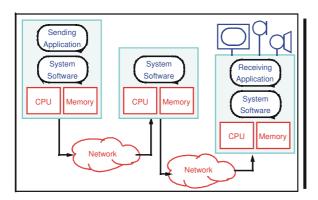

3. Quality of Service



Content

- 3.1 Motivation
- 3.2 Characteristics of Real-Time / Multimedia Systems
- 3.3 QoS Definition
- 3.4 Resources
- 3.5 Providing QoS
- 3.6 QoS Architectures

3.1 Motivation

Kinds of systems we are dealing with are

Local

- · Harddisk recording
- Interactive DVD
- Computer based training

Distributed

- Conferencing
- · Video on demand
- IP-Telephony

Basic terminology

- Resources
- Realtime
- · Quality of Service

What and how much of it do we need, and how do we describe that?

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 3. Quality of Service (QoS)

3-3

Motivation for QoS

A QoS model and its implications

- QoS specification
- · QoS calculation
- QoS enforcement

QoS has different implications in different fields:

- Operating system / Resource scheduling
- File system organization
- Compression
- Communication system support
- Media synchronization
- User Interface
- and more ...

3.2 Characteristics of Real-Time / Multimedia Systems

Real-time System:

"A system in which the correctness of a computation depends not only on obtaining the right result, but also upon providing the result on time."

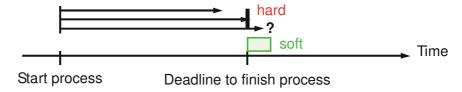
Real-time Process:

"A process which delivers the results of the processing in a given time-span."

Real-time applications - examples

- Control of temperature in a chemical plant
 - -driven by interrupts from external devices
 - -these interrupts occur at irregular and unpredictable intervals
- · Example: Control of a flight simulator
 - -execution at periodic intervals
 - -scheduled by a timer service which the application requests from the OS

Common characteristics:


- -internal and external events that occur periodically or spontaneous
- -correctness also depends on meeting time constraints!

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg Ralf Steinmetz 3. Quality of Service (QoS)

3-5

Deadlines in Realtime Systems

A deadline represents the latest acceptable time to finish an operation, e.g., for the presentation of a processing result

Hard deadlines:

- · should never be violated
- · result presented too late (after deadline) has no value for the user
- violation means severe (potentially catastrophic) system failure
- · Example: Nuclear power plant

Soft deadlines:

- · deadlines are not missed by much
- in some cases the deadline may be missed, but not too many deadlines are missed
- · presented result still has some value for the user
- Example: train/airplane arrival / departure

Realtime System - Requirements

Primary goal:

- deterministic behaviour according to specification
- · results in a variety of requirements

Mandatory requirements:

- Predictable (fast) handling of time-critical events
- Adequate schedulability
- · Stability under overload conditions

Desirable requirements:

- Multi-tasking capabilities
- Short interrupt latency
- Fast context switching
- Control of memory management
- Proper scheduling
- Fine-granularity of timer services
- Rich set of interprocess communication and synchronisation mechanisms

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg Ralf Steinmetz 3. Quality of Service (QoS)

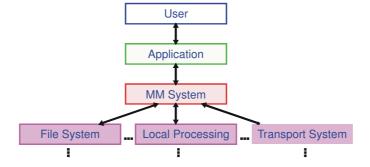
3-7

Multimedia Systems

A new application area for real-time systems with special characteristics:

- Typically soft real-time and not (that) critical
- Requirements may often be adapted to ensure proper handling, e.g., scaling of data streams to available bit rates

Characteristics


- Periodic processing
- Large bandwidth
- End-to-end guarantees
- Fault-tolerance
- Fairness
- Standardization

3.3 QoS - Definition

Quality of Service =

"well-defined and controllable behavior of a system according to quantitatively measurable parameters"

Layer model

Different service objects:

- · Media / Streams
- Tasks
- Memory areas

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 3. Quality of Service (QoS)

3-9

QoS - Layer Model (1)

