation of:

- · minimum distance of 2 bits between Ones
- maximum distance of 10 bits between Ones
- => three additional merging (filling) bits

CD-DA: Eight-to-Fourteen Modulation Example

© Wolfgang Effelsberg,

Ralf Steinmetz

Audio Bits							0	0	0	0	0	0	0	0										0	0	0	0	0	0	0	1			
Modulation Bits				0	1	0	0	1	0	0	0	1	0	0	0	0	0				1	0	0	0	0	1	0	0	0	0	0	0	0 0)
Filling Bits	0	1	0															1	0	0														
Channel Bits	0	1	0	0	1	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0 0)
On the CD-DA	I	р	р	р	I	I	I	р	р	р	р	I	I	I	I	I	I	р	р	р	I	I	I	I	I	р	р	р	р	р	р	p	b b)

A Graduate Course on Multimedia Technology

CD-DA: Error Handling

Typical Errors

- Scratches, dust, fingerprints
- "Burst errors"

Two-level Reed-Solomon code with frame interleaving ("Cross Interleaved Reed Solomon Code"):

• **First level:** byte level, EDC and ECC. Two groups, each with four correction bytes for 24 data bytes:

5. Optical Memory

- § 1st group: correction of single byte errors
- § 2nd group: correction of double byte errors, detection of further errors
- Second level: frame interleaving
 - § frame: 588 channel bits = 24 audio data bytes
 - S distribution of consecutive data bytes and corresponding ECC bytes over adjacent frames

Error rate: 10⁻⁸ (~ 1 bit in 100 million bits (!)

- Exact correction of 4000 data bits possible
- 4000 data bits * 0.3 μm/channel bit
- hence: burst errors within 2.5 mm can be corrected

With interpolation: Up to 12,300 data bits (~ 7 mm)

A Graduate Course on Multimedia	© Wolfgang Effelsberg,
Technology	Ralf Steinmetz

5 - 13

CD-DA: Frames

Each frame consists of

- Data
 - § Two groups of 12 audio data bytes each (actual data)

• Error detection and correction code

- § Two groups of four parity bytes
- § Computed according to the Reed-Solomon code

Control&display byte

- S Together with control&display bytes of other frames it forms the subchannel stream.
- § Example: subchannel byte for track start identification

• Synchronization pattern

- § Start of a frame
- $\$ 12 \times "1" + 12 \times "0" + 3 merging bits = 27 bits$

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 15	

CD-DA: Data Streams

Audio bit stream ~ 1.41 x 10^6 bit/s:

- 44,1 kHz sampling frequency ~ 1411200 bit/s
- 16-bit stereo PCM
- uniform quantization

Data bit stream ~ 1.94 x 10⁶ bit/s:

- Audio bit stream
 - + parity bytes
 - + control&display byte

Channel bit stream ~ 4.32 x 10⁶ bit/s:

- Data bit stream
 - + EFM
 - + merging bits
 - + synchronization pattern

CD-DA: Areas

Areas

- Lead-in area
 - · Table of content
 - · Pointer to the start of each track
- Program area
 - · Up to 99 tracks of different lengths
 - · Typically one track relates to one song
- Lead-out area

Random Access supported via

- Tracks
- Index points
 - IP₀: start of track
 - IP₁: start of audio data
 - Track pregap: part between IP₀ and IP₁

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 17	

5.6 CD-ROM: Compact Disc – Read Only Memory

CD-DA provides a suitable means for the handling of typical errors caused by damage or dust. The CD-DA specification became the base for a **family** of optical storage media.

But not conceived for:

- video (different ECC, EDC scheme required)
- discrete data (error rate too high)
- simultaneous play back of various media

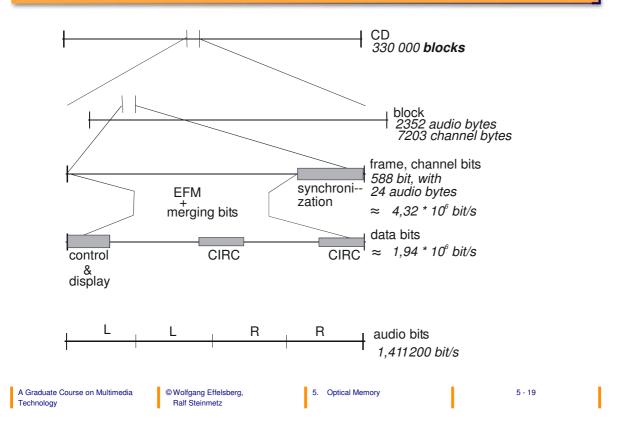
For computers there is a need for storage of:

• Data, audio, compressed audio and video

The Yellow Book CD-ROM Standard

- CD-ROM mode 1: for any data
- · CD-ROM mode 2: for compressed audio and video data
- But cannot be combined on a single track

Within a single track:


Only CD-DA audio or only CD-ROM specific data

Mixed Mode Disc:

- Data tracks at the beginning
- Subsequent tracks for audio data

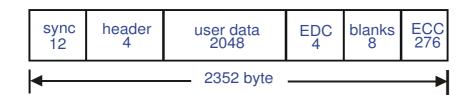
A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

CD-ROM: Structure

CD-ROM: Structure

Fine granularity for random access

- · Tracks and Index Points not sufficient
- Structure with a higher resolution: the **block**
- · Blocks contain a fixed number of frames


Disk structure

- 1 block = 32 frames
- 75 blocks/s (for a single-speed CD-ROM)
- 1411200 bit/s / 75 blocks/s / 8bit/byte = 2352 bytes/block

Allows for

- Random access
- Better EDC, ECC

CD-ROM Mode 1

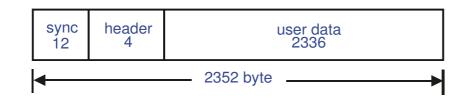
1 block = 2352 bytes:

- Header bytes include minutes, seconds, block number, mode
- Error rate = 10 -12

Capacity:

- Max. 74 min x 60 s/min x 75 block/s = 333000 blocks
- 333000 blocks/CD ~ 650 MByte (user data)

Data rate:


2048 byte/block x 75 block/ s ~150 KByte/s (single-speed)

Used by most CD-ROM applications, but

simultaneous reading of audio and other data in CD-ROM mode 1 not possible

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 21	

CD-ROM Mode 2

Capacity:

- 333000 blocks x 2336 bytes/block
- = 777888000 bytes ~ 741.85 MByte

Data rate:

• 2336 byte/block x 75 block/s = 171 KByte/s (single-speed)

Problem: concatenation of mode 1 and mode 2 blocks

CD-ROM: Average Access Time

Time to position a block/sector

- Synchronization time: Adapt internal clock to disc signal § Range of milliseconds
- Seek time: Adaptation of laser to radius S about 100 ms
- Rotation delay (for constant linear velocity):
 - § Find sector within one rotation
 - § Adapt disk speed
 - § for 40 x CD devices (with 9000 rotations per minute) ~ 6.3 ms

Access time (also) depends on

- actual and desired position of the head (distance)
- cache strategies of the device

The actual average access time may be about 100 ms (with data caching).

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5.	Optical Memory	5 - 23	1

CD-ROM: File System

Original (early) CD-ROM

- No logical file format
- No directory specification

High Sierra Proposal

- Developed by a group of industry representatives
- Initial file system later lead to ISO 9660

ISO 9660 file standard

- Directory tree: information about files
- Path table: List of all directories & direct access to files at any level
- File interleaving

First track

- 16 blocks (sectors 0 to 15): system area
- Volume descriptors in subsequent blocks with e.g. the length of file system

Logical block size

- between 512 bytes and 2048 bytes (in steps of 2i)
- blocks of 512 bytes, 1024 bytes, and 2048 bytes are used
- Files begin at logical block start

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

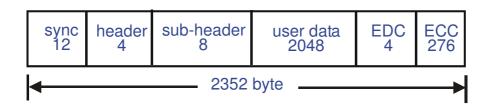
5.7 CD-ROM/XA: CD-ROM Extended Architecture

History

- Philips N.V., Sony and Microsoft (announcement in 1988)
- An extension of the Yellow Book standard

Goal: Simultaneous transfer of various media data

- Based on CD-ROM mode 2, ISO 9660, CD-I
- · Interleaving of blocks of different media within the same track
- Definition of a new type of track used for:
 - § compressed audio (ADPCM) and video data
 - § images, text, programs
- Distinction between two block formats: Form 1, Form 2