Examples: both qualitative / quantitative description

Perception QoS

- •Tolerable Synchronisation Drift
- Visual Perceptability

Application QoS

- Media Parameters
- Media (Transmission) Characteristics

System QoS

- CPU Rate / Usage
- Available Memory

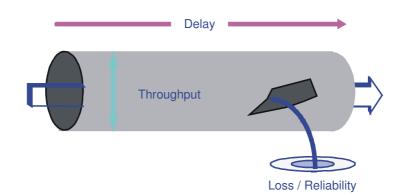
QoS - Layer Model (2)

Communication QoS

- Packet Size / Rate
- Bandwidth
- End-to-End Delay

Device QoS

- Seek / Data Transfer Rate
- Sample Rate / Resolution


A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 3. Quality of Service (QoS)

3-11

QoS Parameters – Example: Transport System

Common parameters concerning the Transport System are:

- Throughput
- Delay / Jitter
- Loss / Reliability

But also:

- Security
- Cost
- Stability (Resilience)

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

3. Quality of Service (QoS)

3-12

QoS Parameter Example

Delay

- · Maximum end-to-end delay for transmission of one packet
- Delay jitter = maximum variance of transmission times

Throughput

- Maximum long-term rate = maximum amount of data units transmitted per time interval (e.g. ,packets or bytes per second)
- (e.g. ,packets of bytes per second
- Maximum burst size
- Maximum packet size

Loss

- Sensitivity class: ignore / indicate / correct losses
- Loss rate = maximum number of losses per time interval
- Loss size = maximum number of consecutively lost packets

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 3. Quality of Service (QoS)

3-13

Service Classes

Guaranteed Service

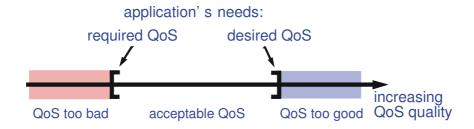
Values or intervals of QoS parameters
 Sdeterministic (at any time)
 Sstatistical (consider a time interval or a certain propability)

$$QoS_{min} \le P \le QoS_{max}$$

Predictable Service

- consider history
 sfrom the very beginning of calculation
 sin a shifting time window
- "if it was like that in the last ..., you can rely on ..."

Best Effort Service


no quarantees given

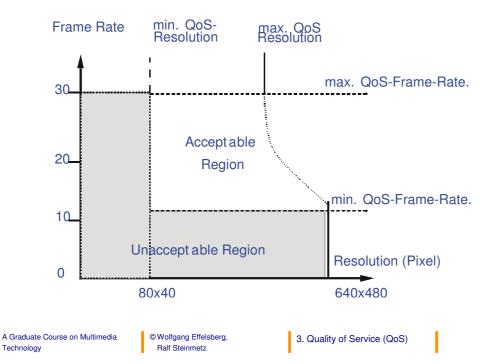
QoS Intervals (1)

Parameter values result in

- inacceptable regions
- · acceptable regions

of QoS in one-dimensional intervals

- Below required QoS level no useful service
- · Above required QoS level unnecessary (useless) resource consumption / cost


A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 3. Quality of Service (QoS)

3-15

3-16

QoS Intervals (2)

Also: multidimensional intervals

3.4 Resources

Classification

By functionality

- · active resources
 - · actively fulfill a certain task
 - · e.g., processor, network adapter
- passive resources
 - · provide "space"
 - · e.g., memory, frequency spectrum, file system

By availability for concurrent usage

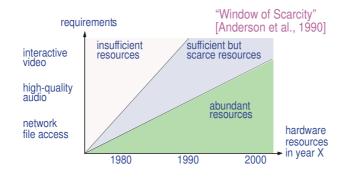
- · exclusive
- shared

By occurence

- single
- multiple

Common parameter:

· "Capacity" - allows quantitative description


A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 3. Quality of Service (QoS)

3-17

Resources - Availability

Starting point:

· scarce, but sufficient resources

Goal

Provide best service at the lowest possible cost

Conclusion

 We need resource management in all components of a multimedia system!

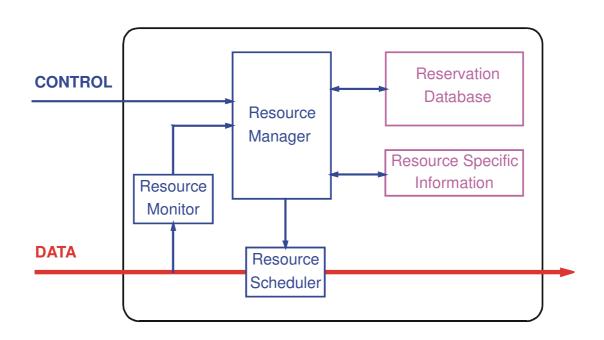
Relationship Between QoS and Resources

QoS
before processing

Resource with certain capacity

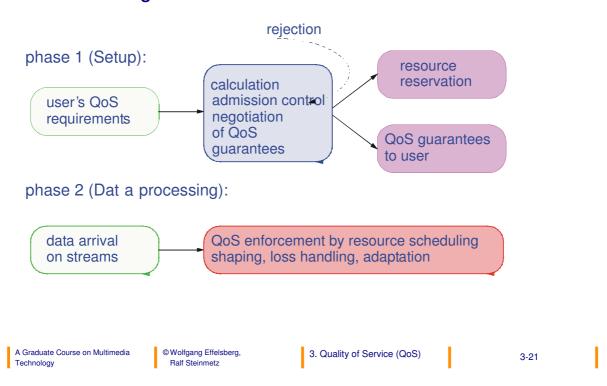
Data in

Processing, using a

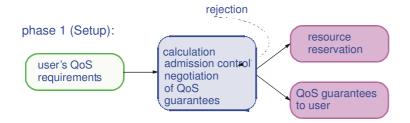

QoS
after processing

Data out

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 3. Quality of Service (QoS)


3-19

Architecture



3.5 Providing QoS

Resource Management Phases

3.5.1 QoS Provisioning – Setup Phase

Definition of required parameters

• implicitly or explicitly by application or user

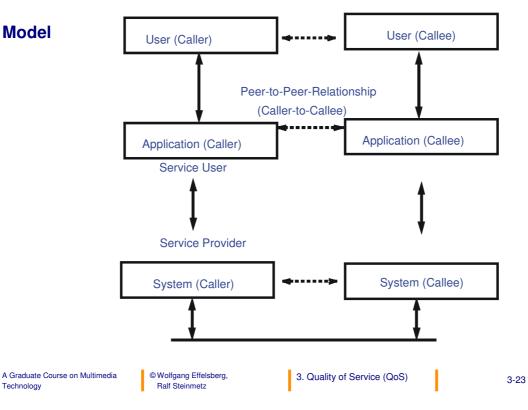
Distribution and Negotiation

Translation between different layers

• especially if they use different semantics / notations

Transformation

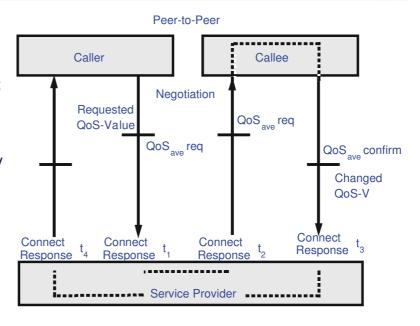
• QoS parameter => Resource requirements


Allocation and coordination of resources

along path(s) from source(s) to sink(s)

QoS Calculation and Negotiation

Model


Technology

QoS Negotiation (1)

Bilateral peer-to-peer

- · service provider may not modify requested QoS parameters
- · only service user at receiver side may modify (lower) value(s) in the confirmation message

QoS Negotiation (2)

Bilateral layer-to-layer

- only between adjacent layers
 - · between local service users and providers
 - between sender and network

Unilateral

- no modification of requested QoS parameters allowed, but just accept or reject
- receiver may accept QoS parameter although he cannot meet them
 - · example: color TV broadcast

Hybrid

- · uses unilateral mode for a certain bilateral layer-to-layer negotiation
 - example: broadcast/multicast communication
 - ===> heterogeneity of receivers

Further:

- trilateral for information exchange
- trilateral for a limited target value

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg Ralf Steinmetz 3. Quality of Service (QoS)

3-25

Admission Control

The system checks whether requested resources are and will be available. Especially important for shared resources:

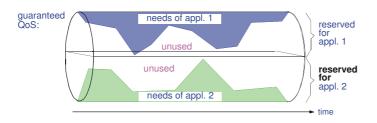
- CPU
- network paths
- · buffer space.