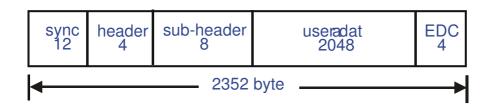

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5.	Optical Memory	5 - 25	

XA: Extended Architecture

Drawbacks

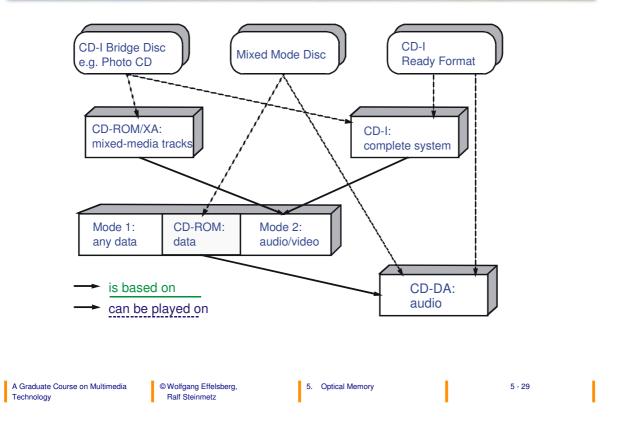
- Compatibility to audio and video compression
 - § For some media only reference to standard
 - S MPEG audio not compatible (MPEG does not use ADPCM)
- Interleaved storage of data of different types in the same track:
 - § Requires special disc layout
 - S Requires effective interleaving with a choice of the suitable audio level
 - § Complex application development

CD-ROM/XA (Mode 2) Form 1


Subheader:

- Specification of CD-ROM Mode 2 XA Format type
- 8 bytes long

Improved error handling for text and program data with 4 bytes for error detection and 276 bytes for error correction.


A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 27	
			·	

CD-ROM/XA (Mode 2) Form 2

- Storage of compressed data (incl. audio, video)
- Only 4 bytes for error detection, no error correction
- 13% more data bytes

5.8 Further CD-ROM-based Developments

Overview of Further Developments

Further standards

- · Directly based on the CD-ROM mode 2 standard
- · CD-ROM/XA
 - · allows for mode 1 and mode 2 blocks in the same track
- CD-I (CD Interactive)
 - · a complete multimedia system

Compatibility formats

Formats that can be played on multiple players

CD-I Bridge Disc:	CD-ROM/XA and CD-I
	players
Mixed Mode Disc:	CD-ROM and CD-DA
	players
CD-I Ready Format:	CD-I and CD-DA players

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

Photo Compact Disc: Example of a CD Bridge Disc

Purpose: Storage of photos of high quality

History

- · Eastman Kodak and N.V. Philips Company
- 1990 announcement of the Kodak Photo CD system

Characteristics

- Based on CD Write Once (CD-WO)
- Readable with:
 - Photo CD players
 - CD-I players
 - · CD-ROM/XA players
- · Written by: Special Photo CD writers and CD-WO writers

Capabilities

- · New professional and private application areas
- · Simultaneous display of several images
- · Image editing

A Graduate Course on Multimedia Technology	©Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 31	

Photo Compact Disc: ImagePac

Production

- · Photos are taken with conventional cameras
- Digitized with 8 bits for the luminance component and 8 bits for each of the two chrominance components
- Written on CD

Image resolution of a Photo CD:

type of image	compr./uncompr.	number of lines	number of columns
base/16	uncompressed	128	192
base/14	uncompressed	256	384
base	uncompressed	512	768
4base	compressed	1024	1536
16base	compressed	2048	3072
64-Base	compressed	4.096	6.144

Per photo

- ImagePac at five different resolutions: hierarchical coding
- About 3 to 6 MByte storage per ImagePac

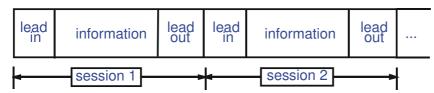
A Graduate Course on Multimedia Technology

5.9 CD-WO: Compact Disc Write Once

Defined in the Orange Book Standard Part II

A "raw" CD-WO has:

- a pre-grooven track
- an absorption layer between the substrate and the reflective layer


Recording: an irreversible change of the reflection characteristics by heating up the absorption layer ("burning")

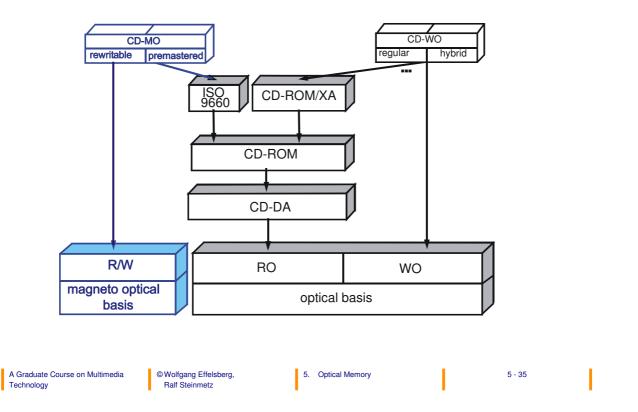
The CD-WO can be played in CD-DA players.