A simple rule

Check whether the sum of the resources already in use and new request(s) is less or equal to the available resource capacity.

More specific: check for

- schedulability
- availability of buffers (space)
- bandwidth


Note:

- strong relationship with Pricing / Billing
- efficient mechanisms will use "economic feedback" to prevent users from always requesting the maximum

Resource Reservation

Fundamental concept for the reliable provision of QoS guarantees!

pessimistic - results in Guaranteed QoS

optimistic - results in Statistical QoS

Resource Reservation Aspects - Example

Example

Communication System ===> variety of aspects

Reservation Models

- Sender-initiated
- · Receiver-initiated
- · Explicit vs. Implicit
- · Out-of-Band vs. In-Band

Reservation Style

- Semantics and Notation
- · Heterogeneity and multicast support

Reservation Protocols

- IP V.5: ST-II
- RSVP (Resource reSerVation Protocol)

3.5.2 QoS Provisioning – Data Processing Phase

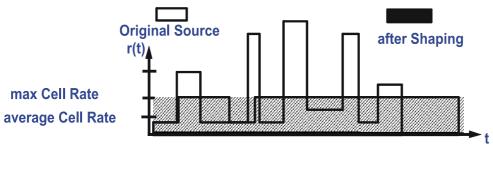
phase 2 (Dat a processing):

Maintain resource reservations

Use:

- adequate traffic shaping (to ensure characteristics of processed data)
- Scheduling algorithms
- · feedback and adaption of the streams

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 3. Quality of Service (QoS)

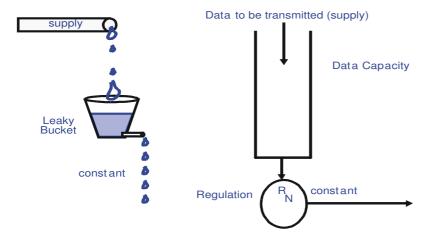

3-29

Shaping

Characteristics of Multimedia Traffic:

- bursty
- concurrent requests may cause problems though quarantees could be met (e.g., buffer overflow)

Basic principle



A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz 3. Quality of Service (QoS)

3-30

Shaping – Leaky Bucket Algorithm

Bucket Size

 determines maximum capacity till overflow (drop) and possible delay

Other Algorithms

- Token Bucket Algorithm
- Token Bucket Algorithm with Leaky Bucket Rate Control

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg Ralf Steinmetz 3. Quality of Service (QoS)

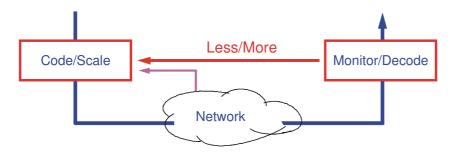
3-31

Loss Handling

Error Detection

by means of redundancy / checks / analysis

Loss handling algorithms fall into two basic categories:


- Retransmission
 - Go-back-N retransmission
 - · Selective retransmission
 - Using partially error-free streams
- Prevention
 - Forward Error Correction (FEC)
 - Priority Coding
 - Slack Automatic Repeat Request

Adaption - Feedback Control

Monitor the load of network and local end-system resources

If significant changes occur, take appropriate action to reduce generated load:

- Explicit communication receiver tells sender to slow down
- · Completely in network on a hop-by-hop basis
- · By feedback from congested network nodes to the sender.

Variety of possible reactions

- · e.g., layered transmission
- adaptive degradation of the stream quality
- ...

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg Ralf Steinmetz 3. Quality of Service (QoS)

3-33

3.6 QoS Architectures

Examples (communication layer)

- Heidelberg Transport System (HeiTS)
 - uses ST-II (IPv5)
- Internet Integrated Services
 - use existing infrastructure, but deploy dedicated handling of flows (streams) in the transfer system
 - Resource Reservation Protocol RSVP to support heterogenous needs
- Differentiated Service
 - Granularity based on the TOS (Type Of Service) IP Header Field
 - Define service classes, negotiate service level agreements and ensure dedicated treatment of flows that behave as described
- IPv6
 - QoS support was an important design criterion from the beginning
 - Dedicated header fields to allow classification / dedicated treatment of flows