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 33	

CD-WO: Sessions

Disc layout with several sessions

Sessions


- Burning can be done in several sessions each with:
 - Lead-in part
 - Data part
 - Lead-out part
- Maximum: 99 sessions

Note

- · CD players older than 1992 can only read the first session
- Regular CD-WO: only one session
- · Hybrid CD-WO: several sessions

```
A Graduate Course on Multimedia
Technology
```

5.10 CD-MO: Compact Disc Magneto Optical

CD-MO: Features and Principles

Definition in the Orange Book Standard Part I

- High capacity (double-sided): about 650 MByte
- Data transfer rate: about 1.2 Mbit/s

Features

- write data
- · read data
- erase data
- rewrite data

Principles of the magneto-optical technique

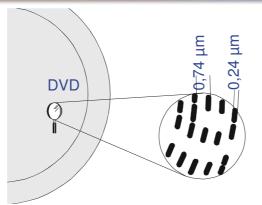
- Write:
 - Heat up the blocks
 - Apply about 10 x earth magnetic field
 - · Polarization of single elements
- Erase:
 - Use a constant magnetic field
 - · Simultaneously heat up the block
- Read:
 - · Polarization of light is influenced by magnetic characteristics

```
A Graduate Course on Multimedia
Technology
```

© Wolfgang Effelsberg, Ralf Steinmetz

5.11 DVD: Digital Video Disk

Also known as: "Digital Versatile Disk"


Goal: to create a new optical medium to store an entire high-quality digital movie on one disk.

Formats

- single-sided single-layer
- · single-sided double-layer: laser must switch focus to read the other layer
- · double-sided: disk must be flipped over to read the other side

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	5. Optical Memory	5 - 37	

DVD - Technical Overview

CD-like optical storage medium Capacity considerably higher than CD

- · pits and lands shorter
- tracks more narrow

EFM PLUS error correction scheme

- more robust than the CD scheme
- maps 8 bits of data to 16 bits (encoded), no need for merging bits

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

	CD	DVD
Media diameter	120 mm	120 mm
Media thickness	1,2 mm	1,2 mm
Wavelength of laser	780 nm	650 and 635 nm (red)
light	(infrared)	
Track distance	1,6 µm	0,74 µm
Min. pit / land length	0,83 µm	0,4 µm
Data layers	1	1 or 2
Sides	1	1 or 2
Capacity	ca. 650 MB	ca. 4.38 GB (SLSS)
		ca. 7.95 GB (DLSS)
		ca. 8.75 GB (SLDS)
		ca. 15.9 GB (DLDS)
Video data rate	ca. 1,5 Mbit/s	1-10 Mbit/s (var.)
Video compression	MPEG-1	MPEG-2
standard		
Video capacity	ca. 1 h	between 2 and 8 h
		(depending on format)
Sound tracks	2-channel	2-channel PCM
	MPEG audio	5.1-chanel AC-3
		optional: up to 8 data
		streams
Subtitles	-	up to 32 languages

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

5. Optical Memory

DVD: Variants

DVD Read Only Specification (DVD-ROM, Book A):

• Storage medium with high capacity, successor of the CD-ROM

DVD Video Specification (DVD-Video, Book B):

• Special application of the DVD for the distribution of "linear" video streams

DVD Audio Specification (DVD-Audio, Book C):

 Special application of the DVD for the distribution of pure audio data, similar to the CD-DA

DVD Recordable Specification (DVD-R, Book D):

· Variant of the DVD that allows to record once

DVD Rewriteable Specification (DVD-RW, Buch E):

 Variant of the DVD that allows to record several times. Also called DVD-RAM (Random Access Memory)

5 - 39

DVD: Physical Disk Configurations

		Diameter		Lovoro	Canaaity	
	Name	Diameter (cm)	Sides	Layers per side	Capacity (GB)	Remarks
	DVD-5	12	SS	SL	4,38	>2 h video
	DVD-9	12	SS	DL	7,95	ca. 4 h video
	DVD-10	12	DS	SL	8,75	ca. 4.5 h video
	DVD-18	12	DS	DL	15,9	> 8 h video
	DVD-1*	8	SS	SL	1,36	ca. 1/2 h video
	DVD-2*	8	SS	DL	2,48	ca. 1.3 h video
	DVD-3*	8	DS2	SL	2,72	ca. 1.4 h video
	DVD-4*	8	DS	DL	4,95	ca. 2.5 h video
	DVD-R	12	SS	SL	3,68	
	DVD-R	12	DS	SL	7,38	
	DVD-R	8	SS	SL	1,15	
	DVD-R	8	DS	SL	2,3	
	RAM-	12	SS	SL	2,4	
	DVD- RAM	12	DS	SL	4,8	
A Graduate Course on Multime Technology		Wolfgang Effelsbe Ralf Steinmetz	erg,	5. O	otical Memory	

5 - 41